rln-contract/contracts/PoseidonHasher.sol
2023-03-30 12:24:58 +05:30

1018 lines
39 KiB
Solidity

// SPDX-License-Identifier: MIT
// Forked from https://github.com/kilic/rlnapp/
pragma solidity 0.8.15;
interface IPoseidonHasher {
/// @notice Hashes the input using the Poseidon hash function, n = 2, second input is the constant 0
/// @param input The input to hash
function hash(uint256 input) external pure returns (uint256 result);
}
contract PoseidonHasher is IPoseidonHasher {
uint256 constant Q =
21888242871839275222246405745257275088548364400416034343698204186575808495617;
uint256 constant C0 =
4417881134626180770308697923359573201005643519861877412381846989312604493735;
uint256 constant C1 =
5433650512959517612316327474713065966758808864213826738576266661723522780033;
uint256 constant C2 =
13641176377184356099764086973022553863760045607496549923679278773208775739952;
uint256 constant C3 =
17949713444224994136330421782109149544629237834775211751417461773584374506783;
uint256 constant C4 =
13765628375339178273710281891027109699578766420463125835325926111705201856003;
uint256 constant C5 =
19179513468172002314585757290678967643352171735526887944518845346318719730387;
uint256 constant C6 =
5157412437176756884543472904098424903141745259452875378101256928559722612176;
uint256 constant C7 =
535160875740282236955320458485730000677124519901643397458212725410971557409;
uint256 constant C8 =
1050793453380762984940163090920066886770841063557081906093018330633089036729;
uint256 constant C9 =
10665495010329663932664894101216428400933984666065399374198502106997623173873;
uint256 constant C10 =
19965634623406616956648724894636666805991993496469370618546874926025059150737;
uint256 constant C11 =
13007250030070838431593222885902415182312449212965120303174723305710127422213;
uint256 constant C12 =
16877538715074991604507979123743768693428157847423939051086744213162455276374;
uint256 constant C13 =
18211747749504876135588847560312685184956239426147543810126553367063157141465;
uint256 constant C14 =
18151553319826126919739798892854572062191241985315767086020821632812331245635;
uint256 constant C15 =
19957033149976712666746140949846950406660099037474791840946955175819555930825;
uint256 constant C16 =
3469514863538261843186854830917934449567467100548474599735384052339577040841;
uint256 constant C17 =
989698510043911779243192466312362856042600749099921773896924315611668507708;
uint256 constant C18 =
12568377015646290945235387813564567111330046038050864455358059568128000172201;
uint256 constant C19 =
20856104135605479600325529349246932565148587186338606236677138505306779314172;
uint256 constant C20 =
8206918720503535523121349917159924938835810381723474192155637697065780938424;
uint256 constant C21 =
1309058477013932989380617265069188723120054926187607548493110334522527703566;
uint256 constant C22 =
14076116939332667074621703729512195584105250395163383769419390236426287710606;
uint256 constant C23 =
10153498892749751942204288991871286290442690932856658983589258153608012428674;
uint256 constant C24 =
18202499207234128286137597834010475797175973146805180988367589376893530181575;
uint256 constant C25 =
12739388830157083522877690211447248168864006284243907142044329113461613743052;
uint256 constant C26 =
15123358710467780770838026754240340042441262572309759635224051333176022613949;
uint256 constant C27 =
19925004701844594370904593774447343836015483888496504201331110250494635362184;
uint256 constant C28 =
10352416606816998476681131583320899030072315953910679608943150613208329645891;
uint256 constant C29 =
10567371822366244361703342347428230537114808440249611395507235283708966113221;
uint256 constant C30 =
5635498582763880627392290206431559361272660937399944184533035305989295959602;
uint256 constant C31 =
11866432933224219174041051738704352719163271639958083608224676028593315904909;
uint256 constant C32 =
5795020705294401441272215064554385591292330721703923167136157291459784140431;
uint256 constant C33 =
9482202378699252817564375087302794636287866584767523335624368774856230692758;
uint256 constant C34 =
4245237636894546151746468406560945873445548423466753843402086544922216329298;
uint256 constant C35 =
12000500941313982757584712677991730019124834399479314697467598397927435905133;
uint256 constant C36 =
7596790274058425558167520209857956363736666939016807569082239187494363541787;
uint256 constant C37 =
2484867918246116343205467273440098378820186751202461278013576281097918148877;
uint256 constant C38 =
18312645949449997391810445935615409295369169383463185688973803378104013950190;
uint256 constant C39 =
15320686572748723004980855263301182130424010735782762814513954166519592552733;
uint256 constant C40 =
12618438900597948888520621062416758747872180395546164387827245287017031303859;
uint256 constant C41 =
17438141672027706116733201008397064011774368832458707512367404736905021019585;
uint256 constant C42 =
6374197807230665998865688675365359100400438034755781666913068586172586548950;
uint256 constant C43 =
2189398913433273865510950346186699930188746169476472274335177556702504595264;
uint256 constant C44 =
6268495580028970231803791523870131137294646402347399003576649137450213034606;
uint256 constant C45 =
17896250365994900261202920044129628104272791547990619503076839618914047059275;
uint256 constant C46 =
13692156312448722528008862371944543449350293305158722920787736248435893008873;
uint256 constant C47 =
15234446864368744483209945022439268713300180233589581910497691316744177619376;
uint256 constant C48 =
1572426502623310766593681563281600503979671244997798691029595521622402217227;
uint256 constant C49 =
80103447810215150918585162168214870083573048458555897999822831203653996617;
uint256 constant C50 =
8228820324013669567851850635126713973797711779951230446503353812192849106342;
uint256 constant C51 =
5375851433746509614045812476958526065449377558695752132494533666370449415873;
uint256 constant C52 =
12115998939203497346386774317892338270561208357481805380546938146796257365018;
uint256 constant C53 =
9764067909645821279940531410531154041386008396840887338272986634350423466622;
uint256 constant C54 =
8538708244538850542384936174629541085495830544298260335345008245230827876882;
uint256 constant C55 =
7140127896620013355910287215441004676619168261422440177712039790284719613114;
uint256 constant C56 =
14297402962228458726038826185823085337698917275385741292940049024977027409762;
uint256 constant C57 =
6667115556431351074165934212337261254608231545257434281887966406956835140819;
uint256 constant C58 =
20226761165244293291042617464655196752671169026542832236139342122602741090001;
uint256 constant C59 =
12038289506489256655759141386763477208196694421666339040483042079632134429119;
uint256 constant C60 =
19027757334170818571203982241812412991528769934917288000224335655934473717551;
uint256 constant C61 =
16272152964456553579565580463468069884359929612321610357528838696790370074720;
uint256 constant C62 =
2500392889689246014710135696485946334448570271481948765283016105301740284071;
uint256 constant C63 =
8595254970528530312401637448610398388203855633951264114100575485022581946023;
uint256 constant C64 =
11635945688914011450976408058407206367914559009113158286982919675551688078198;
uint256 constant C65 =
614739068603482619581328040478536306925147663946742687395148680260956671871;
uint256 constant C66 =
18692271780377861570175282183255720350972693125537599213951106550953176268753;
uint256 constant C67 =
4987059230784976306647166378298632695585915319042844495357753339378260807164;
uint256 constant C68 =
21851403978498723616722415377430107676258664746210815234490134600998983955497;
uint256 constant C69 =
9830635451186415300891533983087800047564037813328875992115573428596207326204;
uint256 constant C70 =
4842706106434537116860242620706030229206345167233200482994958847436425185478;
uint256 constant C71 =
6422235064906823218421386871122109085799298052314922856340127798647926126490;
uint256 constant C72 =
4564364104986856861943331689105797031330091877115997069096365671501473357846;
uint256 constant C73 =
1944043894089780613038197112872830569538541856657037469098448708685350671343;
uint256 constant C74 =
21179865974855950600518216085229498748425990426231530451599322283119880194955;
uint256 constant C75 =
14296697761894107574369608843560006996183955751502547883167824879840894933162;
uint256 constant C76 =
12274619649702218570450581712439138337725246879938860735460378251639845671898;
uint256 constant C77 =
16371396450276899401411886674029075408418848209575273031725505038938314070356;
uint256 constant C78 =
3702561221750983937578095019779188631407216522704543451228773892695044653565;
uint256 constant C79 =
19721616877735564664624984774636557499099875603996426215495516594530838681980;
uint256 constant C80 =
6383350109027696789969911008057747025018308755462287526819231672217685282429;
uint256 constant C81 =
20860583956177367265984596617324237471765572961978977333122281041544719622905;
uint256 constant C82 =
5766390934595026947545001478457407504285452477687752470140790011329357286275;
uint256 constant C83 =
4043175758319898049344746138515323336207420888499903387536875603879441092484;
uint256 constant C84 =
15579382179133608217098622223834161692266188678101563820988612253342538956534;
uint256 constant C85 =
1864640783252634743892105383926602930909039567065240010338908865509831749824;
uint256 constant C86 =
15943719865023133586707144161652035291705809358178262514871056013754142625673;
uint256 constant C87 =
2326415993032390211558498780803238091925402878871059708106213703504162832999;
uint256 constant C88 =
19995326402773833553207196590622808505547443523750970375738981396588337910289;
uint256 constant C89 =
5143583711361588952673350526320181330406047695593201009385718506918735286622;
uint256 constant C90 =
15436006486881920976813738625999473183944244531070780793506388892313517319583;
uint256 constant C91 =
16660446760173633166698660166238066533278664023818938868110282615200613695857;
uint256 constant C92 =
4966065365695755376133119391352131079892396024584848298231004326013366253934;
uint256 constant C93 =
20683781957411705574951987677641476019618457561419278856689645563561076926702;
uint256 constant C94 =
17280836839165902792086432296371645107551519324565649849400948918605456875699;
uint256 constant C95 =
17045635513701208892073056357048619435743564064921155892004135325530808465371;
uint256 constant C96 =
17055032967194400710390142791334572297458033582458169295920670679093585707295;
uint256 constant C97 =
15727174639569115300068198908071514334002742825679221638729902577962862163505;
uint256 constant C98 =
1001755657610446661315902885492677747789366510875120894840818704741370398633;
uint256 constant C99 =
18638547332826171619311285502376343504539399518545103511265465604926625041234;
uint256 constant C100 =
6751954224763196429755298529194402870632445298969935050224267844020826420799;
uint256 constant C101 =
3526747115904224771452549517614107688674036840088422555827581348280834879405;
uint256 constant C102 =
15705897908180497062880001271426561999724005008972544196300715293701537574122;
uint256 constant C103 =
574386695213920937259007343820417029802510752426579750428758189312416867750;
uint256 constant C104 =
15973040855000600860816974646787367136127946402908768408978806375685439868553;
uint256 constant C105 =
20934130413948796333037139460875996342810005558806621330680156931816867321122;
uint256 constant C106 =
6918585327145564636398173845411579411526758237572034236476079610890705810764;
uint256 constant C107 =
14158163500813182062258176233162498241310167509137716527054939926126453647182;
uint256 constant C108 =
4164602626597695668474100217150111342272610479949122406544277384862187287433;
uint256 constant C109 =
12146526846507496913615390662823936206892812880963914267275606265272996025304;
uint256 constant C110 =
10153527926900017763244212043512822363696541810586522108597162891799345289938;
uint256 constant C111 =
13564663485965299104296214940873270349072051793008946663855767889066202733588;
uint256 constant C112 =
5612449256997576125867742696783020582952387615430650198777254717398552960096;
uint256 constant C113 =
12151885480032032868507892738683067544172874895736290365318623681886999930120;
uint256 constant C114 =
380452237704664384810613424095477896605414037288009963200982915188629772177;
uint256 constant C115 =
9067557551252570188533509616805287919563636482030947363841198066124642069518;
uint256 constant C116 =
21280306817619711661335268484199763923870315733198162896599997188206277056900;
uint256 constant C117 =
5567165819557297006750252582140767993422097822227408837378089569369734876257;
uint256 constant C118 =
10411936321072105429908396649383171465939606386380071222095155850987201580137;
uint256 constant C119 =
21338390051413922944780864872652000187403217966653363270851298678606449622266;
uint256 constant C120 =
12156296560457833712186127325312904760045212412680904475497938949653569234473;
uint256 constant C121 =
4271647814574748734312113971565139132510281260328947438246615707172526380757;
uint256 constant C122 =
9061738206062369647211128232833114177054715885442782773131292534862178874950;
uint256 constant C123 =
10134551893627587797380445583959894183158393780166496661696555422178052339133;
uint256 constant C124 =
8932270237664043612366044102088319242789325050842783721780970129656616386103;
uint256 constant C125 =
3339412934966886386194449782756711637636784424032779155216609410591712750636;
uint256 constant C126 =
9704903972004596791086522314847373103670545861209569267884026709445485704400;
uint256 constant C127 =
17467570179597572575614276429760169990940929887711661192333523245667228809456;
uint256 constant M00 =
2910766817845651019878574839501801340070030115151021261302834310722729507541;
uint256 constant M01 =
19727366863391167538122140361473584127147630672623100827934084310230022599144;
uint256 constant M10 =
5776684794125549462448597414050232243778680302179439492664047328281728356345;
uint256 constant M11 =
8348174920934122550483593999453880006756108121341067172388445916328941978568;
function hash(
uint256 input
) external pure override returns (uint256 result) {
return _hash(input);
}
function _hash(uint256 input) internal pure returns (uint256 result) {
assembly {
// Poseidon parameters should be t = 2, RF = 8, RP = 56
// We load the characteristic
let q := Q
// In zerokit implementation, if we pass inp = [a0,a1,..,an] to Poseidon what is effectively hashed is [0,a0,a1,..,an]
// Note that a sequence of MIX-ARK involves 3 Bn254 field additions before the mulmod happens. Worst case we have a value corresponding to 2*(p-1) which is less than 2^256 and hence doesn't overflow
//ROUND 0 - FULL
let s0 := C0
let s1 := add(input, C1)
// SBOX
let t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 1 - FULL
s0 := add(s0, C2)
s1 := add(s1, C3)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 2 - FULL
s0 := add(s0, C4)
s1 := add(s1, C5)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 3 - FULL
s0 := add(s0, C6)
s1 := add(s1, C7)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 4 - PARTIAL
s0 := add(s0, C8)
s1 := add(s1, C9)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 5 - PARTIAL
s0 := add(s0, C10)
s1 := add(s1, C11)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 6 - PARTIAL
s0 := add(s0, C12)
s1 := add(s1, C13)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 7 - PARTIAL
s0 := add(s0, C14)
s1 := add(s1, C15)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 8 - PARTIAL
s0 := add(s0, C16)
s1 := add(s1, C17)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 9 - PARTIAL
s0 := add(s0, C18)
s1 := add(s1, C19)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 10 - PARTIAL
s0 := add(s0, C20)
s1 := add(s1, C21)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 11 - PARTIAL
s0 := add(s0, C22)
s1 := add(s1, C23)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 12 - PARTIAL
s0 := add(s0, C24)
s1 := add(s1, C25)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 13 - PARTIAL
s0 := add(s0, C26)
s1 := add(s1, C27)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 14 - PARTIAL
s0 := add(s0, C28)
s1 := add(s1, C29)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 15 - PARTIAL
s0 := add(s0, C30)
s1 := add(s1, C31)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 16 - PARTIAL
s0 := add(s0, C32)
s1 := add(s1, C33)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 17 - PARTIAL
s0 := add(s0, C34)
s1 := add(s1, C35)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 18 - PARTIAL
s0 := add(s0, C36)
s1 := add(s1, C37)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 19 - PARTIAL
s0 := add(s0, C38)
s1 := add(s1, C39)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 20 - PARTIAL
s0 := add(s0, C40)
s1 := add(s1, C41)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 21 - PARTIAL
s0 := add(s0, C42)
s1 := add(s1, C43)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 22 - PARTIAL
s0 := add(s0, C44)
s1 := add(s1, C45)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 23 - PARTIAL
s0 := add(s0, C46)
s1 := add(s1, C47)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 24 - PARTIAL
s0 := add(s0, C48)
s1 := add(s1, C49)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 25 - PARTIAL
s0 := add(s0, C50)
s1 := add(s1, C51)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 26 - PARTIAL
s0 := add(s0, C52)
s1 := add(s1, C53)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 27 - PARTIAL
s0 := add(s0, C54)
s1 := add(s1, C55)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 28 - PARTIAL
s0 := add(s0, C56)
s1 := add(s1, C57)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 29 - PARTIAL
s0 := add(s0, C58)
s1 := add(s1, C59)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 30 - PARTIAL
s0 := add(s0, C60)
s1 := add(s1, C61)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 31 - PARTIAL
s0 := add(s0, C62)
s1 := add(s1, C63)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 32 - PARTIAL
s0 := add(s0, C64)
s1 := add(s1, C65)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 33 - PARTIAL
s0 := add(s0, C66)
s1 := add(s1, C67)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 34 - PARTIAL
s0 := add(s0, C68)
s1 := add(s1, C69)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 35 - PARTIAL
s0 := add(s0, C70)
s1 := add(s1, C71)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 36 - PARTIAL
s0 := add(s0, C72)
s1 := add(s1, C73)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 37 - PARTIAL
s0 := add(s0, C74)
s1 := add(s1, C75)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 38 - PARTIAL
s0 := add(s0, C76)
s1 := add(s1, C77)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 39 - PARTIAL
s0 := add(s0, C78)
s1 := add(s1, C79)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 40 - PARTIAL
s0 := add(s0, C80)
s1 := add(s1, C81)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 41 - PARTIAL
s0 := add(s0, C82)
s1 := add(s1, C83)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 42 - PARTIAL
s0 := add(s0, C84)
s1 := add(s1, C85)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 43 - PARTIAL
s0 := add(s0, C86)
s1 := add(s1, C87)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 44 - PARTIAL
s0 := add(s0, C88)
s1 := add(s1, C89)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 45 - PARTIAL
s0 := add(s0, C90)
s1 := add(s1, C91)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 46 - PARTIAL
s0 := add(s0, C92)
s1 := add(s1, C93)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 47 - PARTIAL
s0 := add(s0, C94)
s1 := add(s1, C95)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 48 - PARTIAL
s0 := add(s0, C96)
s1 := add(s1, C97)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 49 - PARTIAL
s0 := add(s0, C98)
s1 := add(s1, C99)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 50 - PARTIAL
s0 := add(s0, C100)
s1 := add(s1, C101)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 51 - PARTIAL
s0 := add(s0, C102)
s1 := add(s1, C103)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 52 - PARTIAL
s0 := add(s0, C104)
s1 := add(s1, C105)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 53 - PARTIAL
s0 := add(s0, C106)
s1 := add(s1, C107)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 54 - PARTIAL
s0 := add(s0, C108)
s1 := add(s1, C109)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 55 - PARTIAL
s0 := add(s0, C110)
s1 := add(s1, C111)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 56 - PARTIAL
s0 := add(s0, C112)
s1 := add(s1, C113)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 57 - PARTIAL
s0 := add(s0, C114)
s1 := add(s1, C115)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 58 - PARTIAL
s0 := add(s0, C116)
s1 := add(s1, C117)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 59 - PARTIAL
s0 := add(s0, C118)
s1 := add(s1, C119)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 60 - FULL
s0 := add(s0, C120)
s1 := add(s1, C121)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 61 - FULL
s0 := add(s0, C122)
s1 := add(s1, C123)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 62 - FULL
s0 := add(s0, C124)
s1 := add(s1, C125)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
t := add(mulmod(s0, M00, q), mulmod(s1, M01, q))
s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q))
s0 := t
//ROUND 63 - FULL
s0 := add(s0, C126)
s1 := add(s1, C127)
// SBOX
t := mulmod(s0, s0, q)
s0 := mulmod(mulmod(t, t, q), s0, q)
t := mulmod(s1, s1, q)
s1 := mulmod(mulmod(t, t, q), s1, q)
// MIX
s0 := mod(add(mulmod(s0, M00, q), mulmod(s1, M01, q)), q)
result := s0
}
}
}