
1

WAKU-RLN-RELAY:
Privacy-Preserving Peer-to-Peer

Economic Spam Protection

2

Sanaz Taheri (Vac Research and Development, Status.im)

Oskar Thoren (Vac Research and Development, Status.im)

Barry Whitehat (Unaffiliated)

Wei Jie Koh (Independent)

Onur Kilic (Unaffiliated)

Kobi Gurkan (cLabs)

WAKU: Web3 Messaging Layer

3

Poor scalability

WAKU v1

Messaging layer of
Ethereum

Proof-of-work [2] spam
protection

Flood-based routing

Whisper [1]

Fork
Adoption

of Whisper

Poor scalability
is inherent to

the flood-based
routing

PoW is not
suitable for

mobile devices,
consumes a lot of

battery

PoW hardness set
to zero

No spam
protection in

effect

WAKU v2

[1] https://eips.ethereum.org/eips/eip-627.
[2] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Annual 456 international cryptology conference. Springer, 1992.

https://eips.ethereum.org/eips/eip-627

WAKU: Web3 Messaging Layer

4

WAKU v2

Libp2p

Builds on
• WAKU v2 [1] builds on top of

libp2p
• Suite of privacy-preserving,

modular, p2p protocols aimed at
resource-limited devices

[1] https://rfc.vac.dev/spec/10/

https://rfc.vac.dev/spec/11/

WAKU: Web3 Messaging Layer

5

WAKU v2

[1] https://rfc.vac.dev/spec/10/
[2] https://github.com/libp2p/specs/tree/master/pubsub/gossipsub

WAKU-RELAY

WAKU-RELAY [1] routing protocol
Extension of libp2p GossipSub-v1.1 [2]
Follows publisher-subscriber model
Gossip-based routing

Libp2p

Builds on

https://rfc.vac.dev/spec/10/
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub

Libp2p

WAKU: Web3 Messaging Layer

6

Waku v2

Extension Extension of libp2p GossipSub-v1.1 [1]
Follows publisher-subscriber model
Gossip-based routing

Mesh of peers subscribed to the same topic

WAKU-RELAY

Libp2p

WAKU: Web3 Messaging Layer

7

Extension
Extension of libp2p GossipSub-v1.1 [1]
Follows publisher-subscriber model
Gossip-based routing

Mesh of peers subscribed to the same topic

A

WAKU-RELAY

WAKU: Web3 Messaging Layer

8

Waku v2

WAKU-RELAY

Extension of libp2p GossipSub-v1.1
Follows publisher-subscriber model
Gossip-based routing

Better scalability
Spam issue

Libp2p

Builds on

Libp2p

WAKU: Web3 Messaging Layer

9

Waku v2

Extension

WAKU-RELAY [2]

Extension of libp2p GossipSub-v1.1 [1]
Follows publisher-subscriber model
Gossip-based routing

Spammers: entities that publish a large number of messages in a
short amount of time, and cause Denial-of-Service.

Spammer

Spam issue

Libp2p

WAKU: Web3 Messaging Layer

10

Waku v2

Extension

WAKU-RELAY [2]

Extension of libp2p GossipSub-v1.1 [1]
Follows publisher-subscriber model
Gossip-based routing

Spam Protection = Controlled Messaging Rate

Spammer

Spam issue

Libp2p

WAKU: Web3 Messaging Layer

11

Waku v2

Extension

WAKU-RELAY [2]

Extension of libp2p GossipSub-v1.1 [1]
Follows publisher-subscriber model
Gossip-based routing

• Messages are anonymous and not linkable to their origin.
Spam issue in anonymous routing protocols

Messages are anonymous
and unlinkable

Normal
publishing

peer

Spammer

Normal
publishing

peer

Routing peerMessages carry no
personally identifiable
information about the

publisher

WAKU: Web3 Messaging Layer

12

Waku v2

WAKU-RELAY [2]

Extension of libp2p GossipSub-v1.1
Follows publisher-subscriber model
Gossip-based routing

Spam issue in
anonymous routing
protocols

?Libp2p

Builds on

13

WAKU-RLN-RELAY: Global
Spam Protection and

Anonymity Made Possible

WAKU-RLN-RELAY

• WAKU-RLN-RELAY [1] = WAKU-RELAY + Rate Limiting Nullifiers (RLN)
• It is a proof of stake rate limited messaging layer: users are financially

punished if they send more messages than an application-defined
messaging rate.

[1] https://rfc.vac.dev/spec/17/
14

https://rfc.vac.dev/spec/17/

15

RLN Primitive

RLN Primitive

• RLN [1] is a zero-knowledge and rate-limited signaling framework.
• Each user can only send M messages for each External Nullifier.
• External nullifier can be seen as a voting booth where each user can

only cast one vote.
• M and external nullifier are application dependent.
• M=1 for this presentation.

[1] https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009
16

https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009

RLN Primitive: Membership Tree

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)

𝑃𝐾!

𝑆𝐾!", 𝑃𝐾!" = 𝐻(𝑆𝐾!")

𝑃𝐾!"

RLN membership group:
Merkle tree

17

RLN Primitive: Signaling

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)RLN membership group:
Merkle tree

𝑀: Message
𝐸𝑁: External Nullifier
𝐼𝑁: Internal Nullifier = 𝐻(𝐻(𝑆𝐾!, 𝐸𝑁))

18

𝑃𝐾! 𝑃𝐾!"

RLN Primitive: Signaling

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)RLN membership group:
Merkle tree

Shamir Secret
Sharing

𝑆𝐾! !: One share of 𝑆𝐾!

19

𝑀: Message
𝐸𝑁: External Nullifier
𝐼𝑁: Internal Nullifier = 𝐻(𝐻(𝑆𝐾!, 𝐸𝑁))

𝑃𝐾! 𝑃𝐾!"

RLN Primitive: Signaling

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)RLN membership group:
Merkle tree

Shamir Secret
Sharing zkSNARK

Zero-Knowledge Proof for
- Membership
- Correctness of 𝑆𝐾! !
- Correctness of 𝐼𝑁

20

𝑃𝐾! 𝑃𝐾!"

𝑆𝐾! ! : One share of 𝑆𝐾!𝑀: Message
𝐸𝑁: External Nullifier
𝐼𝑁: Internal Nullifier = 𝐻(𝐻(𝑆𝐾!, 𝐸𝑁))

RLN Primitive: Detecting Double Signaling

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)RLN membership group:
Merkle tree

𝑀,𝐸𝑁, 𝐼𝑁, 𝑆𝐾! !, 𝜋 𝑀’, 𝐸𝑁, 𝐼𝑁, 𝑆𝐾! #, 𝜋’

21

𝑃𝐾! 𝑃𝐾!"

RLN Primitive: Slashing

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)RLN membership group:
Merkle tree

𝑀,𝐸𝑁, 𝐼𝑁, 𝑆𝐾! !, 𝜋 𝑀’, 𝐸𝑁, 𝐼𝑁, 𝑆𝐾! #, 𝜋’

𝑆𝐾!

(2,N)-
Construct

22

𝑃𝐾! 𝑃𝐾!"

RLN Primitive: Slashing

𝑆𝐾!, 𝑃𝐾! = 𝐻(𝑆𝐾!)RLN membership group:
Merkle tree

𝑆𝐾!

(2,N)-
Construct

𝑀,𝐸𝑁, 𝐼𝑁, 𝑆𝐾! !, 𝜋 𝑀’, 𝐸𝑁, 𝐼𝑁, 𝑆𝐾! #, 𝜋’

23

𝑃𝐾1 = 𝐻(𝑆𝐾!)

𝑃𝐾! 𝑃𝐾!"

24

WAKU-RLN-RELAY
Construction

WAKU-RLN-RELAY: RLN Group

RLN group = Peers
subscribed to the
same topic e.g.,

WAKU-RLN-RELAY

25

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
𝑃𝐾!, … , 𝑃𝐾$ …

RLN group = Peers
subscribed to the
same topic e.g.,

WAKU-RLN-RELAY

26

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
𝑃𝐾!, … , 𝑃𝐾$

TX: Register 𝑃𝐾,

Each peer registers to
the group and locks

some funds

…

RLN group = Peers
subscribed to the
same topic e.g.,

WAKU-RLN-RELAY

27

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
𝑃𝐾!, … , 𝑃𝐾$ …

Membership
Merkle Tree

28

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
𝑃𝐾!, … , 𝑃𝐾$ …

Registration and Deletion Events

Peers update
their local tree

29

WAKU-RLN-RELAY: Messaging Rate

30

00:00:00
January 1, 1970

Epoch = 1 Epoch = 2

Epoch Length
= 1hr

00:01:00 January
1, 1970

00:02:00 January
1, 1970

00:04:00 July 5,
2022

…

• Messaging rate is limited to 1 per Epoch (Epoch is the same as
External Nullifier).
• The time is divided into some intervals, and each interval

corresponds to one Epoch.
• The epoch length affects the messaging rate and is application-

dependent.

Epoch = 460,277

WAKU-RLN-RELAY: Messaging Rate

Each peer locally
keeps track of the

current epoch
31

• Peers keep track of the current epoch count.

WAKU-RLN-RELAY: Publishing

𝑀,𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 !, 𝜋

32

• Each message is an RLN signal.
• The message owner, attaches the nullifiers, together with a share

of its RLN secret key, and the zero-knowledge proof part to the
message and sends it to its local mesh.

WAKU-RLN-RELAY: Routing

𝑀,𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 !, 𝜋

33

• Regular Gossip-based routing protocol + RLN signal
verification (installed as a libp2p GossipSub topic validator).

WAKU-RLN-RELAY: Routing

𝑀,𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 !, 𝜋

RLN Proof
Verification

Check against the
local epoch

Check for double
signaling

34

WAKU-RLN-RELAY: Routing

𝑀,𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 !, 𝜋

35

WAKU-RLN-RELAY: Slashing

A past record with
the same nullifiers
(𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 #)

36

𝑀,𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 !, 𝜋

WAKU-RLN-RELAY: Slashing

A past record with
the same nullifiers
(𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 #)

𝑀, 𝐸𝑝𝑜𝑐ℎ, 𝐼𝑁, 𝑆𝐾 !, 𝜋

(2,N)-
Construct

𝑆𝐾 #

𝑆𝐾 !

𝑆𝐾 of spammer

37

WAKU-RLN-RELAY: Slashing

𝑆𝐾 of spammer

Remove spammer’s 𝑃𝐾

𝑃𝐾 = 𝐻(𝑆𝐾)

Membership Contract/Registry
𝑃𝐾!, … , 𝑃𝐾$ …

38

WAKU-RLN-RELAY: Slashing

𝑆𝐾 of spammer

Membership Contract/Registry
𝑃𝐾!, … , 𝑃𝐾$ …

Remove spammer’s 𝑃𝐾

39

𝑃𝐾 = 𝐻(𝑆𝐾)

WAKU-RLN-RELAY

Global Spam
Protection

Privacy-Preservation Economic
Incentives
Financial punishment for the
spammers and a financial
reward for those who catch
spammers

40

Peers identity remain hidden

Spammers are detected and
removed from the network
instantly

WAKU-RLN-RELAY Proof-Of-Concept

• The PoC of WAKU-RLN-RELAY
protocol is implemented in Nim
and is available in the nwaku
repository:

41

• A PoC rate-limited/spam-
protected command-line chat
application using WAKU-RLN-
RELAY:

References

• WAKU-RLN-RELAY specs: https://rfc.vac.dev/spec/17/
• RLN specifications: https://rfc.vac.dev/spec/32/
• The Nim implementation of WAKU-RLN-RELAY: https://github.com/status-im/nim-waku
• The JavaScript implementation of Waku: https://github.com/status-im/js-waku
• RLN Ethereum research post: https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-

for-spam-prevention-in-anonymous-p2p-setting/5009
• RLN medium post: https://medium.com/privacy-scaling-explorations/rate-limiting-

nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
• RLN circuits: https://github.com/appliedzkp/rln
• RLN circuits spec: https://hackmd.io/7GR5Vi28Rz2EpEmLK0E0Aw
• RLN in Rust: https://github.com/kilic/rln

42

https://rfc.vac.dev/spec/17/
https://rfc.vac.dev/spec/32/
https://github.com/status-im/nim-waku
https://github.com/status-im/js-waku
https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://github.com/appliedzkp/rln
https://hackmd.io/7GR5Vi28Rz2EpEmLK0E0Aw
https://github.com/kilic/rln

43

44

Future work

• Benchmarking

• Storage-efficient Merkle tree storage
• P2P network of full-nodes and light-nodes
• Partial view of Merkle tree

• Real-time removal of spammers using off-chain/p2p solutions

• Cost-effective way of member insertion and deletion using layer 2 solutions

• Zerokit: Cross-client interoperability, ability to run in browsers and in nim

45

System Parameters
Parameter Description

Epoch length The length of epoch in seconds. Application dependent, should be set based on desired
throughput.

Maximum Epoch Gap The maximum allowed gap between the epoch of a routing peer and the incoming
message. Should be set based on measures the maximum number of epochs that can
elapse since a message gets routed from its origin to all the other peers in the network.
Can be calculated as:

⌈
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 + 𝑐𝑙𝑜𝑐𝑘 𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑦

𝑒𝑝𝑜𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ ⌉

Staked fund The amount of ether to be staked by peers at the registration

Reward portion The percentage of staked fund to be rewarded to the slashers

46

Message propagation delay: the maximum time that it takes for a message to be fully disseminated in the
GossipSub network.
Clock asynchrony: The maximum difference between the Unix epoch clocks perceived by network peers
which can be due to clock drifts.

System throughput
• Message propagation delay

• Graph diameter * message verification time (30 ms)
• Potential increased network delay for transportation of RLN related data

• System throughput i.e., messaging rate
• Affected by the message propagation delay and the epoch length

47

Implementation setup
• WAKU-RLN-RELAY utilizes the RLN library [1] for identity key generation and

commitment, Shamir secret sharing, zkSNARK circuits, proof generation, and
verification.

• The underlying Elliptic Curve is BN254.

• The instantiated hash function is Poseidon with the security level of 128 bits.
• Proof system is Groth16 [2].

[1] https://github.com/kilic/rln
[2] Groth, Jens. "On the size of pairing-based non-interactive arguments." Annual international conference on the theory and
applications of cryptographic techniques. Springer, Berlin, Heidelberg, 2016. 48

Computation overhead
• Proof generation: According to the benchmarking report of [1] for a Merkle tree

depth of 24, the proof generation on an iPhone 8 takes approximately ~0.5
seconds.

• Proof Verification: is constant and takes approximately ~ 30 milliseconds.

• User computation per group update is 𝑶(𝒅) hashing operations (where 𝒅 = 𝟐𝟎) to
calculate the tree root and the authentication path.

• Bootstrapping takes 𝑶(𝟐𝒅) hashing operations to construct the entire tree.

[1] https://github.com/kilic/rln

49

Gas Cost
• PK Registration: The estimated gas cost is 40k.
• PK Slashing/Deletion: The estimated gas cost is 40k.
• Batch registration/slashing: The estimated gas cost is 20k. A Batch

consists of B=128 keys

50

Storage overhead
• The Merkle tree with depth 20 takes up ~67MB storage. With some

optimizations in can be reduced to the order of tens of KBs.
• Identity keys and identity commitment keys are each of size 32 Bytes.
• Prover key size is approximately ~3.24 MB.
• Nullifier map consists of the internal nullifier and the secret shares of the

messages published in the last valid epochs (i.e., not older than the
maximum epoch gap). Metadata for each message is of size 3*32 Bytes.

51

Bandwidth
• Bandwidth overhead = 416 bytes ~ 0.4 KB

• Merkle tree root: 32 bytes
• Nullifier: 32 bytes
• zkSNARK proof: 256 bytes
• Epoch: 32 bytes
• Secret shares: 2* 32 bytes

52

zkSNARK Setup
• Parameters generation for Groth16 is done in two phases:

• Phase 1: The powers of tau ceremony
• Phase 2: MPC for circuit specific parameters

53

54

