2020-03-26 15:04:46 +09:00

536 lines
16 KiB
Nim

## Nim-LibP2P
## Copyright (c) 2020 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
import chronos
import chronicles
import stew/[endians2, byteutils]
import nimcrypto/[utils, sysrand, sha2, hmac]
import ../../connection
import ../../peer
import ../../peerinfo
import ../../protobuf/minprotobuf
import ../../utility
import secure,
../../crypto/[crypto, chacha20poly1305, curve25519, hkdf],
../../stream/bufferstream
logScope:
topic = "Noise"
const
# https://godoc.org/github.com/libp2p/go-libp2p-noise#pkg-constants
NoiseCodec* = "/noise"
PayloadString = "noise-libp2p-static-key:"
ProtocolXXName = "Noise_XX_25519_ChaChaPoly_SHA256"
# Empty is a special value which indicates k has not yet been initialized.
EmptyKey: ChaChaPolyKey = [0.byte, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
NonceMax = uint64.high - 1 # max is reserved
NoiseSize = 32
MaxPlainSize = int(uint16.high - NoiseSize - ChaChaPolyTag.len)
type
KeyPair = object
privateKey: Curve25519Key
publicKey: Curve25519Key
# https://noiseprotocol.org/noise.html#the-cipherstate-object
CipherState = object
k: ChaChaPolyKey
n: uint64
# https://noiseprotocol.org/noise.html#the-symmetricstate-object
SymmetricState = object
cs: CipherState
ck: ChaChaPolyKey
h: MDigest[256]
# https://noiseprotocol.org/noise.html#the-handshakestate-object
HandshakeState = object
ss: SymmetricState
s: KeyPair
e: KeyPair
rs: Curve25519Key
re: Curve25519Key
HandshakeResult = object
cs1: CipherState
cs2: CipherState
remoteP2psecret: seq[byte]
rs: Curve25519Key
Noise* = ref object of Secure
localPrivateKey: PrivateKey
localPublicKey: PublicKey
noisePrivateKey: Curve25519Key
noisePublicKey: Curve25519Key
commonPrologue: seq[byte]
outgoing: bool
NoiseConnection* = ref object of SecureConn
readCs: CipherState
writeCs: CipherState
NoiseHandshakeError* = object of CatchableError
NoiseDecryptTagError* = object of CatchableError
NoiseOversizedPayloadError* = object of CatchableError
NoiseNonceMaxError* = object of CatchableError # drop connection on purpose
# Utility
proc genKeyPair(): KeyPair =
result.privateKey = Curve25519Key.random()
result.publicKey = result.privateKey.public()
proc hashProtocol(name: string): MDigest[256] =
# If protocol_name is less than or equal to HASHLEN bytes in length,
# sets h equal to protocol_name with zero bytes appended to make HASHLEN bytes.
# Otherwise sets h = HASH(protocol_name).
if name.len <= 32:
result.data[0..name.high] = name.toBytes
else:
result = sha256.digest(name)
proc dh(priv: Curve25519Key, pub: Curve25519Key): Curve25519Key =
Curve25519.mul(result, pub, priv)
# Cipherstate
proc hasKey(cs: CipherState): bool =
cs.k != EmptyKey
proc encryptWithAd(state: var CipherState, ad, data: openarray[byte]): seq[byte] =
var
tag: ChaChaPolyTag
nonce: ChaChaPolyNonce
np = cast[ptr uint64](addr nonce[4])
np[] = state.n
result = @data
ChaChaPoly.encrypt(state.k, nonce, tag, result, ad)
inc state.n
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
result &= tag
trace "encryptWithAd", tag = byteutils.toHex(tag), data = result.shortLog, nonce = state.n - 1
proc decryptWithAd(state: var CipherState, ad, data: openarray[byte]): seq[byte] =
var
tagIn = data[^ChaChaPolyTag.len..data.high].intoChaChaPolyTag
tagOut = tagIn
nonce: ChaChaPolyNonce
np = cast[ptr uint64](addr nonce[4])
np[] = state.n
result = data[0..(data.high - ChaChaPolyTag.len)]
ChaChaPoly.decrypt(state.k, nonce, tagOut, result, ad)
trace "decryptWithAd", tagIn = tagIn.shortLog, tagOut = tagOut.shortLog, nonce = state.n
if tagIn != tagOut:
error "decryptWithAd failed", data = byteutils.toHex(data)
raise newException(NoiseDecryptTagError, "decryptWithAd failed tag authentication.")
inc state.n
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
# Symmetricstate
proc init(_: type[SymmetricState]): SymmetricState =
result.h = ProtocolXXName.hashProtocol
result.ck = result.h.data.intoChaChaPolyKey
result.cs = CipherState(k: EmptyKey)
proc mixKey(ss: var SymmetricState, ikm: ChaChaPolyKey) =
var
temp_keys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], temp_keys)
ss.ck = temp_keys[0]
ss.cs = CipherState(k: temp_keys[1])
trace "mixKey", key = ss.cs.k.shortLog
proc mixHash(ss: var SymmetricState; data: openarray[byte]) =
var ctx: sha256
ctx.init()
ctx.update(ss.h.data)
ctx.update(data)
ss.h = ctx.finish()
trace "mixHash", hash = ss.h.data.shortLog
# We might use this for other handshake patterns/tokens
proc mixKeyAndHash(ss: var SymmetricState; ikm: openarray[byte]) {.used.} =
var
temp_keys: array[3, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], temp_keys)
ss.ck = temp_keys[0]
ss.mixHash(temp_keys[1])
ss.cs = CipherState(k: temp_keys[2])
proc encryptAndHash(ss: var SymmetricState, data: openarray[byte]): seq[byte] =
# according to spec if key is empty leave plaintext
if ss.cs.hasKey:
result = ss.cs.encryptWithAd(ss.h.data, data)
else:
result = @data
ss.mixHash(result)
proc decryptAndHash(ss: var SymmetricState, data: openarray[byte]): seq[byte] =
# according to spec if key is empty leave plaintext
if ss.cs.hasKey:
result = ss.cs.decryptWithAd(ss.h.data, data)
else:
result = @data
ss.mixHash(data)
proc split(ss: var SymmetricState): tuple[cs1, cs2: CipherState] =
var
temp_keys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, [], [], temp_keys)
return (CipherState(k: temp_keys[0]), CipherState(k: temp_keys[1]))
proc init(_: type[HandshakeState]): HandshakeState =
result.ss = SymmetricState.init()
template write_e: untyped =
trace "noise write e"
# Sets e (which must be empty) to GENERATE_KEYPAIR(). Appends e.public_key to the buffer. Calls MixHash(e.public_key).
hs.e = genKeyPair()
msg &= hs.e.publicKey
hs.ss.mixHash(hs.e.publicKey)
template write_s: untyped =
trace "noise write s"
# Appends EncryptAndHash(s.public_key) to the buffer.
msg &= hs.ss.encryptAndHash(hs.s.publicKey)
template dh_ee: untyped =
trace "noise dh ee"
# Calls MixKey(DH(e, re)).
hs.ss.mixKey(dh(hs.e.privateKey, hs.re))
template dh_es: untyped =
trace "noise dh es"
# Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s, re)) if responder.
when initiator:
hs.ss.mixKey(dh(hs.e.privateKey, hs.rs))
else:
hs.ss.mixKey(dh(hs.s.privateKey, hs.re))
template dh_se: untyped =
trace "noise dh se"
# Calls MixKey(DH(s, re)) if initiator, MixKey(DH(e, rs)) if responder.
when initiator:
hs.ss.mixKey(dh(hs.s.privateKey, hs.re))
else:
hs.ss.mixKey(dh(hs.e.privateKey, hs.rs))
# might be used for other token/handshakes
template dh_ss: untyped {.used.} =
trace "noise dh ss"
# Calls MixKey(DH(s, rs)).
hs.ss.mixKey(dh(hs.s.privateKey, hs.rs))
template read_e: untyped =
trace "noise read e", size = msg.len
if msg.len < Curve25519Key.len:
raise newException(NoiseHandshakeError, "Noise E, expected more data")
# Sets re (which must be empty) to the next DHLEN bytes from the message. Calls MixHash(re.public_key).
hs.re[0..Curve25519Key.high] = msg[0..Curve25519Key.high]
msg = msg[Curve25519Key.len..msg.high]
hs.ss.mixHash(hs.re)
template read_s: untyped =
trace "noise read s", size = msg.len
# Sets temp to the next DHLEN + 16 bytes of the message if HasKey() == True, or to the next DHLEN bytes otherwise.
# Sets rs (which must be empty) to DecryptAndHash(temp).
let
temp =
if hs.ss.cs.hasKey:
if msg.len < Curve25519Key.len + ChaChaPolyTag.len:
raise newException(NoiseHandshakeError, "Noise S, expected more data")
msg[0..Curve25519Key.high + ChaChaPolyTag.len]
else:
if msg.len < Curve25519Key.len:
raise newException(NoiseHandshakeError, "Noise S, expected more data")
msg[0..Curve25519Key.high]
msg = msg[temp.len..msg.high]
let plain = hs.ss.decryptAndHash(temp)
hs.rs[0..Curve25519Key.high] = plain
proc receiveHSMessage(sconn: Connection): Future[seq[byte]] {.async.} =
var besize: array[2, byte]
await sconn.readExactly(addr besize[0], 2)
let size = uint16.fromBytesBE(besize).int
trace "receiveHSMessage", size
return await sconn.read(size)
proc sendHSMessage(sconn: Connection; buf: seq[byte]) {.async.} =
var
lesize = buf.len.uint16
besize = lesize.toBytesBE
outbuf = newSeqOfCap[byte](besize.len + buf.len)
trace "sendHSMessage", size = lesize
outbuf &= besize
outbuf &= buf
await sconn.write(outbuf)
proc packNoisePayload(payload: openarray[byte]): seq[byte] =
var
ns: uint32
if randomBytes(addr ns, 4) != 4:
raise newException(NoiseHandshakeError, "Failed to generate randomBytes")
let
noiselen = int((ns mod (NoiseSize - 2)) + 1)
plen = payload.len.uint16
var
noise = newSeq[byte](noiselen)
if randomBytes(noise) != noiselen:
raise newException(NoiseHandshakeError, "Failed to generate randomBytes")
result &= plen.toBytesBE
result &= payload
result &= noise
if result.len > uint16.high.int:
raise newException(NoiseOversizedPayloadError, "Trying to send an unsupported oversized payload over Noise")
trace "packed noise payload", inSize = payload.len, outSize = result.len
proc unpackNoisePayload(payload: var seq[byte]) =
let
besize = payload[0..1]
size = uint16.fromBytesBE(besize).int
if size > (payload.len - 2):
raise newException(NoiseOversizedPayloadError, "Received a wrong payload size")
payload = payload[2..^((payload.len - size) - 1)]
trace "unpacked noise payload", size = payload.len
proc handshakeXXOutbound(p: Noise, conn: Connection, p2pProof: ProtoBuffer): Future[HandshakeResult] {.async.} =
const initiator = true
var
hs = HandshakeState.init()
p2psecret = p2pProof.buffer
hs.ss.mixHash(p.commonPrologue)
hs.s.privateKey = p.noisePrivateKey
hs.s.publicKey = p.noisePublicKey
# -> e
var msg: seq[byte]
write_e()
# IK might use this btw!
msg &= hs.ss.encryptAndHash(@[])
await conn.sendHSMessage(msg)
# <- e, ee, s, es
msg = await conn.receiveHSMessage()
read_e()
dh_ee()
read_s()
dh_es()
var remoteP2psecret = hs.ss.decryptAndHash(msg)
unpackNoisePayload(remoteP2psecret)
# -> s, se
msg.setLen(0)
write_s()
dh_se()
# last payload must follow the ecrypted way of sending
var packed = packNoisePayload(p2psecret)
msg &= hs.ss.encryptAndHash(packed)
await conn.sendHSMessage(msg)
let (cs1, cs2) = hs.ss.split()
return HandshakeResult(cs1: cs1, cs2: cs2, remoteP2psecret: remoteP2psecret, rs: hs.rs)
proc handshakeXXInbound(p: Noise, conn: Connection, p2pProof: ProtoBuffer): Future[HandshakeResult] {.async.} =
const initiator = false
var
hs = HandshakeState.init()
p2psecret = p2pProof.buffer
hs.ss.mixHash(p.commonPrologue)
hs.s.privateKey = p.noisePrivateKey
hs.s.publicKey = p.noisePublicKey
# -> e
var msg = await conn.receiveHSMessage()
read_e()
# we might use this early data one day, keeping it here for clarity
let earlyData {.used.} = hs.ss.decryptAndHash(msg)
# <- e, ee, s, es
msg.setLen(0)
write_e()
dh_ee()
write_s()
dh_es()
var packedSecret = packNoisePayload(p2psecret)
msg &= hs.ss.encryptAndHash(packedSecret)
await conn.sendHSMessage(msg)
# -> s, se
msg = await conn.receiveHSMessage()
read_s()
dh_se()
var remoteP2psecret = hs.ss.decryptAndHash(msg)
unpackNoisePayload(remoteP2psecret)
let (cs1, cs2) = hs.ss.split()
return HandshakeResult(cs1: cs1, cs2: cs2, remoteP2psecret: remoteP2psecret, rs: hs.rs)
method readMessage(sconn: NoiseConnection): Future[seq[byte]] {.async.} =
try:
var besize: array[2, byte]
await sconn.readExactly(addr besize[0], 2)
let size = uint16.fromBytesBE(besize).int
trace "receiveEncryptedMessage", size, peer = $sconn.peerInfo
if size == 0:
return @[]
let
cipher = await sconn.read(size)
var plain = sconn.readCs.decryptWithAd([], cipher)
unpackNoisePayload(plain)
return plain
except AsyncStreamIncompleteError:
trace "Connection dropped while reading"
except AsyncStreamReadError:
trace "Error reading from connection"
method writeMessage(sconn: NoiseConnection, message: seq[byte]): Future[void] {.async.} =
try:
var
left = message.len
offset = 0
while left > 0:
let
chunkSize = if left > MaxPlainSize: MaxPlainSize else: left
packed = packNoisePayload(message.toOpenArray(offset, offset + chunkSize - 1))
cipher = sconn.writeCs.encryptWithAd([], packed)
left = left - chunkSize
offset = offset + chunkSize
var
lesize = cipher.len.uint16
besize = lesize.toBytesBE
outbuf = newSeqOfCap[byte](cipher.len + 2)
trace "sendEncryptedMessage", size = lesize, peer = $sconn.peerInfo, left, offset
outbuf &= besize
outbuf &= cipher
await sconn.write(outbuf)
except AsyncStreamWriteError:
trace "Could not write to connection"
method handshake*(p: Noise, conn: Connection, initiator: bool = false): Future[SecureConn] {.async.} =
trace "Starting Noise handshake", initiator
# https://github.com/libp2p/specs/tree/master/noise#libp2p-data-in-handshake-messages
let
signedPayload = p.localPrivateKey.sign(PayloadString.toBytes & p.noisePublicKey.getBytes)
var
libp2pProof = initProtoBuffer()
libp2pProof.write(initProtoField(1, p.localPublicKey))
libp2pProof.write(initProtoField(2, signedPayload))
# data field also there but not used!
libp2pProof.finish()
let handshakeRes =
if initiator:
await handshakeXXOutbound(p, conn, libp2pProof)
else:
await handshakeXXInbound(p, conn, libp2pProof)
var
remoteProof = initProtoBuffer(handshakeRes.remoteP2psecret)
remotePubKey: PublicKey
remoteSig: Signature
if remoteProof.getValue(1, remotePubKey) <= 0:
raise newException(NoiseHandshakeError, "Failed to deserialize remote public key.")
if remoteProof.getValue(2, remoteSig) <= 0:
raise newException(NoiseHandshakeError, "Failed to deserialize remote public key.")
let verifyPayload = PayloadString.toBytes & handshakeRes.rs.getBytes
if not remoteSig.verify(verifyPayload, remotePubKey):
raise newException(NoiseHandshakeError, "Noise handshake signature verify failed.")
else:
trace "Remote signature verified"
if initiator and not isNil(conn.peerInfo):
let pid = PeerID.init(remotePubKey)
if not conn.peerInfo.peerId.validate():
raise newException(NoiseHandshakeError, "Failed to validate peerId.")
if pid != conn.peerInfo.peerId:
raise newException(NoiseHandshakeError, "Noise handshake, peer infos don't match! " & $pid & " != " & $conn.peerInfo.peerId)
var secure = new NoiseConnection
secure.stream = conn
secure.closeEvent = newAsyncEvent()
secure.peerInfo = PeerInfo.init(remotePubKey)
if initiator:
secure.readCs = handshakeRes.cs2
secure.writeCs = handshakeRes.cs1
else:
secure.readCs = handshakeRes.cs1
secure.writeCs = handshakeRes.cs2
debug "Noise handshake completed!"
return secure
method init*(p: Noise) {.gcsafe.} =
procCall Secure(p).init()
p.codec = NoiseCodec
method secure*(p: Noise, conn: Connection): Future[Connection] {.async, gcsafe.} =
try:
result = await p.handleConn(conn, p.outgoing)
except CatchableError as exc:
warn "securing connection failed", msg = exc.msg
if not conn.closed():
await conn.close()
proc newNoise*(privateKey: PrivateKey; outgoing: bool = true; commonPrologue: seq[byte] = @[]): Noise =
new result
result.outgoing = outgoing
result.localPrivateKey = privateKey
result.localPublicKey = privateKey.getKey()
discard randomBytes(result.noisePrivateKey)
result.noisePublicKey = result.noisePrivateKey.public()
result.commonPrologue = commonPrologue
result.init()