// SPDX-License-Identifier: MIT // Forked from https://github.com/kilic/rlnapp/ pragma solidity 0.8.15; interface IPoseidonHasher { /// @notice Hashes the input using the Poseidon hash function, n = 2, second input is the constant 0 /// @param input The input to hash function hash(uint256 input) external pure returns (uint256 result); } contract PoseidonHasher is IPoseidonHasher { uint256 constant Q = 21888242871839275222246405745257275088548364400416034343698204186575808495617; uint256 constant C0 = 4417881134626180770308697923359573201005643519861877412381846989312604493735; uint256 constant C1 = 5433650512959517612316327474713065966758808864213826738576266661723522780033; uint256 constant C2 = 13641176377184356099764086973022553863760045607496549923679278773208775739952; uint256 constant C3 = 17949713444224994136330421782109149544629237834775211751417461773584374506783; uint256 constant C4 = 13765628375339178273710281891027109699578766420463125835325926111705201856003; uint256 constant C5 = 19179513468172002314585757290678967643352171735526887944518845346318719730387; uint256 constant C6 = 5157412437176756884543472904098424903141745259452875378101256928559722612176; uint256 constant C7 = 535160875740282236955320458485730000677124519901643397458212725410971557409; uint256 constant C8 = 1050793453380762984940163090920066886770841063557081906093018330633089036729; uint256 constant C9 = 10665495010329663932664894101216428400933984666065399374198502106997623173873; uint256 constant C10 = 19965634623406616956648724894636666805991993496469370618546874926025059150737; uint256 constant C11 = 13007250030070838431593222885902415182312449212965120303174723305710127422213; uint256 constant C12 = 16877538715074991604507979123743768693428157847423939051086744213162455276374; uint256 constant C13 = 18211747749504876135588847560312685184956239426147543810126553367063157141465; uint256 constant C14 = 18151553319826126919739798892854572062191241985315767086020821632812331245635; uint256 constant C15 = 19957033149976712666746140949846950406660099037474791840946955175819555930825; uint256 constant C16 = 3469514863538261843186854830917934449567467100548474599735384052339577040841; uint256 constant C17 = 989698510043911779243192466312362856042600749099921773896924315611668507708; uint256 constant C18 = 12568377015646290945235387813564567111330046038050864455358059568128000172201; uint256 constant C19 = 20856104135605479600325529349246932565148587186338606236677138505306779314172; uint256 constant C20 = 8206918720503535523121349917159924938835810381723474192155637697065780938424; uint256 constant C21 = 1309058477013932989380617265069188723120054926187607548493110334522527703566; uint256 constant C22 = 14076116939332667074621703729512195584105250395163383769419390236426287710606; uint256 constant C23 = 10153498892749751942204288991871286290442690932856658983589258153608012428674; uint256 constant C24 = 18202499207234128286137597834010475797175973146805180988367589376893530181575; uint256 constant C25 = 12739388830157083522877690211447248168864006284243907142044329113461613743052; uint256 constant C26 = 15123358710467780770838026754240340042441262572309759635224051333176022613949; uint256 constant C27 = 19925004701844594370904593774447343836015483888496504201331110250494635362184; uint256 constant C28 = 10352416606816998476681131583320899030072315953910679608943150613208329645891; uint256 constant C29 = 10567371822366244361703342347428230537114808440249611395507235283708966113221; uint256 constant C30 = 5635498582763880627392290206431559361272660937399944184533035305989295959602; uint256 constant C31 = 11866432933224219174041051738704352719163271639958083608224676028593315904909; uint256 constant C32 = 5795020705294401441272215064554385591292330721703923167136157291459784140431; uint256 constant C33 = 9482202378699252817564375087302794636287866584767523335624368774856230692758; uint256 constant C34 = 4245237636894546151746468406560945873445548423466753843402086544922216329298; uint256 constant C35 = 12000500941313982757584712677991730019124834399479314697467598397927435905133; uint256 constant C36 = 7596790274058425558167520209857956363736666939016807569082239187494363541787; uint256 constant C37 = 2484867918246116343205467273440098378820186751202461278013576281097918148877; uint256 constant C38 = 18312645949449997391810445935615409295369169383463185688973803378104013950190; uint256 constant C39 = 15320686572748723004980855263301182130424010735782762814513954166519592552733; uint256 constant C40 = 12618438900597948888520621062416758747872180395546164387827245287017031303859; uint256 constant C41 = 17438141672027706116733201008397064011774368832458707512367404736905021019585; uint256 constant C42 = 6374197807230665998865688675365359100400438034755781666913068586172586548950; uint256 constant C43 = 2189398913433273865510950346186699930188746169476472274335177556702504595264; uint256 constant C44 = 6268495580028970231803791523870131137294646402347399003576649137450213034606; uint256 constant C45 = 17896250365994900261202920044129628104272791547990619503076839618914047059275; uint256 constant C46 = 13692156312448722528008862371944543449350293305158722920787736248435893008873; uint256 constant C47 = 15234446864368744483209945022439268713300180233589581910497691316744177619376; uint256 constant C48 = 1572426502623310766593681563281600503979671244997798691029595521622402217227; uint256 constant C49 = 80103447810215150918585162168214870083573048458555897999822831203653996617; uint256 constant C50 = 8228820324013669567851850635126713973797711779951230446503353812192849106342; uint256 constant C51 = 5375851433746509614045812476958526065449377558695752132494533666370449415873; uint256 constant C52 = 12115998939203497346386774317892338270561208357481805380546938146796257365018; uint256 constant C53 = 9764067909645821279940531410531154041386008396840887338272986634350423466622; uint256 constant C54 = 8538708244538850542384936174629541085495830544298260335345008245230827876882; uint256 constant C55 = 7140127896620013355910287215441004676619168261422440177712039790284719613114; uint256 constant C56 = 14297402962228458726038826185823085337698917275385741292940049024977027409762; uint256 constant C57 = 6667115556431351074165934212337261254608231545257434281887966406956835140819; uint256 constant C58 = 20226761165244293291042617464655196752671169026542832236139342122602741090001; uint256 constant C59 = 12038289506489256655759141386763477208196694421666339040483042079632134429119; uint256 constant C60 = 19027757334170818571203982241812412991528769934917288000224335655934473717551; uint256 constant C61 = 16272152964456553579565580463468069884359929612321610357528838696790370074720; uint256 constant C62 = 2500392889689246014710135696485946334448570271481948765283016105301740284071; uint256 constant C63 = 8595254970528530312401637448610398388203855633951264114100575485022581946023; uint256 constant C64 = 11635945688914011450976408058407206367914559009113158286982919675551688078198; uint256 constant C65 = 614739068603482619581328040478536306925147663946742687395148680260956671871; uint256 constant C66 = 18692271780377861570175282183255720350972693125537599213951106550953176268753; uint256 constant C67 = 4987059230784976306647166378298632695585915319042844495357753339378260807164; uint256 constant C68 = 21851403978498723616722415377430107676258664746210815234490134600998983955497; uint256 constant C69 = 9830635451186415300891533983087800047564037813328875992115573428596207326204; uint256 constant C70 = 4842706106434537116860242620706030229206345167233200482994958847436425185478; uint256 constant C71 = 6422235064906823218421386871122109085799298052314922856340127798647926126490; uint256 constant C72 = 4564364104986856861943331689105797031330091877115997069096365671501473357846; uint256 constant C73 = 1944043894089780613038197112872830569538541856657037469098448708685350671343; uint256 constant C74 = 21179865974855950600518216085229498748425990426231530451599322283119880194955; uint256 constant C75 = 14296697761894107574369608843560006996183955751502547883167824879840894933162; uint256 constant C76 = 12274619649702218570450581712439138337725246879938860735460378251639845671898; uint256 constant C77 = 16371396450276899401411886674029075408418848209575273031725505038938314070356; uint256 constant C78 = 3702561221750983937578095019779188631407216522704543451228773892695044653565; uint256 constant C79 = 19721616877735564664624984774636557499099875603996426215495516594530838681980; uint256 constant C80 = 6383350109027696789969911008057747025018308755462287526819231672217685282429; uint256 constant C81 = 20860583956177367265984596617324237471765572961978977333122281041544719622905; uint256 constant C82 = 5766390934595026947545001478457407504285452477687752470140790011329357286275; uint256 constant C83 = 4043175758319898049344746138515323336207420888499903387536875603879441092484; uint256 constant C84 = 15579382179133608217098622223834161692266188678101563820988612253342538956534; uint256 constant C85 = 1864640783252634743892105383926602930909039567065240010338908865509831749824; uint256 constant C86 = 15943719865023133586707144161652035291705809358178262514871056013754142625673; uint256 constant C87 = 2326415993032390211558498780803238091925402878871059708106213703504162832999; uint256 constant C88 = 19995326402773833553207196590622808505547443523750970375738981396588337910289; uint256 constant C89 = 5143583711361588952673350526320181330406047695593201009385718506918735286622; uint256 constant C90 = 15436006486881920976813738625999473183944244531070780793506388892313517319583; uint256 constant C91 = 16660446760173633166698660166238066533278664023818938868110282615200613695857; uint256 constant C92 = 4966065365695755376133119391352131079892396024584848298231004326013366253934; uint256 constant C93 = 20683781957411705574951987677641476019618457561419278856689645563561076926702; uint256 constant C94 = 17280836839165902792086432296371645107551519324565649849400948918605456875699; uint256 constant C95 = 17045635513701208892073056357048619435743564064921155892004135325530808465371; uint256 constant C96 = 17055032967194400710390142791334572297458033582458169295920670679093585707295; uint256 constant C97 = 15727174639569115300068198908071514334002742825679221638729902577962862163505; uint256 constant C98 = 1001755657610446661315902885492677747789366510875120894840818704741370398633; uint256 constant C99 = 18638547332826171619311285502376343504539399518545103511265465604926625041234; uint256 constant C100 = 6751954224763196429755298529194402870632445298969935050224267844020826420799; uint256 constant C101 = 3526747115904224771452549517614107688674036840088422555827581348280834879405; uint256 constant C102 = 15705897908180497062880001271426561999724005008972544196300715293701537574122; uint256 constant C103 = 574386695213920937259007343820417029802510752426579750428758189312416867750; uint256 constant C104 = 15973040855000600860816974646787367136127946402908768408978806375685439868553; uint256 constant C105 = 20934130413948796333037139460875996342810005558806621330680156931816867321122; uint256 constant C106 = 6918585327145564636398173845411579411526758237572034236476079610890705810764; uint256 constant C107 = 14158163500813182062258176233162498241310167509137716527054939926126453647182; uint256 constant C108 = 4164602626597695668474100217150111342272610479949122406544277384862187287433; uint256 constant C109 = 12146526846507496913615390662823936206892812880963914267275606265272996025304; uint256 constant C110 = 10153527926900017763244212043512822363696541810586522108597162891799345289938; uint256 constant C111 = 13564663485965299104296214940873270349072051793008946663855767889066202733588; uint256 constant C112 = 5612449256997576125867742696783020582952387615430650198777254717398552960096; uint256 constant C113 = 12151885480032032868507892738683067544172874895736290365318623681886999930120; uint256 constant C114 = 380452237704664384810613424095477896605414037288009963200982915188629772177; uint256 constant C115 = 9067557551252570188533509616805287919563636482030947363841198066124642069518; uint256 constant C116 = 21280306817619711661335268484199763923870315733198162896599997188206277056900; uint256 constant C117 = 5567165819557297006750252582140767993422097822227408837378089569369734876257; uint256 constant C118 = 10411936321072105429908396649383171465939606386380071222095155850987201580137; uint256 constant C119 = 21338390051413922944780864872652000187403217966653363270851298678606449622266; uint256 constant C120 = 12156296560457833712186127325312904760045212412680904475497938949653569234473; uint256 constant C121 = 4271647814574748734312113971565139132510281260328947438246615707172526380757; uint256 constant C122 = 9061738206062369647211128232833114177054715885442782773131292534862178874950; uint256 constant C123 = 10134551893627587797380445583959894183158393780166496661696555422178052339133; uint256 constant C124 = 8932270237664043612366044102088319242789325050842783721780970129656616386103; uint256 constant C125 = 3339412934966886386194449782756711637636784424032779155216609410591712750636; uint256 constant C126 = 9704903972004596791086522314847373103670545861209569267884026709445485704400; uint256 constant C127 = 17467570179597572575614276429760169990940929887711661192333523245667228809456; uint256 constant M00 = 2910766817845651019878574839501801340070030115151021261302834310722729507541; uint256 constant M01 = 19727366863391167538122140361473584127147630672623100827934084310230022599144; uint256 constant M10 = 5776684794125549462448597414050232243778680302179439492664047328281728356345; uint256 constant M11 = 8348174920934122550483593999453880006756108121341067172388445916328941978568; function hash(uint256 input) external pure override returns (uint256 result) { return _hash(input); } function _hash(uint256 input) internal pure returns (uint256 result) { assembly { // Poseidon parameters should be t = 2, RF = 8, RP = 56 // We load the characteristic let q := Q // In zerokit implementation, if we pass inp = [a0,a1,..,an] to Poseidon what is effectively hashed is [0,a0,a1,..,an] // Note that a sequence of MIX-ARK involves 3 Bn254 field additions before the mulmod happens. Worst case we have a value corresponding to 2*(p-1) which is less than 2^256 and hence doesn't overflow //ROUND 0 - FULL let s0 := C0 let s1 := add(input, C1) // SBOX let t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 1 - FULL s0 := add(s0, C2) s1 := add(s1, C3) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 2 - FULL s0 := add(s0, C4) s1 := add(s1, C5) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 3 - FULL s0 := add(s0, C6) s1 := add(s1, C7) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 4 - PARTIAL s0 := add(s0, C8) s1 := add(s1, C9) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 5 - PARTIAL s0 := add(s0, C10) s1 := add(s1, C11) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 6 - PARTIAL s0 := add(s0, C12) s1 := add(s1, C13) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 7 - PARTIAL s0 := add(s0, C14) s1 := add(s1, C15) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 8 - PARTIAL s0 := add(s0, C16) s1 := add(s1, C17) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 9 - PARTIAL s0 := add(s0, C18) s1 := add(s1, C19) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 10 - PARTIAL s0 := add(s0, C20) s1 := add(s1, C21) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 11 - PARTIAL s0 := add(s0, C22) s1 := add(s1, C23) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 12 - PARTIAL s0 := add(s0, C24) s1 := add(s1, C25) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 13 - PARTIAL s0 := add(s0, C26) s1 := add(s1, C27) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 14 - PARTIAL s0 := add(s0, C28) s1 := add(s1, C29) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 15 - PARTIAL s0 := add(s0, C30) s1 := add(s1, C31) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 16 - PARTIAL s0 := add(s0, C32) s1 := add(s1, C33) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 17 - PARTIAL s0 := add(s0, C34) s1 := add(s1, C35) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 18 - PARTIAL s0 := add(s0, C36) s1 := add(s1, C37) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 19 - PARTIAL s0 := add(s0, C38) s1 := add(s1, C39) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 20 - PARTIAL s0 := add(s0, C40) s1 := add(s1, C41) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 21 - PARTIAL s0 := add(s0, C42) s1 := add(s1, C43) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 22 - PARTIAL s0 := add(s0, C44) s1 := add(s1, C45) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 23 - PARTIAL s0 := add(s0, C46) s1 := add(s1, C47) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 24 - PARTIAL s0 := add(s0, C48) s1 := add(s1, C49) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 25 - PARTIAL s0 := add(s0, C50) s1 := add(s1, C51) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 26 - PARTIAL s0 := add(s0, C52) s1 := add(s1, C53) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 27 - PARTIAL s0 := add(s0, C54) s1 := add(s1, C55) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 28 - PARTIAL s0 := add(s0, C56) s1 := add(s1, C57) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 29 - PARTIAL s0 := add(s0, C58) s1 := add(s1, C59) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 30 - PARTIAL s0 := add(s0, C60) s1 := add(s1, C61) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 31 - PARTIAL s0 := add(s0, C62) s1 := add(s1, C63) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 32 - PARTIAL s0 := add(s0, C64) s1 := add(s1, C65) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 33 - PARTIAL s0 := add(s0, C66) s1 := add(s1, C67) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 34 - PARTIAL s0 := add(s0, C68) s1 := add(s1, C69) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 35 - PARTIAL s0 := add(s0, C70) s1 := add(s1, C71) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 36 - PARTIAL s0 := add(s0, C72) s1 := add(s1, C73) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 37 - PARTIAL s0 := add(s0, C74) s1 := add(s1, C75) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 38 - PARTIAL s0 := add(s0, C76) s1 := add(s1, C77) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 39 - PARTIAL s0 := add(s0, C78) s1 := add(s1, C79) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 40 - PARTIAL s0 := add(s0, C80) s1 := add(s1, C81) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 41 - PARTIAL s0 := add(s0, C82) s1 := add(s1, C83) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 42 - PARTIAL s0 := add(s0, C84) s1 := add(s1, C85) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 43 - PARTIAL s0 := add(s0, C86) s1 := add(s1, C87) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 44 - PARTIAL s0 := add(s0, C88) s1 := add(s1, C89) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 45 - PARTIAL s0 := add(s0, C90) s1 := add(s1, C91) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 46 - PARTIAL s0 := add(s0, C92) s1 := add(s1, C93) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 47 - PARTIAL s0 := add(s0, C94) s1 := add(s1, C95) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 48 - PARTIAL s0 := add(s0, C96) s1 := add(s1, C97) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 49 - PARTIAL s0 := add(s0, C98) s1 := add(s1, C99) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 50 - PARTIAL s0 := add(s0, C100) s1 := add(s1, C101) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 51 - PARTIAL s0 := add(s0, C102) s1 := add(s1, C103) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 52 - PARTIAL s0 := add(s0, C104) s1 := add(s1, C105) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 53 - PARTIAL s0 := add(s0, C106) s1 := add(s1, C107) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 54 - PARTIAL s0 := add(s0, C108) s1 := add(s1, C109) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 55 - PARTIAL s0 := add(s0, C110) s1 := add(s1, C111) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 56 - PARTIAL s0 := add(s0, C112) s1 := add(s1, C113) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 57 - PARTIAL s0 := add(s0, C114) s1 := add(s1, C115) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 58 - PARTIAL s0 := add(s0, C116) s1 := add(s1, C117) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 59 - PARTIAL s0 := add(s0, C118) s1 := add(s1, C119) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 60 - FULL s0 := add(s0, C120) s1 := add(s1, C121) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 61 - FULL s0 := add(s0, C122) s1 := add(s1, C123) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 62 - FULL s0 := add(s0, C124) s1 := add(s1, C125) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX t := add(mulmod(s0, M00, q), mulmod(s1, M01, q)) s1 := add(mulmod(s0, M10, q), mulmod(s1, M11, q)) s0 := t //ROUND 63 - FULL s0 := add(s0, C126) s1 := add(s1, C127) // SBOX t := mulmod(s0, s0, q) s0 := mulmod(mulmod(t, t, q), s0, q) t := mulmod(s1, s1, q) s1 := mulmod(mulmod(t, t, q), s1, q) // MIX s0 := mod(add(mulmod(s0, M00, q), mulmod(s1, M01, q)), q) result := s0 } } }