Merge pull request #31 from status-im/secp256k1

Secp256k1
This commit is contained in:
Eugene Kabanov 2019-09-02 22:04:49 +03:00 committed by GitHub
commit 2935b52d63
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 505 additions and 13 deletions

View File

@ -8,6 +8,7 @@ license = "MIT"
skipDirs = @["tests", "examples", "Nim"]
requires "nim > 0.18.0",
"secp256k1",
"nimcrypto >= 0.3.9",
"chronos"

View File

@ -8,7 +8,7 @@
## those terms.
## This module implements Public Key and Private Key interface for libp2p.
import rsa, ecnist, ed25519/ed25519
import rsa, ecnist, ed25519/ed25519, secp
import ../protobuf/minprotobuf, ../vbuffer
import nimcrypto/[rijndael, blowfish, sha, sha2, hash, hmac, utils]
@ -42,7 +42,7 @@ type
of Ed25519:
edkey*: EdPublicKey
of Secp256k1:
discard
skkey*: SkPublicKey
of ECDSA:
eckey*: EcPublicKey
of NoSupport:
@ -55,7 +55,7 @@ type
of Ed25519:
edkey*: EdPrivateKey
of Secp256k1:
discard
skkey*: SkPrivateKey
of ECDSA:
eckey*: EcPrivateKey
of NoSupport:
@ -78,8 +78,9 @@ type
P2pSigError* = object of CatchableError
const
SupportedSchemes* = {RSA, Ed25519, ECDSA}
SupportedSchemesInt* = {int8(RSA), int8(Ed25519), int8(ECDSA)}
SupportedSchemes* = {RSA, Ed25519, Secp256k1, ECDSA}
SupportedSchemesInt* = {int8(RSA), int8(Ed25519), int8(Secp256k1),
int8(ECDSA)}
proc random*(t: typedesc[PrivateKey], scheme: PKScheme,
bits = DefaultKeySize): PrivateKey =
@ -95,6 +96,8 @@ proc random*(t: typedesc[PrivateKey], scheme: PKScheme,
result.edkey = EdPrivateKey.random()
elif scheme == ECDSA:
result.eckey = EcPrivateKey.random(Secp256r1)
elif scheme == Secp256k1:
result.skkey = SkPrivateKey.random()
proc random*(t: typedesc[KeyPair], scheme: PKScheme,
bits = DefaultKeySize): KeyPair =
@ -117,6 +120,10 @@ proc random*(t: typedesc[KeyPair], scheme: PKScheme,
var pair = EcKeyPair.random(Secp256r1)
result.seckey.eckey = pair.seckey
result.pubkey.eckey = pair.pubkey
elif scheme == Secp256k1:
var pair = SkKeyPair.random()
result.seckey.skkey = pair.seckey
result.pubkey.skkey = pair.pubkey
proc getKey*(key: PrivateKey): PublicKey =
## Get public key from corresponding private key ``key``.
@ -127,6 +134,8 @@ proc getKey*(key: PrivateKey): PublicKey =
result.edkey = key.edkey.getKey()
elif key.scheme == ECDSA:
result.eckey = key.eckey.getKey()
elif key.scheme == Secp256k1:
result.skkey = key.skkey.getKey()
proc toRawBytes*(key: PrivateKey, data: var openarray[byte]): int =
## Serialize private key ``key`` (using scheme's own serialization) and store
@ -139,6 +148,8 @@ proc toRawBytes*(key: PrivateKey, data: var openarray[byte]): int =
result = key.edkey.toBytes(data)
elif key.scheme == ECDSA:
result = key.eckey.toBytes(data)
elif key.scheme == Secp256k1:
result = key.skkey.toBytes(data)
proc toRawBytes*(key: PublicKey, data: var openarray[byte]): int =
## Serialize public key ``key`` (using scheme's own serialization) and store
@ -151,6 +162,8 @@ proc toRawBytes*(key: PublicKey, data: var openarray[byte]): int =
result = key.edkey.toBytes(data)
elif key.scheme == ECDSA:
result = key.eckey.toBytes(data)
elif key.scheme == Secp256k1:
result = key.skkey.toBytes(data)
proc getRawBytes*(key: PrivateKey): seq[byte] =
## Return private key ``key`` in binary form (using scheme's own
@ -161,6 +174,8 @@ proc getRawBytes*(key: PrivateKey): seq[byte] =
result = key.edkey.getBytes()
elif key.scheme == ECDSA:
result = key.eckey.getBytes()
elif key.scheme == Secp256k1:
result = key.skkey.getBytes()
proc getRawBytes*(key: PublicKey): seq[byte] =
## Return public key ``key`` in binary form (using scheme's own
@ -171,6 +186,8 @@ proc getRawBytes*(key: PublicKey): seq[byte] =
result = key.edkey.getBytes()
elif key.scheme == ECDSA:
result = key.eckey.getBytes()
elif key.scheme == Secp256k1:
result = key.skkey.getBytes()
proc toBytes*(key: PrivateKey, data: var openarray[byte]): int =
## Serialize private key ``key`` (using libp2p protobuf scheme) and store
@ -254,6 +271,10 @@ proc init*(key: var PrivateKey, data: openarray[byte]): bool =
if init(nkey.eckey, buffer) == Asn1Status.Success:
key = nkey
result = true
elif scheme == Secp256k1:
if init(nkey.skkey, buffer):
key = nkey
result = true
proc init*(key: var PublicKey, data: openarray[byte]): bool =
## Initialize public key ``key`` from libp2p's protobuf serialized raw
@ -281,6 +302,10 @@ proc init*(key: var PublicKey, data: openarray[byte]): bool =
if init(nkey.eckey, buffer) == Asn1Status.Success:
key = nkey
result = true
elif scheme == Secp256k1:
if init(nkey.skkey, buffer):
key = nkey
result = true
proc init*(sig: var Signature, data: openarray[byte]): bool =
## Initialize signature ``sig`` from raw binary form.
@ -374,6 +399,10 @@ proc `$`*(key: PrivateKey): string =
result = "Secp256r1 key ("
result.add($(key.eckey))
result.add(")")
elif key.scheme == Secp256k1:
result = "Secp256k1 key ("
result.add($(key.skkey))
result.add(")")
proc `$`*(key: PublicKey): string =
## Get string representation of public key ``key``.
@ -387,6 +416,10 @@ proc `$`*(key: PublicKey): string =
result = "Secp256r1 key ("
result.add($(key.eckey))
result.add(")")
elif key.scheme == Secp256k1:
result = "Secp256k1 key ("
result.add($(key.skkey))
result.add(")")
proc `$`*(sig: Signature): string =
## Get string representation of signature ``sig``.
@ -404,6 +437,9 @@ proc sign*(key: PrivateKey, data: openarray[byte]): Signature =
elif key.scheme == ECDSA:
var sig = key.eckey.sign(data)
result.data = sig.getBytes()
elif key.scheme == Secp256k1:
var sig = key.skkey.sign(data)
result.data = sig.getBytes()
proc verify*(sig: Signature, message: openarray[byte],
key: PublicKey): bool =
@ -421,6 +457,10 @@ proc verify*(sig: Signature, message: openarray[byte],
var signature: EcSignature
if signature.init(sig.data) == Asn1Status.Success:
result = signature.verify(message, key.eckey)
elif key.scheme == Secp256k1:
var signature: SkSignature
if signature.init(sig.data):
result = signature.verify(message, key.skkey)
template makeSecret(buffer, hmactype, secret, seed) =
var ctx: hmactype

381
libp2p/crypto/secp.nim Normal file
View File

@ -0,0 +1,381 @@
## Nim-Libp2p
## Copyright (c) 2018 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
import strutils
import secp256k1, nimcrypto/sysrand, nimcrypto/utils, nimcrypto/hash,
nimcrypto/sha2
export sha2
const
SkRawPrivateKeySize* = 256 div 8
## Size of private key in octets (bytes)
SkRawSignatureSize* = SkRawPrivateKeySize * 2 + 1
## Size of signature in octets (bytes)
SkRawPublicKeySize* = SkRawPrivateKeySize + 1
## Size of public key in octets (bytes)
type
SkPublicKey* = secp256k1_pubkey
## Representation of public key.
SkPrivateKey* = object
## Representation of secret key.
data*: array[SkRawPrivateKeySize, byte]
SkKeyPair* = object
## Representation of private/public keys pair.
seckey*: SkPrivateKey
pubkey*: SkPublicKey
SkSignature* = secp256k1_ecdsa_recoverable_signature
## Representation of signature.
SkContext* = ref object
## Representation of Secp256k1 context object.
context: ptr secp256k1_context
error: string
Secp256k1Error* = object of CatchableError
## Exceptions generated by `libsecp256k1`
##
## Private procedures interface
##
var secpContext {.threadvar.}: SkContext
## Thread local variable which holds current context
proc illegalCallback(message: cstring, data: pointer) {.cdecl.} =
let ctx = cast[SkContext](data)
ctx.error = $message
proc errorCallback(message: cstring, data: pointer) {.cdecl.} =
let ctx = cast[SkContext](data)
ctx.error = $message
proc shutdownLibsecp256k1(ctx: SkContext) =
# TODO: use destructor when finalizer are deprecated for destructors
if not(isNil(ctx.context)):
secp256k1_context_destroy(ctx.context)
proc newSkContext(): SkContext =
## Create new Secp256k1 context object.
new(result, shutdownLibsecp256k1)
let flags = cuint(SECP256K1_CONTEXT_VERIFY or SECP256K1_CONTEXT_SIGN)
result.context = secp256k1_context_create(flags)
secp256k1_context_set_illegal_callback(result.context, illegalCallback,
cast[pointer](result))
secp256k1_context_set_error_callback(result.context, errorCallback,
cast[pointer](result))
result.error = ""
proc getContext(): SkContext =
## Get current `EccContext`
if isNil(secpContext):
secpContext = newSkContext()
result = secpContext
template raiseSecp256k1Error() =
## Raises `libsecp256k1` error as exception
let mctx = getContext()
if len(mctx.error) > 0:
let msg = mctx.error
mctx.error.setLen(0)
raise newException(Secp256k1Error, msg)
else:
raise newException(Secp256k1Error, "")
proc init*(key: var SkPrivateKey, data: openarray[byte]): bool =
## Initialize Secp256k1 `private key` ``key`` from raw binary
## representation ``data``.
##
## Procedure returns ``true`` on success.
let ctx = getContext()
if len(data) >= SkRawPrivateKeySize:
let res = secp256k1_ec_seckey_verify(ctx.context,
cast[ptr cuchar](unsafeAddr data[0]))
result = (res == 1) and (len(ctx.error) == 0)
if result:
copyMem(addr key.data[0], unsafeAddr data[0], SkRawPrivateKeySize)
proc init*(key: var SkPrivateKey, data: string): bool {.inline.} =
## Initialize Secp256k1 `private key` ``key`` from hexadecimal string
## representation ``data``.
##
## Procedure returns ``true`` on success.
var buffer: seq[byte]
try:
buffer = fromHex(stripSpaces(data))
except:
return false
result = init(key, buffer)
proc init*(key: var SkPublicKey, data: openarray[byte]): bool =
## Initialize Secp256k1 `public key` ``key`` from raw binary
## representation ``data``.
##
## Procedure returns ``true`` on success.
let ctx = getContext()
var length = 0
if len(data) > 0:
if data[0] == 0x02'u8 or data[0] == 0x03'u8:
length = min(len(data), 33)
elif data[0] == 0x04'u8 or data[0] == 0x06'u8 or data[0] == 0x07'u8:
length = min(len(data), 65)
else:
return false
let res = secp256k1_ec_pubkey_parse(ctx.context, addr key,
cast[ptr cuchar](unsafeAddr data[0]),
length)
result = (res == 1) and (len(ctx.error) == 0)
proc init*(key: var SkPublicKey, data: string): bool =
## Initialize Secp256k1 `public key` ``key`` from hexadecimal string
## representation ``data``.
##
## Procedure returns ``true`` on success.
var buffer: seq[byte]
try:
buffer = fromHex(stripSpaces(data))
except:
return false
result = init(key, buffer)
proc init*(sig: var SkSignature, data: openarray[byte]): bool =
## Initialize Secp256k1 `signature` ``sig`` from raw binary
## representation ``data``.
##
## Procedure returns ``true`` on success.
let ctx = getContext()
let length = len(data)
if length >= SkRawSignatureSize:
var recid = cint(data[SkRawPrivateKeySize * 2])
let res = secp256k1_ecdsa_recoverable_signature_parse_compact(ctx.context,
addr sig, cast[ptr cuchar](unsafeAddr data[0]), recid)
result = (res == 1) and (len(ctx.error) == 0)
proc init*(sig: var SkSignature, data: string): bool =
## Initialize Secp256k1 `signature` ``sig`` from hexadecimal string
## representation ``data``.
##
## Procedure returns ``true`` on success.
var buffer: seq[byte]
try:
buffer = fromHex(stripSpaces(data))
except:
return false
result = init(sig, buffer)
proc init*(t: typedesc[SkPrivateKey],
data: openarray[byte]): SkPrivateKey {.inline.} =
## Initialize Secp256k1 `private key` from raw binary
## representation ``data``.
##
## Procedure returns `private key` on success.
if not init(result, data):
raise newException(Secp256k1Error, "Incorrect binary form")
proc init*(t: typedesc[SkPrivateKey],
data: string): SkPrivateKey {.inline.} =
## Initialize Secp256k1 `private key` from hexadecimal string
## representation ``data``.
##
## Procedure returns `private key` on success.
if not init(result, data):
raise newException(Secp256k1Error, "Incorrect binary form")
proc init*(t: typedesc[SkPublicKey],
data: openarray[byte]): SkPublicKey {.inline.} =
## Initialize Secp256k1 `public key` from raw binary
## representation ``data``.
##
## Procedure returns `public key` on success.
if not init(result, data):
raise newException(Secp256k1Error, "Incorrect binary form")
proc init*(t: typedesc[SkPublicKey],
data: string): SkPublicKey {.inline.} =
## Initialize Secp256k1 `public key` from hexadecimal string
## representation ``data``.
##
## Procedure returns `public key` on success.
if not init(result, data):
raise newException(Secp256k1Error, "Incorrect binary form")
proc init*(t: typedesc[SkSignature],
data: openarray[byte]): SkSignature {.inline.} =
## Initialize Secp256k1 `signature` from raw binary
## representation ``data``.
##
## Procedure returns `signature` on success.
if not init(result, data):
raise newException(Secp256k1Error, "Incorrect binary form")
proc init*(t: typedesc[SkSignature],
data: string): SkSignature {.inline.} =
## Initialize Secp256k1 `signature` from hexadecimal string
## representation ``data``.
##
## Procedure returns `signature` on success.
if not init(result, data):
raise newException(Secp256k1Error, "Incorrect binary form")
proc getKey*(key: SkPrivateKey): SkPublicKey =
## Calculate and return Secp256k1 `public key` from `private key` ``key``.
let ctx = getContext()
let res = secp256k1_ec_pubkey_create(ctx.context, addr result,
cast[ptr cuchar](unsafeAddr key))
if (res != 1) or (len(ctx.error) != 0):
raiseSecp256k1Error()
proc random*(t: typedesc[SkPrivateKey]): SkPrivateKey =
## Generates new random private key.
let ctx = getContext()
while true:
if randomBytes(result.data) == SkRawPrivateKeySize:
let res = secp256k1_ec_seckey_verify(ctx.context,
cast[ptr cuchar](addr result.data[0]))
if (res == 1) and (len(ctx.error) == 0):
break
proc random*(t: typedesc[SkKeyPair]): SkKeyPair {.inline.} =
## Generates new random key pair.
result.seckey = SkPrivateKey.random()
result.pubkey = result.seckey.getKey()
proc toBytes*(key: SkPrivateKey, data: var openarray[byte]): int =
## Serialize Secp256k1 `private key` ``key`` to raw binary form and store it
## to ``data``.
##
## Procedure returns number of bytes (octets) needed to store
## Secp256k1 private key.
result = SkRawPrivateKeySize
if len(data) >= SkRawPrivateKeySize:
copyMem(addr data[0], unsafeAddr key.data[0], SkRawPrivateKeySize)
proc toBytes*(key: SkPublicKey, data: var openarray[byte]): int =
## Serialize Secp256k1 `public key` ``key`` to raw binary form and store it
## to ``data``.
##
## Procedure returns number of bytes (octets) needed to store
## Secp256k1 public key.
let ctx = getContext()
var length = csize(len(data))
result = SkRawPublicKeySize
if len(data) >= SkRawPublicKeySize:
let res = secp256k1_ec_pubkey_serialize(ctx.context,
cast[ptr cuchar](addr data[0]),
addr length, unsafeAddr key,
SECP256K1_EC_COMPRESSED)
proc toBytes*(sig: SkSignature, data: var openarray[byte]): int =
## Serialize Secp256k1 `signature` ``sig`` to raw binary form and store it
## to ``data``.
##
## Procedure returns number of bytes (octets) needed to store
## Secp256k1 signature.
let ctx = getContext()
var recid = cint(0)
result = SkRawSignatureSize
if len(data) >= SkRawSignatureSize:
let res = secp256k1_ecdsa_recoverable_signature_serialize_compact(
ctx.context, cast[ptr cuchar](unsafeAddr data[0]),
addr recid, unsafeAddr sig)
if (res == 1) and (len(ctx.error) == 0):
data[64] = uint8(recid)
proc getBytes*(key: SkPrivateKey): seq[byte] {.inline.} =
## Serialize Secp256k1 `private key` and return it.
result = @(key.data)
proc getBytes*(key: SkPublicKey): seq[byte] {.inline.} =
## Serialize Secp256k1 `public key` and return it.
result = newSeq[byte](SkRawPublicKeySize)
discard toBytes(key, result)
proc getBytes*(sig: SkSignature): seq[byte] {.inline.} =
## Serialize Secp256k1 `signature` and return it.
result = newSeq[byte](SkRawSignatureSize)
discard toBytes(sig, result)
proc `==`*(ska, skb: SkPrivateKey): bool =
## Compare Secp256k1 `private key` objects for equality.
result = (ska.data == skb.data)
proc `==`*(pka, pkb: SkPublicKey): bool =
## Compare Secp256k1 `public key` objects for equality.
var
akey: array[SkRawPublicKeySize, byte]
bkey: array[SkRawPublicKeySize, byte]
discard pka.toBytes(akey)
discard pkb.toBytes(bkey)
result = (akey == bkey)
proc `==`*(sia, sib: SkSignature): bool =
## Compare Secp256k1 `signature` objects for equality.
var
asig: array[SkRawSignatureSize, byte]
bsig: array[SkRawSignatureSize, byte]
discard sia.toBytes(asig)
discard sib.toBytes(bsig)
result = (asig == bsig)
proc `$`*(key: SkPrivateKey): string = toHex(key.data)
## Return string representation of Secp256k1 `private key`.
proc `$`*(key: SkPublicKey): string =
## Return string representation of Secp256k1 `private key`.s
var spub: array[SkRawPublicKeySize, byte]
discard key.toBytes(spub)
result = toHex(spub)
proc `$`*(sig: SkSignature): string =
## Return string representation of Secp256k1 `signature`.s
var ssig: array[SkRawSignatureSize, byte]
discard sig.toBytes(ssig)
result = toHex(ssig)
proc sign*[T: byte|char](key: SkPrivateKey, msg: openarray[T]): SkSignature =
## Sign message `msg` using private key `key` and return signature object.
let ctx = getContext()
var hash = sha256.digest(msg)
let res = secp256k1_ecdsa_sign_recoverable(ctx.context, addr result,
cast[ptr cuchar](addr hash.data[0]),
cast[ptr cuchar](unsafeAddr key),
nil, nil)
if (res != 1) or (len(ctx.error) != 0):
raiseSecp256k1Error()
proc verify*[T: byte|char](sig: SkSignature, msg: openarray[T],
key: SkPublicKey): bool =
var pubkey: SkPublicKey
let ctx = getContext()
var hash = sha256.digest(msg)
let res = secp256k1_ecdsa_recover(ctx.context, addr pubkey, unsafeAddr sig,
cast[ptr cuchar](addr hash.data[0]))
if (res == 1) and (len(ctx.error) == 0):
if key == pubkey:
result = true
proc clear*(key: var SkPrivateKey) {.inline.} =
## Wipe and clear memory of Secp256k1 `private key`.
burnMem(key.data)
proc clear*(key: var SkPublicKey) {.inline.} =
## Wipe and clear memory of Secp256k1 `public key`.
burnMem(addr key, SkRawPrivateKeySize * 2)
proc clear*(sig: var SkSignature) {.inline.} =
## Wipe and clear memory of Secp256k1 `signature`.
# Internal memory representation size of signature object is 64 bytes.
burnMem(addr sig, SkRawPrivateKeySize * 2)
proc clear*(pair: var SkKeyPair) {.inline.} =
## Wipe and clear memory of Secp256k1 `key pair`.
pair.seckey.clear()
pair.pubkey.clear()

View File

@ -1,4 +1,4 @@
import unittest
import testvarint, testbase32, testbase58, testbase64
import testrsa, testecnist, tested25519, testcrypto
import testrsa, testecnist, tested25519, testsecp256k1, testcrypto
import testmultibase, testmultihash, testmultiaddress, testcid, testpeer

View File

@ -76,9 +76,9 @@ const
50BEB59FEAAC43389ABC490E11172750A94A01D155FE553DA9F559CE6687CDF
6160B6C11BDD02F58D5E28A2BB1C59F991CE52A49618185C82E750A044979""",
# Secp256k1 keys
# "0802122053DADF1D5A164D6B4ACDB15E24AA4C5B1D3461BDBD42ABEDB0A4404D56CED8FB",
# "08021220FD659951E2ED440CC7ECE436357D123D4C8B3CF1056E3F1607FF3641FB578A1B",
# "08021220B333BE3E843339E0E2CE9E083ABC119BE05C7B65B8665ADE19E172D47BF91305"
"0802122053DADF1D5A164D6B4ACDB15E24AA4C5B1D3461BDBD42ABEDB0A4404D56CED8FB",
"08021220FD659951E2ED440CC7ECE436357D123D4C8B3CF1056E3F1607FF3641FB578A1B",
"08021220B333BE3E843339E0E2CE9E083ABC119BE05C7B65B8665ADE19E172D47BF91305"
]
PeerIDs = [
@ -91,10 +91,9 @@ const
"QmVMT29id3TUASyfZZ6k9hmNyc2nYabCo4uMSpDw4zrgDk",
"QmXz4wPSQqYF33qB7JRdSExETu56HgWRpE9bsf75HgeXL5",
"Qmcfz2MaPjw44RfVpHKFgXwhW3uFBRBxByVEkgPhefKCJW",
# Secp256k1 peer ids
# "16Uiu2HAmLhLvBoYaoZfaMUKuibM6ac163GwKY74c5kiSLg5KvLpY",
# "16Uiu2HAmRRrT319h5upVoC3E8vs1Qej4UF3vPPnLgrhbpHhUb2Av",
# "16Uiu2HAmDrDaty3uYPgqSr1h5Cup32S2UdYo46rhqZfXPjJMABZL"
"16Uiu2HAmLhLvBoYaoZfaMUKuibM6ac163GwKY74c5kiSLg5KvLpY",
"16Uiu2HAmRRrT319h5upVoC3E8vs1Qej4UF3vPPnLgrhbpHhUb2Av",
"16Uiu2HAmDrDaty3uYPgqSr1h5Cup32S2UdYo46rhqZfXPjJMABZL"
]
suite "Peer testing suite":

71
tests/testsecp256k1.nim Normal file
View File

@ -0,0 +1,71 @@
## Nim-Libp2p
## Copyright (c) 2018 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
import unittest
import ../libp2p/crypto/secp
import nimcrypto/utils
suite "Secp256k1 testing suite":
const TestsCount = 20
test "Private key serialize/deserialize test":
for i in 0..<TestsCount:
var rkey1, rkey2: SkPrivateKey
var skey2 = newSeq[byte](256)
var key = SkPrivateKey.random()
var skey1 = key.getBytes()
check:
key.toBytes(skey2) > 0
check:
rkey1.init(skey1) == true
rkey2.init(skey2) == true
var rkey3 = SkPrivateKey.init(skey1)
var rkey4 = SkPrivateKey.init(skey2)
check:
rkey1 == key
rkey2 == key
rkey3 == key
rkey4 == key
rkey1.clear()
rkey2.clear()
check:
isFullZero(rkey1.data) == true
isFullZero(rkey2.data) == true
test "Public key serialize/deserialize test":
for i in 0..<TestsCount:
var rkey1, rkey2: SkPublicKey
var skey2 = newSeq[byte](256)
var pair = SkKeyPair.random()
var skey1 = pair.pubkey.getBytes()
check:
pair.pubkey.toBytes(skey2) > 0
rkey1.init(skey1) == true
rkey2.init(skey2) == true
var rkey3 = SkPublicKey.init(skey1)
var rkey4 = SkPublicKey.init(skey2)
check:
rkey1 == pair.pubkey
rkey2 == pair.pubkey
rkey3 == pair.pubkey
rkey4 == pair.pubkey
rkey1.clear()
rkey2.clear()
test "Generate/Sign/Serialize/Deserialize/Verify test":
var message = "message to sign"
for i in 0..<TestsCount:
var kp = SkKeyPair.random()
var sig = kp.seckey.sign(message)
var sersk = kp.seckey.getBytes()
var serpk = kp.pubkey.getBytes()
var sersig = sig.getBytes()
var seckey = SkPrivateKey.init(sersk)
var pubkey = SkPublicKey.init(serpk)
var csig = SkSignature.init(sersig)
check csig.verify(message, pubkey) == true
let error = len(csig.data) - 1
csig.data[error] = not(csig.data[error])
check csig.verify(message, pubkey) == false