
1

WAKU-RLN-RELAY:
Privacy-Preserving Peer-to-Peer

Economic Spam Protection

2

Sanaz Taheri (Vac Research and Development, Status Research and Development)

Oskar Thoren (Vac Research and Development, Status Research and Development)

Barry Whitehat (Unaffiliated)

Wei Jie Koh (Independent)

Onur Kilic (Unaffiliated)

Kobi Gurkan (cLabs)

Outline
• WAKU
• WAKU-RELAY: Privacy-Preserving Gossip-Based Routing
• Spam issue in WAKU-RELAY
• Anonymity and Spam Protection
• State-of-the-art P2P Spam Protection Methods
• WAKU-RLN-RELAY: Global Spam Protection and Anonymity Made

Possible

3

WAKU

• WAKU [1] aims to be Web3 messaging layer.
• Features a family of modular, privacy-preserving, peer-to-peer (p2p)

protocols for private, secure, censorship resistant communication.
• Suitable for resource restricted devices e.g., mobile phones.
• WAKU protocols include:

• WAKU-RELAY: privacy-preserving transport
• WAKU-RLN-RELAY: spam-protected version of WAKU-RELAY
• WAKU-STORE: historical message storage

• WAKU-FILTER: light version of WAKU-RELAY for bandwidth limited devices

• And many more …

• The full list of RFCs is available in rfc.vac.dev.
[1] https://rfc.vac.dev/spec/10/

4

https://rfc.vac.dev/spec/11/

WAKU-RELAY

• WAKU-RELAY [1] is a Peer-to-Peer transport protocol

[1] https://rfc.vac.dev/spec/11/ 5

https://rfc.vac.dev/spec/11/

WAKU-RELAY [1]

• WAKU-RELAY is a Peer-to-Peer transport protocol
• Follows publisher-subscriber Model
• Peers subscribed to the same topic form a mesh

Mesh of peers subscribed to the same topic

6

WAKU-RELAY

• WAKU-RELAY is a Peer-to-Peer transport protocol
• Follows publisher-subscriber Model
• Gossip-based routing (extension of libp2p GossipSub-v1.1 [1])

A

[1] https://github.com/libp2p/specs/tree/master/pubsub/gossipsub 7

B
C

https://github.com/libp2p/specs/tree/master/pubsub/gossipsub

WAKU-RELAY

• WAKU-RELAY is a Peer-to-Peer transport protocol
• Follows publisher-subscriber Model
• Gossip-based routing (extension of libp2p GossipSub-v1.1)

A

8

WAKU-RELAY

• WAKU-RELAY is a Peer-to-Peer transport protocol
• Follows publisher-subscriber Model
• Gossip-based routing (extension of libp2p GossipSub-v1.1)
• Messages are anonymous [1]

A

B

Messages carry no
personally identifiable

information e.g., IP address
about the publisher

[1] https://rfc.vac.dev/spec/11/#security-analysis 9

https://rfc.vac.dev/spec/11/

Spam Issue In WAKU-RELAY

• Spammers: entities that publish a large number of messages in a
short amount of time, and cause Denial-of-Service.

Spammer

10

Spam Issue In WAKU-RELAY

• Spammers: entities that publish a large number of messages in a
short amount of time, and cause Denial-of-Service.
• Spam Protection = Controlled Messaging Rate

Spammer

11

Anonymity and Spam Protection

• Messages are anonymous and not linkable to their origin.

Messages are anonymous
and unlinkable

Normal
publishing

peer

Spammer

Normal
publishing

peer 12

Routing peerMessages carry no
personally identifiable
information about the

publisher

Anonymity and Spam Protection

• Messages are anonymous and not linkable to their origin.
• Solutions like IP blocking are not effective.

13

Messages are anonymous
and unlinkable

Normal
publishing

peer

Spammer

Normal
publishing

peer

Routing peerMessages carry no
personally identifiable
information about the

publisher

State-of-the-art P2P Spam Protections

Proof-of-work [1] deployed by
Whisper [2]

• Messaging rate is proportional to
the peer’s computational power.

• Computationally expensive.
• Not suitable for network of

heterogeneous peers with limited
resources.

Peer Scoring [3] adopted by libp2p

• Local to each peer.
• No clear measure of spamming

behavior in an anonymous
messaging network.

• No global identification of spammer.
• Subject to inexpensive attacks using

bots.

[1] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Annual 456
international cryptology conference. Springer, 1992.
[2] https://eips.ethereum.org/eips/eip-627.
[3] https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.mdpeerscoring.

14

https://eips.ethereum.org/eips/eip-627
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.mdpeerscoring

15

WAKU-RLN-RELAY: Global
Spam Protection and

Anonymity Made Possible

WAKU-RLN-RELAY

• WAKU-RLN-RELAY [1] = WAKU-RELAY + Rate Limiting Nullifiers (RLN)
• It is a proof of stake rate limited messaging layer: No one can message

more than an application-defined messaging rate without being
financially punished.

[1] https://rfc.vac.dev/spec/17/
16

https://rfc.vac.dev/spec/17/

17

RLN Primitive

RLN Primitive

• RLN [1] is a zero-knowledge and rate-limited signaling framework.
• Each user can only send M messages for each External Nullifier.
• External nullifier can be seen as a voting booth where each user can

only cast one vote.
• M and external nullifier are application dependent.
• M=1 for this presentation.

[1] https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009
18

https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009

RLN Primitive: Membership Tree

!"!, $"! = &(!"!)

$"!

!"!", $"!" = &(!"!")

$"!"

RLN membership group:
Merkle tree

19

RLN Primitive: Signaling

!"!, $"! = &(!"!)
RLN membership group:

Merkle tree

): Message
*+: External Nullifier
,+: Internal Nullifier = &(&(!"!, *+))

20

$"! $"!"

RLN Primitive: Signaling

!"!, $"! = &(!"!)
RLN membership group:

Merkle tree

Shamir Secret
Sharing

!!: One share of !"!

21

): Message
*+: External Nullifier
,+: Internal Nullifier = &(&(!"!, *+))

$"! $"!"

RLN Primitive: Signaling

!"!, $"! = &(!"!)
RLN membership group:

Merkle tree

Shamir Secret
Sharing zkSNARK

Zero-Knowledge Proof for
- Membership
- Correctness of !"! !
- Correctness of ,+

22

$"! $"!"

!!: One share of !"!): Message
*+: External Nullifier
,+: Internal Nullifier = &(&(!"!, *+))

RLN Primitive: Detecting Double Signaling

!"!, $"! = &(!"!)
RLN membership group:

Merkle tree

),*+, ,+, !"! !, -)’, *+, ,+, !"! #, -’

23

$"! $"!"

RLN Primitive: Slashing

!"!, $"! = &(!"!)
RLN membership group:

Merkle tree

),*+, ,+, !"! !, -)’, *+, ,+, !"! #, -’

!"!

(2,N)-
Construct

24

$"! $"!"

RLN Primitive: Slashing

!"!, $"! = &(!"!)
RLN membership group:

Merkle tree

!"!

(2,N)-
Construct

),*+, ,+, !"! !, -)’, *+, ,+, !"! #, -’

25

$"1 = &(!"!)

$"! $"!"

26

WAKU-RLN-RELAY
Construction

WAKU-RLN-RELAY: RLN Group

RLN group = Peers
subscribed to the
same topic e.g.,

WAKU-RLN-RELAY

27

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
$"!, … , $"$ …

RLN group = Peers
subscribed to the
same topic e.g.,

WAKU-RLN-RELAY

28

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
$"!, … , $"$

TX: Register $",

Each peer registers to
the group and locks

some funds

…

RLN group = Peers
subscribed to the
same topic e.g.,

WAKU-RLN-RELAY

29

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
$"!, … , $"$ …

Membership
Merkle Tree

30

WAKU-RLN-RELAY: Registration

Membership Contract/Registry
$"!, … , $"$ …

Registration and Deletion Events

Peers update
their local tree

31

WAKU-RLN-RELAY: Messaging Rate

32

00:00:00
January 1, 1970

Epoch = 1 Epoch = 2

Epoch Length
= 1hr

00:01:00 January
1, 1970

00:02:00 January
1, 1970

00:04:00 July 5,
2022

…

• Messaging rate is limited to 1 per Epoch (Epoch is the same as
External Nullifier).
• The time is divided into some intervals, and each interval

corresponds to one Epoch.
• The epoch length affects the messaging rate and is application-

dependent.

Epoch = 460,277

WAKU-RLN-RELAY: Messaging Rate

Each peer locally
keeps track of the

current epoch
33

• Peers keep track of the current epoch count.

WAKU-RLN-RELAY: Publishing

),*123ℎ, ,+, !" !, -

34

• Each message is an RLN signal.
• The message owner, attaches the nullifiers, together with a share

of its RLN secret key, and the zero-knowledge proof part to the
message and sends it to its local mesh.

WAKU-RLN-RELAY: Routing

),*123ℎ, ,+, !" !, -

35

• Regular Gossip-based routing protocol + RLN signal
verification (installed as a libp2p GossipSub topic validator).

WAKU-RLN-RELAY: Routing

),*123ℎ, ,+, !" !, -

RLN Proof
Verification

Check against the
local epoch

Check for double
signaling

36

WAKU-RLN-RELAY: Routing

),*123ℎ, ,+, !" !, -

37

WAKU-RLN-RELAY: Slashing

A past record with
the same nullifiers
(*123ℎ, ,+, !" #)

), *123ℎ, ,+, !" !, -

38

WAKU-RLN-RELAY: Slashing

A past record with
the same nullifiers
(*123ℎ, ,+, !" #)

), *123ℎ, ,+, !" !, -

(2,N)-
Construct

!" #

!" !

!" of spammer

39

WAKU-RLN-RELAY: Slashing

!" of spammer

Remove spammer’s $"

$" = &(!")

Membership Contract/Registry
$"!, … , $"$ …

40

WAKU-RLN-RELAY: Slashing

!" of spammer
$" = &(!")

Membership Contract/Registry
$"!, … , $"$ …

Remove spammer’s $"

41

WAKU-RLN-RELAY

WAKU-RLN-RELAY [1] = WAKU-RELAY + Rate Limiting Nullifiers (RLN)
• P2P global spam protection
• Privacy-preserving
• Economic incentives
• Financial punishment for the spammers and a financial reward for those who

catch spammers

[1] https://rfc.vac.dev/spec/17/
42

https://rfc.vac.dev/spec/17/

WAKU-RLN-RELAY Proof-Of-Concept

• The PoC of WAKU-RLN-RELAY is implemented in Nim and is available
in the Waku repository https://github.com/status-im/nwaku
• A PoC rate-limited command-line chat application using WAKU-RLN-

RELAY is implemented in Nim https://github.com/status-im/nwaku
• Instructions on how to run it can be found under the tutorial section i.e.

https://github.com/status-im/nwaku/tree/master/docs/tutorial

43

https://github.com/status-im/nwaku
https://github.com/status-im/nwaku
https://github.com/status-im/nwaku/tree/master/docs/tutorial

References

• WAKU-RLN-RELAY specs: https://rfc.vac.dev/spec/17/

• RLN specifications: https://rfc.vac.dev/spec/32/

• The Nim implementation of WAKU-RLN-RELAY: https://github.com/status-im/nim-waku

• The JavaScript implementation of Waku: https://github.com/status-im/js-waku

• RLN Ethereum research post: https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-
for-spam-prevention-in-anonymous-p2p-setting/5009

• RLN medium post: https://medium.com/privacy-scaling-explorations/rate-limiting-
nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d

• RLN circuits: https://github.com/appliedzkp/rln

• RLN circuits spec: https://hackmd.io/7GR5Vi28Rz2EpEmLK0E0Aw

• RLN in Rust: https://github.com/kilic/rln

44

https://rfc.vac.dev/spec/17/
https://rfc.vac.dev/spec/32/
https://github.com/status-im/nim-waku
https://github.com/status-im/js-waku
https://ethresear.ch/t/semaphore-rln-rate-limiting-nullifier-for-spam-prevention-in-anonymous-p2p-setting/5009
https://medium.com/privacy-scaling-explorations/rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d
https://github.com/appliedzkp/rln
https://hackmd.io/7GR5Vi28Rz2EpEmLK0E0Aw
https://github.com/kilic/rln

45

46

Future work

• Benchmarking

• Storage-efficient Merkle tree storage
• P2P network of full-nodes and light-nodes

• Partial view of Merkle tree

• Real-time removal of spammers using off-chain/p2p solutions

• Cost-effective way of member insertion and deletion using layer 2 solutions

47

System Parameters
Parameter Description
Epoch length The length of epoch in seconds. Application dependent, should be set based on desired

throughput.

Maximum Epoch Gap The maximum allowed gap between the epoch of a routing peer and the incoming
message. Should be set based on measures the maximum number of epochs that can
elapse since a message gets routed from its origin to all the other peers in the network.
Can be calculated as:

⌈
67889:7 1;219:9<=2> ?7@9A + 3@23C 98A>3ℎ;2>A

7123ℎ @7>:<ℎ
⌉

Staked fund The amount of ether to be staked by peers at the registration

Reward portion The percentage of staked fund to be rewarded to the slashers

48

Message propagation delay: the maximum time that it takes for a message to be fully disseminated in the
GossipSub network.
Clock asynchrony: The maximum difference between the Unix epoch clocks perceived by network peers
which can be due to clock drifts.

System throughput
• Message propagation delay

• Graph diameter * message verification time (30 ms)
• Potential increased network delay for transportation of RLN related data

• System throughput i.e., messaging rate
• Affected by the message propagation delay and the epoch length

49

Implementation setup
• WAKU-RLN-RELAY utilizes the RLN library [1] for identity key generation and

commitment, Shamir secret sharing, zkSNARK circuits, proof generation, and
verification.

• The underlying Elliptic Curve is BN254.

• The instantiated hash function is Poseidon with the security level of 128 bits.

• Proof system is Groth16 [2].

[1] https://github.com/kilic/rln
[2] Groth, Jens. "On the size of pairing-based non-interactive arguments." Annual international conference on the theory and
applications of cryptographic techniques. Springer, Berlin, Heidelberg, 2016. 50

Computation overhead
• Proof generation: According to the benchmarking report of [1] for a Merkle tree

depth of 24, the proof generation on an iPhone 8 takes approximately ~0.5
seconds.

• Proof Verification: is constant and takes approximately ~ 30 milliseconds.

• User computation per group update is !(#) hashing operations (where # = &') to
calculate the tree root and the authentication path.

• Bootstrapping takes !(&!) hashing operations to construct the entire tree.

[1] https://github.com/kilic/rln

51

Gas Cost
• PK Registration: The estimated gas cost is 40k.

• PK Slashing/Deletion: The estimated gas cost is 40k.

• Batch registration/slashing: The estimated gas cost is 20k. A Batch

consists of B=128 keys

52

Storage overhead
• The Merkle tree with depth 20 takes up ~67MB storage. With some

optimizations in can be reduced to the order of tens of KBs.

• Identity keys and identity commitment keys are each of size 32 Bytes.

• Prover key size is approximately ~3.24 MB.

• Nullifier map consists of the internal nullifier and the secret shares of the

messages published in the last valid epochs (i.e., not older than the

maximum epoch gap). Metadata for each message is of size 3*32 Bytes.

53

Bandwidth
• Bandwidth overhead = 416 bytes ~ 0.4 KB

• Merkle tree root: 32 bytes
• Nullifier: 32 bytes
• ZKSNARK proof: 256 bytes
• Epoch: 32 bytes
• Secret shares: 2* 32 bytes

54

zkSNARK Setup
• Parameters generation for Groth16 is done in two phases:

• Phase 1: The powers of tau ceremony

• Phase 2: MPC for circuit specific parameters

55

