
Status
Security Analysis

Report and
Formal Verification

Properties

x

10.10.2023

Table of Contents
Table of Contents..2
Summary..2

Summary of findings..3
Disclaimer...4

Main Issues Discovered...5
High-01: Upgradability of L1&L2miniMe token pair can be compromised..........5
High-02: Reentrancy danger on controller’s onTransfer() callback...................... 6
Medium-01: claimTokens() can’t rescue locked native currency............................ 7
Medium-02: Di�erence between calculated and stored uint sizes can lead to
overflows...7
Low-01: Ownership cannot be revoked/petrified... 8
Low-02: MiniMeTokenCore’s createCloneToken would create a MiniMeToken.8
Informational-01: Deprecated library used for Solidity >= 0.8: SafeMath........... 9
Informational-02: ParentTokenMutability..9
Informational-03: Excess Functionality - Controller power...9
Informational-04: Excess Functionality - Cloning Logic..10
Informational-05: Excess Functionality - CreateCloneToken()... 10
Informational-06: Unused constant.. 10
Informational-07: EnableTransfers() should emit an event...11
Centralization-01: Controller Owner... 11

Formal Verification Process... 12
Notations.. 12
MiniMe Token properties.. 12

Assumptions...12
Properties... 12

Summary
This document describes the specification and verification of the new Status
SNT Optimism Bridge and MiniMeToken implementation using the Certora
Prover and manual code review findings. The work was undertaken from 28th

August 2023 to 10th October 2023. The latest commits that was reviewed
manually and run through the Certora Prover are 6d9d4f5487 and 74f3fd88a5.

2

https://github.com/vacp2p/minime/tree/6d9d4f54876c2095f5aa79210869c8e17e30f55e
https://github.com/logos-co/optimism-bridge-snt/tree/74f3fd88a5e384cbfb2093dd12e367f73f68a4d7

The following contracts list is included in the scope:

optimism-bridge-snt Repo:

contracts/optimism/IOptimismMintableERC20.sol
contracts/optimism/OptimismMintableMiniMeToken.sol
contracts/optimism/Semver.sol
contracts/SNTOptimismController.sol

minime Repo:

contracts/ApproveAndCallFallBack.sol
contracts/Controlled.sol
contracts/MiniMeBase.sol
contracts/MiniMeToken.sol
contracts/Nonces.sol
contracts/TokenController.sol

The contracts are written in Solidity ^0.8.0.

The Certora Prover demonstrated that the implementation of the Solidity
contracts above is correct with respect to the formal rules written by the Certora
team. In addition, the team performed a manual audit of all Solidity contracts.
During the verification process and the manual audit, the Certora Prover
discovered bugs in the Solidity contracts code, as listed below.

Summary of findings
The table below summarizes the issues discovered during the audit, categorized
by severity.

Severity Total discovered Total fixed Total
acknowledged

High 2 2 2

Medium 2 2 2

Low 2 2 2

Informational 7 5 5

Centralization 1 0 1

Total (High,
Medium, Low)

14 11 14

3

https://github.com/logos-co/optimism-bridge-snt
https://github.com/vacp2p/minime/tree/master

Disclaimer
The Certora Prover takes a contract and a specification as input and formally
proves that the contract satisfies the specification in all scenarios. Notably, the
guarantees of the Certora Prover are scoped to the provided specification and
the Certora Prover does not check any cases not covered by the specification.

Even though we hope this information is helpful, we provide no warranty of any
kind, explicit or implied. The contents of this report should not be construed as a
complete guarantee that the contract is secure in all dimensions. In no event shall
Certora or any of its employees be liable for any claim, damages, or other liability,
whether in an action of contract, tort, or otherwise, arising from, out of, or in
connection with the results reported here.

4

Main Issues Discovered

High-01: Upgradability of L1&L2 miniMe token pair can
be compromised
Severity:High
Probability: High
Category: Double spend, Operational consideration
File(s): MiniMeToken.sol
Bug description: If both L1 and L2 are MiniMeTokens, then using its upgradability
(cloning) feature might compromise the token if not executed exactly at the
same time. This is due to the fact that a malicious user could attempt to double
their funds by bridging from the old token to the not-yet-cloned one.
Exploit scenario:
A DAO vote passes on both chains to make an upgrade/clone of the current SNT
(miniMe) tokens. This could naively be done by calling each one’s
createCloneToken() function.
There would be some delay (and thus parentSnapshotBlock) for the cloned
tokens on L1 and L2 - let’s call that the “upgrade window”. In this example, let’s say
L1 upgraded first.
An attacker might try to time or front-run a bridging action during that window.
So as soon as L1 is cloned, they’ll bridge their entire balance from the old L1 token.
If this bridging action happened before the upgrade window closed, the
attacker’s balance on the old L2 token would increase by the same amount he
already got on L1, doubling their funds.
Status’s response:Clone feature would not be used for upgradability.

Will be addresed. Original MiniMeToken would still have createToken/destroyToken
operated by Controller only, but OptimismSNTwould havemint/burn operated by
bridge only.

This was done by abstracting out the generateToken and destoyToken here
https://github.com/vacp2p/minime/pull/32

Which now is used by https://github.com/logos-co/optimism-bridge-snt/ and does
not implement those functions on the optimism token.

5

https://github.com/vacp2p/minime/pull/32
https://github.com/logos-co/optimism-bridge-snt/

High-02: Reentrancy danger on controller’s
onTransfer() callback
Severity:Critical
Probability: Low
Category: Reentrancy, double spend
File(s): MiniMeToken.sol
Bug description: The check-e�ects-interactions pattern was ignored during
MiniMeToken.doTransfer(), where after making a callback it uses stale balances
during the updates that come afterward.
Although the controller is a trusted entity of the system (and current
implementation isn’t vulnerable), This can lead to needless risk for future or more
complex controller implementations (as leveraging the reentrancy does not
require any special permissions, just the execution time at that moment).
Another way to look at this is that there’s an assumption of the system that the
controller must not give arbitrary 3rd party execution. Currently, this assumption
has to be enforced on every controller implementation.

Exploit scenario /Numerical Example:
Let’s assume a non-malicious controller that can give another callback to the user
during onTransfer() call.
When an attacker transfers some X amount of funds in a way that gets the 2nd
callback, they can just do another Transfer for another X amount, and their
balance would only decrease by X.
That’s because in the first call, the MiniMeToken already checked the balance
requirements and calculated the balanceBefore but didn’t send it yet. Making a
reentrant call here would double spend the sent amount.

Status’s response: The issue considers that is possible if Controller is
compromised, however, the Controller compromised would cause bigger
problems than this. Anyway, its true that the reentrancy is possible. In this case, it
would cause totalSupply to be lower than actual totalSupply. A test case was
created for it, and a fix was implemented.

6

https://github.com/vacp2p/minime/pull/29/
https://github.com/vacp2p/minime/pull/29/
https://github.com/vacp2p/minime/pull/30

Medium-01: claimTokens() can’t rescue locked native
currency
Severity:Medium
Category: Locked funds, Missing logic
File(s): SNTPlaceHolder.sol
Bug description: SNTPlaceHolder is (seemingly) supposed to be SNT’s controller.
But it doesn’t have a fallback or receive function, making it unable to accept any
native currency sent by MiniMeToken.sol:rescueFunds().
Status’s response: acknowledged and fixed:
https://github.com/logos-co/optimism-bridge-snt/pull/11

Medium-02: Di�erence between calculated and stored
uint sizes can lead to overflows
Severity:Medium
Category: Overflows (casting)
File(s): MiniMeToken.sol
Bug description: All balances in MiniMeToken are saved as uint128 in the
checkpoints (as well as total supplies). Since all inputs and calculations are done
with uint256, there were no checks for the uin128 size thus allowing overflows.
While on most tokens such amounts are unrealistic (config dependant on the
decimals), this might also open up an unintended centralization risk that could’ve
been avoided (minter can deliberately zero out someone’s balance - or even the
total supply - just byminting, which shouldn’t be expected).
Current overflow checks are all on uint256 size, so they don’t circumvent this
potential issue.
Status’s response: acknowledged and fixed:
https://github.com/vacp2p/minime/pull/35
Checking were already done for mint and transfer, see

● Generate Token:
○ totalSupply overflow:

https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5b
e303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.
sol#L264

○ balance overflow:
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5b
e303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.
sol#L266

● Transfer:
○ balance

https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5b
e303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.
sol#L222

7

https://github.com/logos-co/optimism-bridge-snt/pull/11
https://github.com/vacp2p/minime/pull/35
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L264
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L264
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L264
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L266
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L266
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L266
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L222
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L222
https://github.com/logos-co/optimism-bridge-snt/blob/2cd0c8f5be303c2111010f53c8281e709fab94c2/contracts/token/MiniMeToken.sol#L222

However these checks were not su�cient because they were happeinng in
uint256.
With further analysis, we determined that the balance checks are impossible to
be reached, because if the totalSupply is checked, is mathematically impossible
to overflow any account balance. So we removed the balance overflow checks to
save on gas. This is also done by OpenZeppelin standard ERC20 implementation.

Low-01: Ownership cannot be revoked/petrified
Severity: Low
Probability: 100%
Category: Missing Logic
File(s): Owned.sol
Bug description: Documentation states the admin can revoke their rights by
setting the owner to address 0x0. But Ownership must be accepted by the
receiver to take e�ect, so there needs to be special logic where when the receiver
is 0x0, it can also be set as the current owner.
Status’s response:

This is by design, however the documentation should be fixed.

Low-02: MiniMeTokenCore’s createCloneToken would
create a MiniMeToken
Severity: Low
Category: Unexpected Behavior
File(s): MiniMeTokenCore.sol, MiniMeTokenFactory.sol
Bug description: The MiniMetokenCore.sol has no GenerateToken or
DestroyToken functions, but calling its createClone would actually create an
instance of MiniMeToken, where it does have that functionality. This seems
unexpected.
Status’s response: This is intended, because the cloneTokens should be
manageable by whoever cloned them. Only the bridge token does not have a
generate/destroy tokens by controller, because the generate and destroy tokens
must be done by bridge only.

With the new changes, createCloneToken would not exist anymore, but this
functionality would still be possible by creating a newMiniMeToken referencing
parentToken and parentSnapshotBlock

8

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bd4169bb15588ade629fa75302c80f0f1818c795/contracts/token/ERC20/ERC20.sol#L198

Informational-01: Deprecated library used for Solidity
>= 0.8: SafeMath
Severity: Informational
Category: Gas
File(s): safeMath.sol
Bug description: Solidity compiler version 0.8 and above inserts overflow checks
automatically.
The usage of the safeMath.sol library seems completely redundant, unlike the
original MiniMeToken.sol material that was on version 0.4.X and did need that.
This is also true for some overflow checks onMiniMeToken.sol.
Status’s response: This library was zombie code from SNT ICO code. This is fixed

Informational-02: ParentTokenMutability
Severity: Informational
Category: missing keyword
File(s): MiniMeToken.sol
Bug description: The parent of a MiniMeToken must not change in order to keep
the integrity of the balance history. To avoid future implementationmistakes, add
this keyword or documentation.
This might also apply to:
MiniMeToken.creationBlock
MiniMeToken.decimals
MiniMeToken.parentSnapShotBlock
MiniMeToken.parentToken
MiniMeToken.tokenFactory
Status’s response: acknowledged and fixed:
https://github.com/vacp2p/minime/pull/23

Informational-03: Excess Functionality - Controller
power
Severity: Informational
Category: Excess Functionality
File(s): MiniMeToken.sol
Bug description: If the main design for the L2 SNT token is to be an L2 token, it
could be enough for the bridge to be the only entity to be able to mint and burn
tokens arbitrarily.
Status’s response: We are currently looking into removing excess functionality
fromMiniMeBase.sol

9

https://github.com/logos-co/optimism-bridge-snt/pull/10
https://github.com/vacp2p/minime/pull/23

Informational-04: Excess Functionality - Cloning Logic
Severity: Informational
Category: Excess Functionality
File(s): MiniMeToken.sol
Bug description: If themain design for the SNT tokens beyond ERC20 is to solely
retain history (by the checkpoints mechanism), and upgradability is not at all
desired, then the MiniMeToken’s standard has a lot of excess logic that is not
necessarily desired (e.g., the cloning logic, the controller, etc).
This can also be considered against other upgradability patterns if desired.
Status’s response: We are currently looking into removing excess functionality
fromMiniMeBase.sol
cloning logic is already removed, but still possible outside the contract.

Informational-05: Excess Functionality -
CreateCloneToken()
Severity: Informational
Category: Excess Functionality
File(s): MiniMeToken.sol
Bug description: Creating a clone of a token seems to be an external process to
the Token itself. Understandably this is there for ‘usability’, but it also be
implemented in a separate contract. There is no need for the Token to know its
factory, and in any Upgrade that is beyond just a clone, there would need to be a
di�erent factory anyway.
Status’s response: acknowledged and fixed:
https://github.com/vacp2p/minime/pull/34
https://github.com/vacp2p/minime/pull/39

Informational-06: Unused constant
Severity: Informational
Category: CR
File(s): Controlled.sol
Bug description: ERR_UNAUTHORIZED variable left unused, probably should’ve
been used in L#11.
Status’s response: This was fixed when MiniMeToken contracts were refactored
from source to new foundry template, and started using the new error type from
solidity.

10

https://github.com/vacp2p/minime/pull/34
https://github.com/vacp2p/minime/pull/39

Informational-07: EnableTransfers() should emit an
event
Severity: Informational
Category: Suggestion
File(s): MiniMeToken.sol
Bug description: transfersEnabled variable is an important configuration
parameter of the system, consider emitting an event when this is changed to let
the users, trackers andmonitors know.

Centralization-01: Controller Owner
Severity:N/A
Category: Centralization
File(s): SNTPlaceHolder.sol
Bug description: The MiniMeToken has several permissionless perks, but
currently the entire system can be compromised by a single entity which is the
owner of SNTPlaceHolder (current controller).
That’s because it can change the SNT’s controller to an arbitrary address, and the
controller canmint infinite/burn by any amount.
Usemost safeguards, or even configure it to be the DAO itself.
Consider issue Info-03, to remove unnecessary power from the Controller entity.
Status’s response: We are currently looking into reducing the power of controller
in Optimism token.

11

Formal Verification Process
The structure of properties:

1. <notation> <property description> (<property name in spec code>)
○ <property specific assumptions>

Function names (and signatures) shall be written in Source code Pro font size 11
with the grey highlight, e.g., foo(uint256)

Notations
✅Indicates the rule is formally verified.
❌Indicates the rule is violated.
⏳Indicates the rule is timing out.

MiniMe Token properties

Assumptions
- Loop unrolling: We assume any loop can have at most 1 iteration.
- The properties of the MiniMe Token are proven for token that was cloned

(with a parent token) and for tokens that are not (parent token’s address is
0x0).

- External calls to contracts that aren't implemented or part of the
repositories are summarized as non-deterministic yet valid. Such as call to
ApproveAndCallFallBack, TokenController and external ERC20

Properties
1. ✅ Each checkpoint.fromBlockmust be less than the current block number

- no checkpoints from the future. (checkPointBlockNumberValidity).

2. ✅ checkpoint.fromBlock is monotonically increasing for each user.

(blockNumberMonotonicInc)

3. ✅ All block numbers are greater or equal to the CreationBlock.

(allBlockNumbersAreGreaterOrEqualToCreationBlock).

4. ✅ All block numbers are greater or equal to the ParentSnapShotBlock.

(allFromBlockAreGreaterThanParentSnapShotBlock).

5. ✅ The balance of each user must be less or equal to the total supply

(balanceOfLessOrEqToTotalSpply).

6. ✅ Balance of address 0 is always 0 (ZeroAddressNoBalance).

7. ✅Cant change balances and totalSupply history (historyMutability).

12

8. ✅ Verify that there is no fee on transferFrom() (like potentially on USDT)

(noFeeOnTransferFrom).

9. ✅ Verify that there is no fee on transfer() (like potentially on USDT)

(noFeeOnTransfer).

10.✅ Token transfer() works correctly. Balances are updated if returns true.

Else, transfer amount was too high, or the recipient is 0.

(transferCorrect).

11. ✅ Token transferFrom() works correctly. Balances are updated if returns

true. Else, transfer amount was too high, or the recipient is 0.

(transferFromCorrect).

12.✅ transferFrom should revert if and only if the amount is too high or the

recipient is 0 or transfer is not enabled (if the was not made by the

controller) or if the blocknumber is not valid (transferFromReverts).

13.✅Contract calls don't change the token total supply. Except minting and

burning functions ().

14.✅ Test that generateTokens works correctly. Balances and totalSupply are

updated corrct according to the paramenters

(integrityOfGenerateTokens).

15.✅ Test that destroyTokens works correctly. Balances and totalSupply are

updated corrct according to the paramenters (integrityOfdestroyTokens).

16.✅ Transfer from a to b using transfer doesn't change the balance of other

addresses (TransferDoesntChangeOtherBalances).

17. ✅ Transfer from a to b using transferFrom doesn't change the balance of

other addresses (TransferFromDoesntChangeOtherBalances).

18.✅ Allowance changes correctly as a result of calls to approve,

approveAndCall, transferFrom and permit.

13

