Move to Vendor

This commit is contained in:
Nathan Button 2016-03-08 09:57:50 -07:00
parent 8165bed34b
commit 69b89b25d8
40 changed files with 534 additions and 2933 deletions

22
Godeps/Godeps.json generated
View File

@ -1,22 +0,0 @@
{
"ImportPath": "github.com/nbutton23/zxcvbn-go",
"GoVersion": "go1.5",
"Packages": [
"./..."
],
"Deps": [
{
"ImportPath": "github.com/davecgh/go-spew/spew",
"Rev": "5215b55f46b2b919f50a1df0eaa5886afe4e3b3d"
},
{
"ImportPath": "github.com/pmezard/go-difflib/difflib",
"Rev": "e8554b8641db39598be7f6342874b958f12ae1d4"
},
{
"ImportPath": "github.com/stretchr/testify/assert",
"Comment": "v1.1.1",
"Rev": "38b5d653e3cad9252e69070a3fe23377ab380557"
}
]
}

5
Godeps/Readme generated
View File

@ -1,5 +0,0 @@
This directory tree is generated automatically by godep.
Please do not edit.
See https://github.com/tools/godep for more information.

2
Godeps/_workspace/.gitignore generated vendored
View File

@ -1,2 +0,0 @@
/pkg
/bin

View File

@ -1,8 +0,0 @@
{
"ImportPath": "github.com/nbutton23/zxcvbn-go/Godeps/_workspace",
"GoVersion": "go1.5",
"Packages": [
"./..."
],
"Deps": []
}

5
Godeps/_workspace/Godeps/Readme generated vendored
View File

@ -1,5 +0,0 @@
This directory tree is generated automatically by godep.
Please do not edit.
See https://github.com/tools/godep for more information.

View File

@ -1,2 +0,0 @@
/pkg
/bin

View File

@ -1,13 +0,0 @@
Copyright (c) 2012-2013 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View File

@ -1,27 +0,0 @@
Copyright (c) 2013, Patrick Mezard
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,768 +0,0 @@
// Package difflib is a partial port of Python difflib module.
//
// It provides tools to compare sequences of strings and generate textual diffs.
//
// The following class and functions have been ported:
//
// - SequenceMatcher
//
// - unified_diff
//
// - context_diff
//
// Getting unified diffs was the main goal of the port. Keep in mind this code
// is mostly suitable to output text differences in a human friendly way, there
// are no guarantees generated diffs are consumable by patch(1).
package difflib
import (
"bufio"
"bytes"
"fmt"
"io"
"strings"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func calculateRatio(matches, length int) float64 {
if length > 0 {
return 2.0 * float64(matches) / float64(length)
}
return 1.0
}
type Match struct {
A int
B int
Size int
}
type OpCode struct {
Tag byte
I1 int
I2 int
J1 int
J2 int
}
// SequenceMatcher compares sequence of strings. The basic
// algorithm predates, and is a little fancier than, an algorithm
// published in the late 1980's by Ratcliff and Obershelp under the
// hyperbolic name "gestalt pattern matching". The basic idea is to find
// the longest contiguous matching subsequence that contains no "junk"
// elements (R-O doesn't address junk). The same idea is then applied
// recursively to the pieces of the sequences to the left and to the right
// of the matching subsequence. This does not yield minimal edit
// sequences, but does tend to yield matches that "look right" to people.
//
// SequenceMatcher tries to compute a "human-friendly diff" between two
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
// longest *contiguous* & junk-free matching subsequence. That's what
// catches peoples' eyes. The Windows(tm) windiff has another interesting
// notion, pairing up elements that appear uniquely in each sequence.
// That, and the method here, appear to yield more intuitive difference
// reports than does diff. This method appears to be the least vulnerable
// to synching up on blocks of "junk lines", though (like blank lines in
// ordinary text files, or maybe "<P>" lines in HTML files). That may be
// because this is the only method of the 3 that has a *concept* of
// "junk" <wink>.
//
// Timing: Basic R-O is cubic time worst case and quadratic time expected
// case. SequenceMatcher is quadratic time for the worst case and has
// expected-case behavior dependent in a complicated way on how many
// elements the sequences have in common; best case time is linear.
type SequenceMatcher struct {
a []string
b []string
b2j map[string][]int
IsJunk func(string) bool
autoJunk bool
bJunk map[string]struct{}
matchingBlocks []Match
fullBCount map[string]int
bPopular map[string]struct{}
opCodes []OpCode
}
func NewMatcher(a, b []string) *SequenceMatcher {
m := SequenceMatcher{autoJunk: true}
m.SetSeqs(a, b)
return &m
}
func NewMatcherWithJunk(a, b []string, autoJunk bool,
isJunk func(string) bool) *SequenceMatcher {
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
m.SetSeqs(a, b)
return &m
}
// Set two sequences to be compared.
func (m *SequenceMatcher) SetSeqs(a, b []string) {
m.SetSeq1(a)
m.SetSeq2(b)
}
// Set the first sequence to be compared. The second sequence to be compared is
// not changed.
//
// SequenceMatcher computes and caches detailed information about the second
// sequence, so if you want to compare one sequence S against many sequences,
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
// sequences.
//
// See also SetSeqs() and SetSeq2().
func (m *SequenceMatcher) SetSeq1(a []string) {
if &a == &m.a {
return
}
m.a = a
m.matchingBlocks = nil
m.opCodes = nil
}
// Set the second sequence to be compared. The first sequence to be compared is
// not changed.
func (m *SequenceMatcher) SetSeq2(b []string) {
if &b == &m.b {
return
}
m.b = b
m.matchingBlocks = nil
m.opCodes = nil
m.fullBCount = nil
m.chainB()
}
func (m *SequenceMatcher) chainB() {
// Populate line -> index mapping
b2j := map[string][]int{}
for i, s := range m.b {
indices := b2j[s]
indices = append(indices, i)
b2j[s] = indices
}
// Purge junk elements
m.bJunk = map[string]struct{}{}
if m.IsJunk != nil {
junk := m.bJunk
for s, _ := range b2j {
if m.IsJunk(s) {
junk[s] = struct{}{}
}
}
for s, _ := range junk {
delete(b2j, s)
}
}
// Purge remaining popular elements
popular := map[string]struct{}{}
n := len(m.b)
if m.autoJunk && n >= 200 {
ntest := n/100 + 1
for s, indices := range b2j {
if len(indices) > ntest {
popular[s] = struct{}{}
}
}
for s, _ := range popular {
delete(b2j, s)
}
}
m.bPopular = popular
m.b2j = b2j
}
func (m *SequenceMatcher) isBJunk(s string) bool {
_, ok := m.bJunk[s]
return ok
}
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
//
// If IsJunk is not defined:
//
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
// alo <= i <= i+k <= ahi
// blo <= j <= j+k <= bhi
// and for all (i',j',k') meeting those conditions,
// k >= k'
// i <= i'
// and if i == i', j <= j'
//
// In other words, of all maximal matching blocks, return one that
// starts earliest in a, and of all those maximal matching blocks that
// start earliest in a, return the one that starts earliest in b.
//
// If IsJunk is defined, first the longest matching block is
// determined as above, but with the additional restriction that no
// junk element appears in the block. Then that block is extended as
// far as possible by matching (only) junk elements on both sides. So
// the resulting block never matches on junk except as identical junk
// happens to be adjacent to an "interesting" match.
//
// If no blocks match, return (alo, blo, 0).
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
// CAUTION: stripping common prefix or suffix would be incorrect.
// E.g.,
// ab
// acab
// Longest matching block is "ab", but if common prefix is
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
// strip, so ends up claiming that ab is changed to acab by
// inserting "ca" in the middle. That's minimal but unintuitive:
// "it's obvious" that someone inserted "ac" at the front.
// Windiff ends up at the same place as diff, but by pairing up
// the unique 'b's and then matching the first two 'a's.
besti, bestj, bestsize := alo, blo, 0
// find longest junk-free match
// during an iteration of the loop, j2len[j] = length of longest
// junk-free match ending with a[i-1] and b[j]
j2len := map[int]int{}
for i := alo; i != ahi; i++ {
// look at all instances of a[i] in b; note that because
// b2j has no junk keys, the loop is skipped if a[i] is junk
newj2len := map[int]int{}
for _, j := range m.b2j[m.a[i]] {
// a[i] matches b[j]
if j < blo {
continue
}
if j >= bhi {
break
}
k := j2len[j-1] + 1
newj2len[j] = k
if k > bestsize {
besti, bestj, bestsize = i-k+1, j-k+1, k
}
}
j2len = newj2len
}
// Extend the best by non-junk elements on each end. In particular,
// "popular" non-junk elements aren't in b2j, which greatly speeds
// the inner loop above, but also means "the best" match so far
// doesn't contain any junk *or* popular non-junk elements.
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
!m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
// Now that we have a wholly interesting match (albeit possibly
// empty!), we may as well suck up the matching junk on each
// side of it too. Can't think of a good reason not to, and it
// saves post-processing the (possibly considerable) expense of
// figuring out what to do with it. In the case of an empty
// interesting match, this is clearly the right thing to do,
// because no other kind of match is possible in the regions.
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
return Match{A: besti, B: bestj, Size: bestsize}
}
// Return list of triples describing matching subsequences.
//
// Each triple is of the form (i, j, n), and means that
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
// adjacent triples in the list, and the second is not the last triple in the
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
// adjacent equal blocks.
//
// The last triple is a dummy, (len(a), len(b), 0), and is the only
// triple with n==0.
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
if m.matchingBlocks != nil {
return m.matchingBlocks
}
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
match := m.findLongestMatch(alo, ahi, blo, bhi)
i, j, k := match.A, match.B, match.Size
if match.Size > 0 {
if alo < i && blo < j {
matched = matchBlocks(alo, i, blo, j, matched)
}
matched = append(matched, match)
if i+k < ahi && j+k < bhi {
matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
}
}
return matched
}
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
// It's possible that we have adjacent equal blocks in the
// matching_blocks list now.
nonAdjacent := []Match{}
i1, j1, k1 := 0, 0, 0
for _, b := range matched {
// Is this block adjacent to i1, j1, k1?
i2, j2, k2 := b.A, b.B, b.Size
if i1+k1 == i2 && j1+k1 == j2 {
// Yes, so collapse them -- this just increases the length of
// the first block by the length of the second, and the first
// block so lengthened remains the block to compare against.
k1 += k2
} else {
// Not adjacent. Remember the first block (k1==0 means it's
// the dummy we started with), and make the second block the
// new block to compare against.
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
i1, j1, k1 = i2, j2, k2
}
}
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
m.matchingBlocks = nonAdjacent
return m.matchingBlocks
}
// Return list of 5-tuples describing how to turn a into b.
//
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
// tuple preceding it, and likewise for j1 == the previous j2.
//
// The tags are characters, with these meanings:
//
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
//
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
//
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
//
// 'e' (equal): a[i1:i2] == b[j1:j2]
func (m *SequenceMatcher) GetOpCodes() []OpCode {
if m.opCodes != nil {
return m.opCodes
}
i, j := 0, 0
matching := m.GetMatchingBlocks()
opCodes := make([]OpCode, 0, len(matching))
for _, m := range matching {
// invariant: we've pumped out correct diffs to change
// a[:i] into b[:j], and the next matching block is
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump
// out a diff to change a[i:ai] into b[j:bj], pump out
// the matching block, and move (i,j) beyond the match
ai, bj, size := m.A, m.B, m.Size
tag := byte(0)
if i < ai && j < bj {
tag = 'r'
} else if i < ai {
tag = 'd'
} else if j < bj {
tag = 'i'
}
if tag > 0 {
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
}
i, j = ai+size, bj+size
// the list of matching blocks is terminated by a
// sentinel with size 0
if size > 0 {
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
}
}
m.opCodes = opCodes
return m.opCodes
}
// Isolate change clusters by eliminating ranges with no changes.
//
// Return a generator of groups with up to n lines of context.
// Each group is in the same format as returned by GetOpCodes().
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
if n < 0 {
n = 3
}
codes := m.GetOpCodes()
if len(codes) == 0 {
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
}
// Fixup leading and trailing groups if they show no changes.
if codes[0].Tag == 'e' {
c := codes[0]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
}
if codes[len(codes)-1].Tag == 'e' {
c := codes[len(codes)-1]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
}
nn := n + n
groups := [][]OpCode{}
group := []OpCode{}
for _, c := range codes {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
// End the current group and start a new one whenever
// there is a large range with no changes.
if c.Tag == 'e' && i2-i1 > nn {
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
j1, min(j2, j1+n)})
groups = append(groups, group)
group = []OpCode{}
i1, j1 = max(i1, i2-n), max(j1, j2-n)
}
group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
}
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
groups = append(groups, group)
}
return groups
}
// Return a measure of the sequences' similarity (float in [0,1]).
//
// Where T is the total number of elements in both sequences, and
// M is the number of matches, this is 2.0*M / T.
// Note that this is 1 if the sequences are identical, and 0 if
// they have nothing in common.
//
// .Ratio() is expensive to compute if you haven't already computed
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
// want to try .QuickRatio() or .RealQuickRation() first to get an
// upper bound.
func (m *SequenceMatcher) Ratio() float64 {
matches := 0
for _, m := range m.GetMatchingBlocks() {
matches += m.Size
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() relatively quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute.
func (m *SequenceMatcher) QuickRatio() float64 {
// viewing a and b as multisets, set matches to the cardinality
// of their intersection; this counts the number of matches
// without regard to order, so is clearly an upper bound
if m.fullBCount == nil {
m.fullBCount = map[string]int{}
for _, s := range m.b {
m.fullBCount[s] = m.fullBCount[s] + 1
}
}
// avail[x] is the number of times x appears in 'b' less the
// number of times we've seen it in 'a' so far ... kinda
avail := map[string]int{}
matches := 0
for _, s := range m.a {
n, ok := avail[s]
if !ok {
n = m.fullBCount[s]
}
avail[s] = n - 1
if n > 0 {
matches += 1
}
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() very quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) RealQuickRatio() float64 {
la, lb := len(m.a), len(m.b)
return calculateRatio(min(la, lb), la+lb)
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return fmt.Sprintf("%d", beginning)
}
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
return fmt.Sprintf("%d,%d", beginning, length)
}
// Unified diff parameters
type UnifiedDiff struct {
A []string // First sequence lines
FromFile string // First file name
FromDate string // First file time
B []string // Second sequence lines
ToFile string // Second file name
ToDate string // Second file time
Eol string // Headers end of line, defaults to LF
Context int // Number of context lines
}
// Compare two sequences of lines; generate the delta as a unified diff.
//
// Unified diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by 'n' which
// defaults to three.
//
// By default, the diff control lines (those with ---, +++, or @@) are
// created with a trailing newline. This is helpful so that inputs
// created from file.readlines() result in diffs that are suitable for
// file.writelines() since both the inputs and outputs have trailing
// newlines.
//
// For inputs that do not have trailing newlines, set the lineterm
// argument to "" so that the output will be uniformly newline free.
//
// The unidiff format normally has a header for filenames and modification
// times. Any or all of these may be specified using strings for
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
// The modification times are normally expressed in the ISO 8601 format.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
wf := func(format string, args ...interface{}) error {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
return err
}
ws := func(s string) error {
_, err := buf.WriteString(s)
return err
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
if err != nil {
return err
}
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
if err != nil {
return err
}
}
first, last := g[0], g[len(g)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
return err
}
for _, c := range g {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
if c.Tag == 'e' {
for _, line := range diff.A[i1:i2] {
if err := ws(" " + line); err != nil {
return err
}
}
continue
}
if c.Tag == 'r' || c.Tag == 'd' {
for _, line := range diff.A[i1:i2] {
if err := ws("-" + line); err != nil {
return err
}
}
}
if c.Tag == 'r' || c.Tag == 'i' {
for _, line := range diff.B[j1:j2] {
if err := ws("+" + line); err != nil {
return err
}
}
}
}
}
return nil
}
// Like WriteUnifiedDiff but returns the diff a string.
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteUnifiedDiff(w, diff)
return string(w.Bytes()), err
}
// Convert range to the "ed" format.
func formatRangeContext(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
if length <= 1 {
return fmt.Sprintf("%d", beginning)
}
return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
}
type ContextDiff UnifiedDiff
// Compare two sequences of lines; generate the delta as a context diff.
//
// Context diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by diff.Context
// which defaults to three.
//
// By default, the diff control lines (those with *** or ---) are
// created with a trailing newline.
//
// For inputs that do not have trailing newlines, set the diff.Eol
// argument to "" so that the output will be uniformly newline free.
//
// The context diff format normally has a header for filenames and
// modification times. Any or all of these may be specified using
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
// The modification times are normally expressed in the ISO 8601 format.
// If not specified, the strings default to blanks.
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
var diffErr error
wf := func(format string, args ...interface{}) {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
if diffErr == nil && err != nil {
diffErr = err
}
}
ws := func(s string) {
_, err := buf.WriteString(s)
if diffErr == nil && err != nil {
diffErr = err
}
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
prefix := map[byte]string{
'i': "+ ",
'd': "- ",
'r': "! ",
'e': " ",
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
}
first, last := g[0], g[len(g)-1]
ws("***************" + diff.Eol)
range1 := formatRangeContext(first.I1, last.I2)
wf("*** %s ****%s", range1, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'd' {
for _, cc := range g {
if cc.Tag == 'i' {
continue
}
for _, line := range diff.A[cc.I1:cc.I2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
range2 := formatRangeContext(first.J1, last.J2)
wf("--- %s ----%s", range2, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'i' {
for _, cc := range g {
if cc.Tag == 'd' {
continue
}
for _, line := range diff.B[cc.J1:cc.J2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
}
return diffErr
}
// Like WriteContextDiff but returns the diff a string.
func GetContextDiffString(diff ContextDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteContextDiff(w, diff)
return string(w.Bytes()), err
}
// Split a string on "\n" while preserving them. The output can be used
// as input for UnifiedDiff and ContextDiff structures.
func SplitLines(s string) []string {
lines := strings.SplitAfter(s, "\n")
lines[len(lines)-1] += "\n"
return lines
}

View File

@ -1,22 +0,0 @@
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell
Please consider promoting this project if you find it useful.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,387 +0,0 @@
/*
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
* THIS FILE MUST NOT BE EDITED BY HAND
*/
package assert
import (
http "net/http"
url "net/url"
time "time"
)
// Condition uses a Comparison to assert a complex condition.
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool {
return Condition(a.t, comp, msgAndArgs...)
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// a.Contains("Hello World", "World", "But 'Hello World' does contain 'World'")
// a.Contains(["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'")
// a.Contains({"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
return Contains(a.t, s, contains, msgAndArgs...)
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// a.Empty(obj)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool {
return Empty(a.t, object, msgAndArgs...)
}
// Equal asserts that two objects are equal.
//
// a.Equal(123, 123, "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return Equal(a.t, expected, actual, msgAndArgs...)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool {
return EqualError(a.t, theError, errString, msgAndArgs...)
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// a.EqualValues(uint32(123), int32(123), "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return EqualValues(a.t, expected, actual, msgAndArgs...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if a.Error(err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) bool {
return Error(a.t, err, msgAndArgs...)
}
// Exactly asserts that two objects are equal is value and type.
//
// a.Exactly(int32(123), int64(123), "123 and 123 should NOT be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return Exactly(a.t, expected, actual, msgAndArgs...)
}
// Fail reports a failure through
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool {
return Fail(a.t, failureMessage, msgAndArgs...)
}
// FailNow fails test
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) bool {
return FailNow(a.t, failureMessage, msgAndArgs...)
}
// False asserts that the specified value is false.
//
// a.False(myBool, "myBool should be false")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool {
return False(a.t, value, msgAndArgs...)
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// a.HTTPBodyContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
return HTTPBodyContains(a.t, handler, method, url, values, str)
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// a.HTTPBodyNotContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
return HTTPBodyNotContains(a.t, handler, method, url, values, str)
}
// HTTPError asserts that a specified handler returns an error status code.
//
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPError(a.t, handler, method, url, values)
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPRedirect(a.t, handler, method, url, values)
}
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPSuccess(a.t, handler, method, url, values)
}
// Implements asserts that an object is implemented by the specified interface.
//
// a.Implements((*MyInterface)(nil), new(MyObject), "MyObject")
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
return Implements(a.t, interfaceObject, object, msgAndArgs...)
}
// InDelta asserts that the two numerals are within delta of each other.
//
// a.InDelta(math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InDelta(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...)
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...)
}
// InEpsilonSlice is the same as InEpsilon, except it compares two slices.
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InEpsilonSlice(a.t, expected, actual, delta, msgAndArgs...)
}
// IsType asserts that the specified objects are of the same type.
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
return IsType(a.t, expectedType, object, msgAndArgs...)
}
// JSONEq asserts that two JSON strings are equivalent.
//
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) bool {
return JSONEq(a.t, expected, actual, msgAndArgs...)
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// a.Len(mySlice, 3, "The size of slice is not 3")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool {
return Len(a.t, object, length, msgAndArgs...)
}
// Nil asserts that the specified object is nil.
//
// a.Nil(err, "err should be nothing")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool {
return Nil(a.t, object, msgAndArgs...)
}
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if a.NoError(err) {
// assert.Equal(t, actualObj, expectedObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) bool {
return NoError(a.t, err, msgAndArgs...)
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// a.NotContains("Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
// a.NotContains(["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'")
// a.NotContains({"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
return NotContains(a.t, s, contains, msgAndArgs...)
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if a.NotEmpty(obj) {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool {
return NotEmpty(a.t, object, msgAndArgs...)
}
// NotEqual asserts that the specified values are NOT equal.
//
// a.NotEqual(obj1, obj2, "two objects shouldn't be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return NotEqual(a.t, expected, actual, msgAndArgs...)
}
// NotNil asserts that the specified object is not nil.
//
// a.NotNil(err, "err should be something")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool {
return NotNil(a.t, object, msgAndArgs...)
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// a.NotPanics(func(){
// RemainCalm()
// }, "Calling RemainCalm() should NOT panic")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
return NotPanics(a.t, f, msgAndArgs...)
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting")
// a.NotRegexp("^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
return NotRegexp(a.t, rx, str, msgAndArgs...)
}
// NotZero asserts that i is not the zero value for its type and returns the truth.
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) bool {
return NotZero(a.t, i, msgAndArgs...)
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// a.Panics(func(){
// GoCrazy()
// }, "Calling GoCrazy() should panic")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
return Panics(a.t, f, msgAndArgs...)
}
// Regexp asserts that a specified regexp matches a string.
//
// a.Regexp(regexp.MustCompile("start"), "it's starting")
// a.Regexp("start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
return Regexp(a.t, rx, str, msgAndArgs...)
}
// True asserts that the specified value is true.
//
// a.True(myBool, "myBool should be true")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool {
return True(a.t, value, msgAndArgs...)
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...)
}
// Zero asserts that i is the zero value for its type and returns the truth.
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) bool {
return Zero(a.t, i, msgAndArgs...)
}

View File

@ -1,4 +0,0 @@
{{.CommentWithoutT "a"}}
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) bool {
return {{.DocInfo.Name}}(a.t, {{.ForwardedParams}})
}

View File

@ -1,992 +0,0 @@
package assert
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"math"
"reflect"
"regexp"
"runtime"
"strings"
"time"
"unicode"
"unicode/utf8"
"github.com/nbutton23/zxcvbn-go/Godeps/_workspace/src/github.com/davecgh/go-spew/spew"
"github.com/nbutton23/zxcvbn-go/Godeps/_workspace/src/github.com/pmezard/go-difflib/difflib"
)
// TestingT is an interface wrapper around *testing.T
type TestingT interface {
Errorf(format string, args ...interface{})
FailNow()
}
// Comparison a custom function that returns true on success and false on failure
type Comparison func() (success bool)
/*
Helper functions
*/
// ObjectsAreEqual determines if two objects are considered equal.
//
// This function does no assertion of any kind.
func ObjectsAreEqual(expected, actual interface{}) bool {
if expected == nil || actual == nil {
return expected == actual
}
return reflect.DeepEqual(expected, actual)
}
// ObjectsAreEqualValues gets whether two objects are equal, or if their
// values are equal.
func ObjectsAreEqualValues(expected, actual interface{}) bool {
if ObjectsAreEqual(expected, actual) {
return true
}
actualType := reflect.TypeOf(actual)
if actualType == nil {
return false
}
expectedValue := reflect.ValueOf(expected)
if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
// Attempt comparison after type conversion
return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
}
return false
}
/* CallerInfo is necessary because the assert functions use the testing object
internally, causing it to print the file:line of the assert method, rather than where
the problem actually occured in calling code.*/
// CallerInfo returns an array of strings containing the file and line number
// of each stack frame leading from the current test to the assert call that
// failed.
func CallerInfo() []string {
pc := uintptr(0)
file := ""
line := 0
ok := false
name := ""
callers := []string{}
for i := 0; ; i++ {
pc, file, line, ok = runtime.Caller(i)
if !ok {
return nil
}
// This is a huge edge case, but it will panic if this is the case, see #180
if file == "<autogenerated>" {
break
}
parts := strings.Split(file, "/")
dir := parts[len(parts)-2]
file = parts[len(parts)-1]
if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
callers = append(callers, fmt.Sprintf("%s:%d", file, line))
}
f := runtime.FuncForPC(pc)
if f == nil {
break
}
name = f.Name()
// Drop the package
segments := strings.Split(name, ".")
name = segments[len(segments)-1]
if isTest(name, "Test") ||
isTest(name, "Benchmark") ||
isTest(name, "Example") {
break
}
}
return callers
}
// Stolen from the `go test` tool.
// isTest tells whether name looks like a test (or benchmark, according to prefix).
// It is a Test (say) if there is a character after Test that is not a lower-case letter.
// We don't want TesticularCancer.
func isTest(name, prefix string) bool {
if !strings.HasPrefix(name, prefix) {
return false
}
if len(name) == len(prefix) { // "Test" is ok
return true
}
rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
return !unicode.IsLower(rune)
}
// getWhitespaceString returns a string that is long enough to overwrite the default
// output from the go testing framework.
func getWhitespaceString() string {
_, file, line, ok := runtime.Caller(1)
if !ok {
return ""
}
parts := strings.Split(file, "/")
file = parts[len(parts)-1]
return strings.Repeat(" ", len(fmt.Sprintf("%s:%d: ", file, line)))
}
func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
if len(msgAndArgs) == 0 || msgAndArgs == nil {
return ""
}
if len(msgAndArgs) == 1 {
return msgAndArgs[0].(string)
}
if len(msgAndArgs) > 1 {
return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
}
return ""
}
// Indents all lines of the message by appending a number of tabs to each line, in an output format compatible with Go's
// test printing (see inner comment for specifics)
func indentMessageLines(message string, tabs int) string {
outBuf := new(bytes.Buffer)
for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
if i != 0 {
outBuf.WriteRune('\n')
}
for ii := 0; ii < tabs; ii++ {
outBuf.WriteRune('\t')
// Bizarrely, all lines except the first need one fewer tabs prepended, so deliberately advance the counter
// by 1 prematurely.
if ii == 0 && i > 0 {
ii++
}
}
outBuf.WriteString(scanner.Text())
}
return outBuf.String()
}
// FailNow fails test
func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
Fail(t, failureMessage, msgAndArgs...)
t.FailNow()
return false
}
// Fail reports a failure through
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
message := messageFromMsgAndArgs(msgAndArgs...)
errorTrace := strings.Join(CallerInfo(), "\n\r\t\t\t")
if len(message) > 0 {
t.Errorf("\r%s\r\tError Trace:\t%s\n"+
"\r\tError:%s\n"+
"\r\tMessages:\t%s\n\r",
getWhitespaceString(),
errorTrace,
indentMessageLines(failureMessage, 2),
message)
} else {
t.Errorf("\r%s\r\tError Trace:\t%s\n"+
"\r\tError:%s\n\r",
getWhitespaceString(),
errorTrace,
indentMessageLines(failureMessage, 2))
}
return false
}
// Implements asserts that an object is implemented by the specified interface.
//
// assert.Implements(t, (*MyInterface)(nil), new(MyObject), "MyObject")
func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
interfaceType := reflect.TypeOf(interfaceObject).Elem()
if !reflect.TypeOf(object).Implements(interfaceType) {
return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
}
return true
}
// IsType asserts that the specified objects are of the same type.
func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
}
return true
}
// Equal asserts that two objects are equal.
//
// assert.Equal(t, 123, 123, "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqual(expected, actual) {
diff := diff(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
" != %#v (actual)%s", expected, actual, diff), msgAndArgs...)
}
return true
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// assert.EqualValues(t, uint32(123), int32(123), "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqualValues(expected, actual) {
return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
" != %#v (actual)", expected, actual), msgAndArgs...)
}
return true
}
// Exactly asserts that two objects are equal is value and type.
//
// assert.Exactly(t, int32(123), int64(123), "123 and 123 should NOT be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
aType := reflect.TypeOf(expected)
bType := reflect.TypeOf(actual)
if aType != bType {
return Fail(t, fmt.Sprintf("Types expected to match exactly\n\r\t%v != %v", aType, bType), msgAndArgs...)
}
return Equal(t, expected, actual, msgAndArgs...)
}
// NotNil asserts that the specified object is not nil.
//
// assert.NotNil(t, err, "err should be something")
//
// Returns whether the assertion was successful (true) or not (false).
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if !isNil(object) {
return true
}
return Fail(t, "Expected value not to be nil.", msgAndArgs...)
}
// isNil checks if a specified object is nil or not, without Failing.
func isNil(object interface{}) bool {
if object == nil {
return true
}
value := reflect.ValueOf(object)
kind := value.Kind()
if kind >= reflect.Chan && kind <= reflect.Slice && value.IsNil() {
return true
}
return false
}
// Nil asserts that the specified object is nil.
//
// assert.Nil(t, err, "err should be nothing")
//
// Returns whether the assertion was successful (true) or not (false).
func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if isNil(object) {
return true
}
return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
}
var numericZeros = []interface{}{
int(0),
int8(0),
int16(0),
int32(0),
int64(0),
uint(0),
uint8(0),
uint16(0),
uint32(0),
uint64(0),
float32(0),
float64(0),
}
// isEmpty gets whether the specified object is considered empty or not.
func isEmpty(object interface{}) bool {
if object == nil {
return true
} else if object == "" {
return true
} else if object == false {
return true
}
for _, v := range numericZeros {
if object == v {
return true
}
}
objValue := reflect.ValueOf(object)
switch objValue.Kind() {
case reflect.Map:
fallthrough
case reflect.Slice, reflect.Chan:
{
return (objValue.Len() == 0)
}
case reflect.Struct:
switch object.(type) {
case time.Time:
return object.(time.Time).IsZero()
}
case reflect.Ptr:
{
if objValue.IsNil() {
return true
}
switch object.(type) {
case *time.Time:
return object.(*time.Time).IsZero()
default:
return false
}
}
}
return false
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Empty(t, obj)
//
// Returns whether the assertion was successful (true) or not (false).
func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
pass := isEmpty(object)
if !pass {
Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
}
return pass
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if assert.NotEmpty(t, obj) {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
pass := !isEmpty(object)
if !pass {
Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
}
return pass
}
// getLen try to get length of object.
// return (false, 0) if impossible.
func getLen(x interface{}) (ok bool, length int) {
v := reflect.ValueOf(x)
defer func() {
if e := recover(); e != nil {
ok = false
}
}()
return true, v.Len()
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// assert.Len(t, mySlice, 3, "The size of slice is not 3")
//
// Returns whether the assertion was successful (true) or not (false).
func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
ok, l := getLen(object)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
}
if l != length {
return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
}
return true
}
// True asserts that the specified value is true.
//
// assert.True(t, myBool, "myBool should be true")
//
// Returns whether the assertion was successful (true) or not (false).
func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if value != true {
return Fail(t, "Should be true", msgAndArgs...)
}
return true
}
// False asserts that the specified value is false.
//
// assert.False(t, myBool, "myBool should be false")
//
// Returns whether the assertion was successful (true) or not (false).
func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if value != false {
return Fail(t, "Should be false", msgAndArgs...)
}
return true
}
// NotEqual asserts that the specified values are NOT equal.
//
// assert.NotEqual(t, obj1, obj2, "two objects shouldn't be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if ObjectsAreEqual(expected, actual) {
return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
}
return true
}
// containsElement try loop over the list check if the list includes the element.
// return (false, false) if impossible.
// return (true, false) if element was not found.
// return (true, true) if element was found.
func includeElement(list interface{}, element interface{}) (ok, found bool) {
listValue := reflect.ValueOf(list)
elementValue := reflect.ValueOf(element)
defer func() {
if e := recover(); e != nil {
ok = false
found = false
}
}()
if reflect.TypeOf(list).Kind() == reflect.String {
return true, strings.Contains(listValue.String(), elementValue.String())
}
if reflect.TypeOf(list).Kind() == reflect.Map {
mapKeys := listValue.MapKeys()
for i := 0; i < len(mapKeys); i++ {
if ObjectsAreEqual(mapKeys[i].Interface(), element) {
return true, true
}
}
return true, false
}
for i := 0; i < listValue.Len(); i++ {
if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
return true, true
}
}
return true, false
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// assert.Contains(t, "Hello World", "World", "But 'Hello World' does contain 'World'")
// assert.Contains(t, ["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'")
// assert.Contains(t, {"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'")
//
// Returns whether the assertion was successful (true) or not (false).
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
ok, found := includeElement(s, contains)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
}
if !found {
return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
}
return true
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// assert.NotContains(t, "Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
// assert.NotContains(t, ["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'")
// assert.NotContains(t, {"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
ok, found := includeElement(s, contains)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
}
if found {
return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
}
return true
}
// Condition uses a Comparison to assert a complex condition.
func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
result := comp()
if !result {
Fail(t, "Condition failed!", msgAndArgs...)
}
return result
}
// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
// methods, and represents a simple func that takes no arguments, and returns nothing.
type PanicTestFunc func()
// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
func didPanic(f PanicTestFunc) (bool, interface{}) {
didPanic := false
var message interface{}
func() {
defer func() {
if message = recover(); message != nil {
didPanic = true
}
}()
// call the target function
f()
}()
return didPanic, message
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panics(t, func(){
// GoCrazy()
// }, "Calling GoCrazy() should panic")
//
// Returns whether the assertion was successful (true) or not (false).
func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if funcDidPanic, panicValue := didPanic(f); !funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanics(t, func(){
// RemainCalm()
// }, "Calling RemainCalm() should NOT panic")
//
// Returns whether the assertion was successful (true) or not (false).
func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if funcDidPanic, panicValue := didPanic(f); funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should not panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s")
//
// Returns whether the assertion was successful (true) or not (false).
func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
dt := expected.Sub(actual)
if dt < -delta || dt > delta {
return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
}
return true
}
func toFloat(x interface{}) (float64, bool) {
var xf float64
xok := true
switch xn := x.(type) {
case uint8:
xf = float64(xn)
case uint16:
xf = float64(xn)
case uint32:
xf = float64(xn)
case uint64:
xf = float64(xn)
case int:
xf = float64(xn)
case int8:
xf = float64(xn)
case int16:
xf = float64(xn)
case int32:
xf = float64(xn)
case int64:
xf = float64(xn)
case float32:
xf = float64(xn)
case float64:
xf = float64(xn)
default:
xok = false
}
return xf, xok
}
// InDelta asserts that the two numerals are within delta of each other.
//
// assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
if !aok || !bok {
return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
}
if math.IsNaN(af) {
return Fail(t, fmt.Sprintf("Actual must not be NaN"), msgAndArgs...)
}
if math.IsNaN(bf) {
return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
}
dt := af - bf
if dt < -delta || dt > delta {
return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
}
return true
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
}
actualSlice := reflect.ValueOf(actual)
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
if !result {
return result
}
}
return true
}
// min(|expected|, |actual|) * epsilon
func calcEpsilonDelta(expected, actual interface{}, epsilon float64) float64 {
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
if !aok || !bok {
// invalid input
return 0
}
if af < 0 {
af = -af
}
if bf < 0 {
bf = -bf
}
var delta float64
if af < bf {
delta = af * epsilon
} else {
delta = bf * epsilon
}
return delta
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
delta := calcEpsilonDelta(expected, actual, epsilon)
return InDelta(t, expected, actual, delta, msgAndArgs...)
}
// InEpsilonSlice is the same as InEpsilon, except it compares two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
}
actualSlice := reflect.ValueOf(actual)
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
if !result {
return result
}
}
return true
}
/*
Errors
*/
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if assert.NoError(t, err) {
// assert.Equal(t, actualObj, expectedObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
if isNil(err) {
return true
}
return Fail(t, fmt.Sprintf("Received unexpected error %q", err), msgAndArgs...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
message := messageFromMsgAndArgs(msgAndArgs...)
return NotNil(t, err, "An error is expected but got nil. %s", message)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
message := messageFromMsgAndArgs(msgAndArgs...)
if !NotNil(t, theError, "An error is expected but got nil. %s", message) {
return false
}
s := "An error with value \"%s\" is expected but got \"%s\". %s"
return Equal(t, errString, theError.Error(),
s, errString, theError.Error(), message)
}
// matchRegexp return true if a specified regexp matches a string.
func matchRegexp(rx interface{}, str interface{}) bool {
var r *regexp.Regexp
if rr, ok := rx.(*regexp.Regexp); ok {
r = rr
} else {
r = regexp.MustCompile(fmt.Sprint(rx))
}
return (r.FindStringIndex(fmt.Sprint(str)) != nil)
}
// Regexp asserts that a specified regexp matches a string.
//
// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
// assert.Regexp(t, "start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
match := matchRegexp(rx, str)
if !match {
Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
}
return match
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
// assert.NotRegexp(t, "^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
match := matchRegexp(rx, str)
if match {
Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
}
return !match
}
// Zero asserts that i is the zero value for its type and returns the truth.
func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
}
return true
}
// NotZero asserts that i is not the zero value for its type and returns the truth.
func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
}
return true
}
// JSONEq asserts that two JSON strings are equivalent.
//
// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
//
// Returns whether the assertion was successful (true) or not (false).
func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
var expectedJSONAsInterface, actualJSONAsInterface interface{}
if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
}
if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
}
return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
}
func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
t := reflect.TypeOf(v)
k := t.Kind()
if k == reflect.Ptr {
t = t.Elem()
k = t.Kind()
}
return t, k
}
// diff returns a diff of both values as long as both are of the same type and
// are a struct, map, slice or array. Otherwise it returns an empty string.
func diff(expected interface{}, actual interface{}) string {
if expected == nil || actual == nil {
return ""
}
et, ek := typeAndKind(expected)
at, _ := typeAndKind(actual)
if et != at {
return ""
}
if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array {
return ""
}
spew.Config.SortKeys = true
e := spew.Sdump(expected)
a := spew.Sdump(actual)
diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
A: difflib.SplitLines(e),
B: difflib.SplitLines(a),
FromFile: "Expected",
FromDate: "",
ToFile: "Actual",
ToDate: "",
Context: 1,
})
return "\n\nDiff:\n" + diff
}

View File

@ -1,45 +0,0 @@
// Package assert provides a set of comprehensive testing tools for use with the normal Go testing system.
//
// Example Usage
//
// The following is a complete example using assert in a standard test function:
// import (
// "testing"
// "github.com/stretchr/testify/assert"
// )
//
// func TestSomething(t *testing.T) {
//
// var a string = "Hello"
// var b string = "Hello"
//
// assert.Equal(t, a, b, "The two words should be the same.")
//
// }
//
// if you assert many times, use the format below:
//
// import (
// "testing"
// "github.com/stretchr/testify/assert"
// )
//
// func TestSomething(t *testing.T) {
// assert := assert.New(t)
//
// var a string = "Hello"
// var b string = "Hello"
//
// assert.Equal(a, b, "The two words should be the same.")
// }
//
// Assertions
//
// Assertions allow you to easily write test code, and are global funcs in the `assert` package.
// All assertion functions take, as the first argument, the `*testing.T` object provided by the
// testing framework. This allows the assertion funcs to write the failings and other details to
// the correct place.
//
// Every assertion function also takes an optional string message as the final argument,
// allowing custom error messages to be appended to the message the assertion method outputs.
package assert

View File

@ -1,10 +0,0 @@
package assert
import (
"errors"
)
// AnError is an error instance useful for testing. If the code does not care
// about error specifics, and only needs to return the error for example, this
// error should be used to make the test code more readable.
var AnError = errors.New("assert.AnError general error for testing")

View File

@ -1,16 +0,0 @@
package assert
// Assertions provides assertion methods around the
// TestingT interface.
type Assertions struct {
t TestingT
}
// New makes a new Assertions object for the specified TestingT.
func New(t TestingT) *Assertions {
return &Assertions{
t: t,
}
}
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_forward.go.tmpl

View File

@ -1,106 +0,0 @@
package assert
import (
"fmt"
"net/http"
"net/http/httptest"
"net/url"
"strings"
)
// httpCode is a helper that returns HTTP code of the response. It returns -1
// if building a new request fails.
func httpCode(handler http.HandlerFunc, method, url string, values url.Values) int {
w := httptest.NewRecorder()
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
if err != nil {
return -1
}
handler(w, req)
return w.Code
}
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
code := httpCode(handler, method, url, values)
if code == -1 {
return false
}
return code >= http.StatusOK && code <= http.StatusPartialContent
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
code := httpCode(handler, method, url, values)
if code == -1 {
return false
}
return code >= http.StatusMultipleChoices && code <= http.StatusTemporaryRedirect
}
// HTTPError asserts that a specified handler returns an error status code.
//
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
code := httpCode(handler, method, url, values)
if code == -1 {
return false
}
return code >= http.StatusBadRequest
}
// HTTPBody is a helper that returns HTTP body of the response. It returns
// empty string if building a new request fails.
func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) string {
w := httptest.NewRecorder()
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
if err != nil {
return ""
}
handler(w, req)
return w.Body.String()
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
if !contains {
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body))
}
return contains
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
if contains {
Fail(t, "Expected response body for %s to NOT contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body)
}
return !contains
}

View File

@ -1,13 +0,0 @@
Copyright (c) 2012-2013 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View File

@ -1,27 +0,0 @@
Copyright (c) 2013, Patrick Mezard
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,23 +0,0 @@
objx - by Mat Ryer and Tyler Bunnell
The MIT License (MIT)
Copyright (c) 2014 Stretchr, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -13,6 +13,9 @@ const (
START_UPPER string = `^[A-Z][^A-Z]+$`
END_UPPER string = `^[^A-Z]+[A-Z]$'`
ALL_UPPER string = `^[A-Z]+$`
NUM_YEARS = float64(119) // years match against 1900 - 2019
NUM_MONTHS = float64(12)
NUM_DAYS = float64(31)
)
var (
@ -192,3 +195,21 @@ func ExtraLeetEntropy(match match.Match, password string) float64 {
}
return math.Log2(possibilities)
}
func YearEntropy(dateMatch match.DateMatch) float64 {
return math.Log2(NUM_YEARS)
}
func DateEntropy(dateMatch match.DateMatch) float64 {
var entropy float64
if dateMatch.Year < 100 {
entropy = math.Log2(NUM_DAYS * NUM_MONTHS * 100)
} else {
entropy = math.Log2(NUM_DAYS * NUM_MONTHS * NUM_YEARS)
}
if dateMatch.Separator != "" {
entropy += 2 //add two bits for separator selection [/,-,.,etc]
}
return entropy
}

142
matching/dateMatchers.go Normal file
View File

@ -0,0 +1,142 @@
package matching
import (
"github.com/nbutton23/zxcvbn-go/match"
"strings"
"regexp"
"strconv"
"github.com/nbutton23/zxcvbn-go/entropy"
)
func checkDate(day, month, year int64) (bool, int64, int64, int64) {
if (12 <= month && month <= 31) && day <= 12 {
day, month = month, day
}
if day > 31 || month > 12 {
return false, 0, 0, 0
}
if !(1900 <= year && year <= 2019) {
return false, 0, 0, 0
}
return true, day, month, year
}
func dateSepMatcher(password string) []match.Match {
dateMatches := dateSepMatchHelper(password)
var matches []match.Match
for _, dateMatch := range dateMatches {
match := match.Match{
I:dateMatch.I,
J:dateMatch.J,
Entropy:entropy.DateEntropy(dateMatch),
DictionaryName:"date_match",
Token:dateMatch.Token,
}
matches = append(matches, match)
}
return matches
}
func dateSepMatchHelper(password string) []match.DateMatch {
var matches []match.DateMatch
matcher := regexp.MustCompile(DATE_RX_YEAR_SUFFIX)
for _, v := range matcher.FindAllString(password, len(password)) {
splitV := matcher.FindAllStringSubmatch(v, len(v))
i := strings.Index(password, v)
j := i + len(v)
day, _ := strconv.ParseInt(splitV[0][4], 10, 16)
month, _ := strconv.ParseInt(splitV[0][2], 10, 16)
year, _ := strconv.ParseInt(splitV[0][6], 10, 16)
match := match.DateMatch{Day: day, Month: month, Year: year, Separator: splitV[0][5], I: i, J: j, Token:password[i:j]}
matches = append(matches, match)
}
matcher = regexp.MustCompile(DATE_RX_YEAR_PREFIX)
for _, v := range matcher.FindAllString(password, len(password)) {
splitV := matcher.FindAllStringSubmatch(v, len(v))
i := strings.Index(password, v)
j := i + len(v)
day, _ := strconv.ParseInt(splitV[0][4], 10, 16)
month, _ := strconv.ParseInt(splitV[0][6], 10, 16)
year, _ := strconv.ParseInt(splitV[0][2], 10, 16)
match := match.DateMatch{Day: day, Month: month, Year: year, Separator: splitV[0][5], I: i, J: j, Token:password[i:j]}
matches = append(matches, match)
}
var out []match.DateMatch
for _, match := range matches {
if valid, day, month, year := checkDate(match.Day, match.Month, match.Year); valid {
match.Pattern = "date"
match.Day = day
match.Month = month
match.Year = year
out = append(out, match)
}
}
return out
}
type DateMatchCandidate struct {
DayMonth string
Year string
I, J int
}
//TODO I think Im doing this wrong.
func dateWithoutSepMatch(password string) (matches []match.DateMatch) {
matcher := regexp.MustCompile(DATE_WITHOUT_SEP_MATCH)
for _, v := range matcher.FindAllString(password, len(password)) {
i := strings.Index(password, v)
j := i + len(v)
length := len(v)
lastIndex := length - 1
var candidatesRoundOne []DateMatchCandidate
if length <= 6 {
//2-digit year prefix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[2:], v[0:2], i, j))
//2-digityear suffix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[0:lastIndex-2], v[lastIndex-2:], i, j))
}
if length >= 6 {
//4-digit year prefix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[4:], v[0:4], i, j))
//4-digit year sufix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[0:lastIndex-4], v[lastIndex-4:], i, j))
}
var candidatesRoundTwo []match.DateMatch
for _, c := range candidatesRoundOne {
if len(c.DayMonth) == 2 {
candidatesRoundTwo = append(candidatesRoundTwo, buildDateMatchCandidateTwo(c.DayMonth[0], c.DayMonth[1], c.Year, c.I, c.J))
}
}
}
return matches
}
func buildDateMatchCandidate(dayMonth, year string, i, j int) DateMatchCandidate {
return DateMatchCandidate{DayMonth: dayMonth, Year: year, I: i, J: j}
}
func buildDateMatchCandidateTwo(day, month byte, year string, i, j int) match.DateMatch {
sDay := string(day)
sMonth := string(month)
intDay, _ := strconv.ParseInt(sDay, 10, 16)
intMonth, _ := strconv.ParseInt(sMonth, 10, 16)
intYear, _ := strconv.ParseInt(year, 10, 16)
return match.DateMatch{Day: intDay, Month: intMonth, Year: intYear, I: i, J: j}
}

View File

@ -0,0 +1,54 @@
package matching
import (
"github.com/nbutton23/zxcvbn-go/match"
"github.com/nbutton23/zxcvbn-go/entropy"
"strings"
)
func buildDictMatcher(dictName string, rankedDict map[string]int) func(password string) []match.Match {
return func(password string) []match.Match {
matches := dictionaryMatch(password, dictName, rankedDict)
for _, v := range matches {
v.DictionaryName = dictName
}
return matches
}
}
func dictionaryMatch(password string, dictionaryName string, rankedDict map[string]int) []match.Match {
length := len(password)
var results []match.Match
pwLower := strings.ToLower(password)
for i := 0; i < length; i++ {
for j := i; j < length; j++ {
word := pwLower[i : j+1]
if val, ok := rankedDict[word]; ok {
matchDic := match.Match{Pattern: "dictionary",
DictionaryName: dictionaryName,
I: i,
J: j,
Token: password[i : j+1],
}
matchDic.Entropy = entropy.DictionaryEntropy(matchDic, float64(val))
results = append(results, matchDic)
}
}
}
return results
}
func buildRankedDict(unrankedList []string) map[string]int {
result := make(map[string]int)
for i, v := range unrankedList {
result[strings.ToLower(v)] = i + 1
}
return result
}

68
matching/leet.go Normal file
View File

@ -0,0 +1,68 @@
package matching
import (
"github.com/nbutton23/zxcvbn-go/match"
"github.com/nbutton23/zxcvbn-go/entropy"
"strings"
)
func l33tMatch(password string) []match.Match {
substitutions := relevantL33tSubtable(password)
permutations := getAllPermutationsOfLeetSubstitutions(password, substitutions)
var matches []match.Match
for _, permutation := range permutations {
for _, mather := range DICTIONARY_MATCHERS {
matches = append(matches,mather(permutation)...)
}
}
for _, match := range matches {
match.Entropy += entropy.ExtraLeetEntropy(match, password)
match.DictionaryName = match.DictionaryName + "_3117"
}
return matches
}
func getAllPermutationsOfLeetSubstitutions(password string, substitutionsMap map[string][]string) []string {
var permutations []string
for index, char := range password {
for value, splice := range substitutionsMap {
for _, sub := range splice {
if string(char) == sub {
var permutation string
permutation = password[:index]+value+password[index+1:]
permutations = append(permutations, permutation)
if index < len(permutation) {
tempPermutations := getAllPermutationsOfLeetSubstitutions(permutation[index + 1:], substitutionsMap)
for _, temp := range tempPermutations {
permutations = append(permutations, permutation[:index + 1] + temp)
}
}
}
}
}
}
return permutations
}
func relevantL33tSubtable(password string) map[string][]string {
relevantSubs := make(map[string][]string)
for key, values := range L33T_TABLE.Graph {
for _, value := range values {
if strings.Contains(password, value) {
relevantSubs[key] = append(relevantSubs[key], value)
}
}
}
return relevantSubs
}

View File

@ -4,21 +4,13 @@ import (
"github.com/nbutton23/zxcvbn-go/adjacency"
"github.com/nbutton23/zxcvbn-go/frequency"
"github.com/nbutton23/zxcvbn-go/match"
"regexp"
"sort"
"strconv"
"strings"
"github.com/nbutton23/zxcvbn-go/entropy"
)
var (
DICTIONARY_MATCHERS []func(password string) []match.Match
MATCHERS []func(password string) []match.Match
ADJACENCY_GRAPHS []adjacency.AdjacencyGraph
KEYBOARD_STARTING_POSITIONS int
KEYBOARD_AVG_DEGREE float64
KEYPAD_STARTING_POSITIONS int
KEYPAD_AVG_DEGREE float64
L33T_TABLE adjacency.AdjacencyGraph
SEQUENCES map[string]string
@ -47,8 +39,7 @@ func Omnimatch(password string, userInputs []string) (matches []match.Match) {
}
for _, matcher := range MATCHERS {
mtemp := matcher(password)
matches = append(matches, mtemp...)
matches = append(matches, matcher(password)...)
}
sort.Sort(match.Matches(matches))
return matches
@ -60,10 +51,6 @@ func loadFrequencyList() {
DICTIONARY_MATCHERS = append(DICTIONARY_MATCHERS, buildDictMatcher(n, buildRankedDict(list.List)))
}
KEYBOARD_AVG_DEGREE = adjacency.AdjacencyGph["querty"].CalculateAvgDegree()
KEYBOARD_STARTING_POSITIONS = len(adjacency.AdjacencyGph["querty"].Graph)
KEYPAD_AVG_DEGREE = adjacency.AdjacencyGph["keypad"].CalculateAvgDegree()
KEYPAD_STARTING_POSITIONS = len(adjacency.AdjacencyGph["keypad"].Graph)
L33T_TABLE = adjacency.AdjacencyGph["l33t"]
ADJACENCY_GRAPHS = append(ADJACENCY_GRAPHS, adjacency.AdjacencyGph["qwerty"])
@ -80,417 +67,11 @@ func loadFrequencyList() {
SEQUENCES["digits"] = "0123456789"
MATCHERS = append(MATCHERS, DICTIONARY_MATCHERS...)
MATCHERS = append(MATCHERS, SpatialMatch)
MATCHERS = append(MATCHERS, RepeatMatch)
MATCHERS = append(MATCHERS, SequenceMatch)
MATCHERS = append(MATCHERS, spatialMatch)
MATCHERS = append(MATCHERS, repeatMatch)
MATCHERS = append(MATCHERS, sequenceMatch)
MATCHERS = append(MATCHERS, l33tMatch)
MATCHERS = append(MATCHERS, dateSepMatcher)
}
func buildDictMatcher(dictName string, rankedDict map[string]int) func(password string) []match.Match {
return func(password string) []match.Match {
matches := dictionaryMatch(password, dictName, rankedDict)
for _, v := range matches {
v.DictionaryName = dictName
}
return matches
}
}
func dictionaryMatch(password string, dictionaryName string, rankedDict map[string]int) []match.Match {
length := len(password)
var results []match.Match
pwLower := strings.ToLower(password)
for i := 0; i < length; i++ {
for j := i; j < length; j++ {
word := pwLower[i : j+1]
if val, ok := rankedDict[word]; ok {
matchDic := match.Match{Pattern: "dictionary",
DictionaryName: dictionaryName,
I: i,
J: j,
Token: password[i : j+1],
}
matchDic.Entropy = entropy.DictionaryEntropy(matchDic, float64(val))
results = append(results, matchDic)
}
}
}
return results
}
func buildRankedDict(unrankedList []string) map[string]int {
result := make(map[string]int)
for i, v := range unrankedList {
result[strings.ToLower(v)] = i + 1
}
return result
}
func checkDate(day, month, year int64) (bool, int64, int64, int64) {
if (12 <= month && month <= 31) && day <= 12 {
day, month = month, day
}
if day > 31 || month > 12 {
return false, 0, 0, 0
}
if !(1900 <= year && year <= 2019) {
return false, 0, 0, 0
}
return true, day, month, year
}
func DateSepMatch(password string) []match.DateMatch {
var matches []match.DateMatch
matcher := regexp.MustCompile(DATE_RX_YEAR_SUFFIX)
for _, v := range matcher.FindAllString(password, len(password)) {
splitV := matcher.FindAllStringSubmatch(v, len(v))
i := strings.Index(password, v)
j := i + len(v)
day, _ := strconv.ParseInt(splitV[0][4], 10, 16)
month, _ := strconv.ParseInt(splitV[0][2], 10, 16)
year, _ := strconv.ParseInt(splitV[0][6], 10, 16)
match := match.DateMatch{Day: day, Month: month, Year: year, Separator: splitV[0][5], I: i, J: j}
matches = append(matches, match)
}
matcher = regexp.MustCompile(DATE_RX_YEAR_PREFIX)
for _, v := range matcher.FindAllString(password, len(password)) {
splitV := matcher.FindAllStringSubmatch(v, len(v))
i := strings.Index(password, v)
j := i + len(v)
day, _ := strconv.ParseInt(splitV[0][4], 10, 16)
month, _ := strconv.ParseInt(splitV[0][6], 10, 16)
year, _ := strconv.ParseInt(splitV[0][2], 10, 16)
match := match.DateMatch{Day: day, Month: month, Year: year, Separator: splitV[0][5], I: i, J: j}
matches = append(matches, match)
}
var out []match.DateMatch
for _, match := range matches {
if valid, day, month, year := checkDate(match.Day, match.Month, match.Year); valid {
match.Pattern = "date"
match.Day = day
match.Month = month
match.Year = year
out = append(out, match)
}
}
return out
}
type DateMatchCandidate struct {
DayMonth string
Year string
I, J int
}
//TODO I think Im doing this wrong.
func dateWithoutSepMatch(password string) (matches []match.DateMatch) {
matcher := regexp.MustCompile(DATE_WITHOUT_SEP_MATCH)
for _, v := range matcher.FindAllString(password, len(password)) {
i := strings.Index(password, v)
j := i + len(v)
length := len(v)
lastIndex := length - 1
var candidatesRoundOne []DateMatchCandidate
if length <= 6 {
//2-digit year prefix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[2:], v[0:2], i, j))
//2-digityear suffix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[0:lastIndex-2], v[lastIndex-2:], i, j))
}
if length >= 6 {
//4-digit year prefix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[4:], v[0:4], i, j))
//4-digit year sufix
candidatesRoundOne = append(candidatesRoundOne, buildDateMatchCandidate(v[0:lastIndex-4], v[lastIndex-4:], i, j))
}
var candidatesRoundTwo []match.DateMatch
for _, c := range candidatesRoundOne {
if len(c.DayMonth) == 2 {
candidatesRoundTwo = append(candidatesRoundTwo, buildDateMatchCandidateTwo(c.DayMonth[0], c.DayMonth[1], c.Year, c.I, c.J))
}
}
}
return matches
}
func buildDateMatchCandidate(dayMonth, year string, i, j int) DateMatchCandidate {
return DateMatchCandidate{DayMonth: dayMonth, Year: year, I: i, J: j}
}
func buildDateMatchCandidateTwo(day, month byte, year string, i, j int) match.DateMatch {
sDay := string(day)
sMonth := string(month)
intDay, _ := strconv.ParseInt(sDay, 10, 16)
intMonth, _ := strconv.ParseInt(sMonth, 10, 16)
intYear, _ := strconv.ParseInt(year, 10, 16)
return match.DateMatch{Day: intDay, Month: intMonth, Year: intYear, I: i, J: j}
}
func SpatialMatch(password string) (matches []match.Match) {
for _, graph := range ADJACENCY_GRAPHS {
if graph.Graph != nil {
matches = append(matches, spatialMatchHelper(password, graph)...)
}
}
return matches
}
func spatialMatchHelper(password string, graph adjacency.AdjacencyGraph) (matches []match.Match) {
for i := 0; i < len(password)-1; {
j := i + 1
lastDirection := -99 //an int that it should never be!
turns := 0
shiftedCount := 0
for {
prevChar := password[j-1]
found := false
foundDirection := -1
curDirection := -1
//My graphs seem to be wrong. . . and where the hell is qwerty
adjacents := graph.Graph[string(prevChar)]
//Consider growing pattern by one character if j hasn't gone over the edge
if j < len(password) {
curChar := password[j]
for _, adj := range adjacents {
curDirection += 1
if strings.Index(adj, string(curChar)) != -1 {
found = true
foundDirection = curDirection
if strings.Index(adj, string(curChar)) == 1 {
//index 1 in the adjacency means the key is shifted, 0 means unshifted: A vs a, % vs 5, etc.
//for example, 'q' is adjacent to the entry '2@'. @ is shifted w/ index 1, 2 is unshifted.
shiftedCount += 1
}
if lastDirection != foundDirection {
//adding a turn is correct even in the initial case when last_direction is null:
//every spatial pattern starts with a turn.
turns += 1
lastDirection = foundDirection
}
break
}
}
}
//if the current pattern continued, extend j and try to grow again
if found {
j += 1
} else {
//otherwise push the pattern discovered so far, if any...
//don't consider length 1 or 2 chains.
if j-i > 2 {
matchSpc := match.Match{Pattern: "spatial", I: i, J: j - 1, Token: password[i:j], DictionaryName: graph.Name}
matchSpc.Entropy = entropy.SpatialEntropy(matchSpc, turns, shiftedCount)
matches = append(matches, matchSpc)
}
//. . . and then start a new search from the rest of the password
i = j
break
}
}
}
return matches
}
func l33tMatch(password string) []match.Match {
subsitutions := relevantL33tSubtable(password)
permutations := getAllPermutationsOfLeetSubstitutions(password, subsitutions)
var matches []match.Match
for _, permutation := range permutations {
for _, mather := range DICTIONARY_MATCHERS {
matches = append(matches,mather(permutation)...)
}
}
for _, match := range matches {
match.Entropy += entropy.ExtraLeetEntropy(match, password)
match.DictionaryName = match.DictionaryName + "_3117"
}
return matches
}
func getAllPermutationsOfLeetSubstitutions(password string, substitutionsMap map[string][]string) []string {
var permutations []string
for index, char := range password {
for value, splice := range substitutionsMap {
for _, sub := range splice {
if string(char) == sub {
var permutation string
permutation = password[:index]+value+password[index+1:]
permutations = append(permutations, permutation)
if index < len(permutation) {
tempPermutations := getAllPermutationsOfLeetSubstitutions(permutation[index + 1:], substitutionsMap)
for _, temp := range tempPermutations {
permutations = append(permutations, permutation[:index + 1] + temp)
}
}
}
}
}
}
return permutations
}
func relevantL33tSubtable(password string) map[string][]string {
relevantSubs := make(map[string][]string)
for key, values := range L33T_TABLE.Graph {
for _, value := range values {
if strings.Contains(password, value) {
relevantSubs[key] = append(relevantSubs[key], value)
}
}
}
return relevantSubs
}
func RepeatMatch(password string) []match.Match {
var matches []match.Match
//Loop through password. if current == prev currentStreak++ else if currentStreak > 2 {buildMatch; currentStreak = 1} prev = current
var current, prev string
currentStreak := 1
var i int
var char rune
for i, char = range password {
current = string(char)
if i == 0 {
prev = current
continue
}
if strings.ToLower(current) == strings.ToLower(prev) {
currentStreak++
} else if currentStreak > 2 {
iPos := i - currentStreak
jPos := i - 1
matchRepeat := match.Match{
Pattern: "repeat",
I: iPos,
J: jPos,
Token: password[iPos : jPos+1],
DictionaryName: prev}
matchRepeat.Entropy = entropy.RepeatEntropy(matchRepeat)
matches = append(matches, matchRepeat)
currentStreak = 1
} else {
currentStreak = 1
}
prev = current
}
if currentStreak > 2 {
iPos := i - currentStreak + 1
jPos := i
matchRepeat := match.Match{
Pattern: "repeat",
I: iPos,
J: jPos,
Token: password[iPos : jPos+1],
DictionaryName: prev}
matchRepeat.Entropy = entropy.RepeatEntropy(matchRepeat)
matches = append(matches, matchRepeat)
}
return matches
}
func SequenceMatch(password string) []match.Match {
var matches []match.Match
for i := 0; i < len(password); {
j := i + 1
var seq string
var seqName string
seqDirection := 0
for seqCandidateName, seqCandidate := range SEQUENCES {
iN := strings.Index(seqCandidate, string(password[i]))
var jN int
if j < len(password) {
jN = strings.Index(seqCandidate, string(password[j]))
} else {
jN = -1
}
if iN > -1 && jN > -1 {
direction := jN - iN
if direction == 1 || direction == -1 {
seq = seqCandidate
seqName = seqCandidateName
seqDirection = direction
break
}
}
}
if seq != "" {
for {
var prevN, curN int
if j < len(password) {
prevChar, curChar := password[j-1], password[j]
prevN, curN = strings.Index(seq, string(prevChar)), strings.Index(seq, string(curChar))
}
if j == len(password) || curN-prevN != seqDirection {
if j-i > 2 {
matchSequence := match.Match{
Pattern: "sequence",
I: i,
J: j - 1,
Token: password[i:j],
DictionaryName: seqName,
}
matchSequence.Entropy = entropy.SequenceEntropy(matchSequence, len(seq), (seqDirection == 1))
matches = append(matches, matchSequence)
}
break
} else {
j += 1
}
}
}
i = j
}
return matches
}

View File

@ -6,13 +6,14 @@ import (
"strings"
"testing"
"fmt"
"encoding/json"
)
//DateSepMatch("1991-09-11jibjab11.9.1991")
//[{date 16 25 . 9 11 1991} {date 0 10 - 9 11 1991}]
func TestDateSepMatch(t *testing.T) {
matches := DateSepMatch("1991-09-11jibjab11.9.1991")
matches := dateSepMatchHelper("1991-09-11jibjab11.9.1991")
assert.Len(t, matches, 2, "Length should be 2")
@ -36,7 +37,7 @@ func TestDateSepMatch(t *testing.T) {
func TestRepeatMatch(t *testing.T) {
//aaaBbBb
matches := RepeatMatch("aaabBbB")
matches := repeatMatch("aaabBbB")
assert.Len(t, matches, 2, "Lenght should be 2")
@ -59,7 +60,7 @@ func TestRepeatMatch(t *testing.T) {
func TestSequenceMatch(t *testing.T) {
//abcdjibjacLMNOPjibjac1234 => abcd LMNOP 1234
matches := SequenceMatch("abcdjibjacLMNOPjibjac1234")
matches := sequenceMatch("abcdjibjacLMNOPjibjac1234")
assert.Len(t, matches, 3, "Lenght should be 2")
for _, match := range matches {
@ -85,18 +86,18 @@ func TestSequenceMatch(t *testing.T) {
}
func TestSpatialMatchQwerty(t *testing.T) {
matches := SpatialMatch("qwerty")
matches := spatialMatch("qwerty")
assert.Len(t, matches, 1, "Lenght should be 1")
assert.NotZero(t, matches[0].Entropy, "Entropy should be set")
matches = SpatialMatch("asdf")
matches = spatialMatch("asdf")
assert.Len(t, matches, 1, "Lenght should be 1")
assert.NotZero(t, matches[0].Entropy, "Entropy should be set")
}
func TestSpatialMatchDvorak(t *testing.T) {
matches := SpatialMatch("aoeuidhtns")
matches := spatialMatch("aoeuidhtns")
assert.Len(t, matches, 1, "Lenght should be 1")
assert.NotZero(t, matches[0].Entropy, "Entropy should be set")
@ -171,8 +172,10 @@ func TestPermutationsOfLeetSubstitutions(t *testing.T){
}
func TestLeet(t *testing.T){
password := "p4ssw0rd"
password := "1337"
matches := l33tMatch(password)
bytes, _ := json.Marshal(matches)
fmt.Println(string(bytes))
fmt.Println(matches[0].J)
}

60
matching/repeatMatch.go Normal file
View File

@ -0,0 +1,60 @@
package matching
import (
"github.com/nbutton23/zxcvbn-go/match"
"github.com/nbutton23/zxcvbn-go/entropy"
"strings"
)
func repeatMatch(password string) []match.Match {
var matches []match.Match
//Loop through password. if current == prev currentStreak++ else if currentStreak > 2 {buildMatch; currentStreak = 1} prev = current
var current, prev string
currentStreak := 1
var i int
var char rune
for i, char = range password {
current = string(char)
if i == 0 {
prev = current
continue
}
if strings.ToLower(current) == strings.ToLower(prev) {
currentStreak++
} else if currentStreak > 2 {
iPos := i - currentStreak
jPos := i - 1
matchRepeat := match.Match{
Pattern: "repeat",
I: iPos,
J: jPos,
Token: password[iPos : jPos+1],
DictionaryName: prev}
matchRepeat.Entropy = entropy.RepeatEntropy(matchRepeat)
matches = append(matches, matchRepeat)
currentStreak = 1
} else {
currentStreak = 1
}
prev = current
}
if currentStreak > 2 {
iPos := i - currentStreak + 1
jPos := i
matchRepeat := match.Match{
Pattern: "repeat",
I: iPos,
J: jPos,
Token: password[iPos : jPos+1],
DictionaryName: prev}
matchRepeat.Entropy = entropy.RepeatEntropy(matchRepeat)
matches = append(matches, matchRepeat)
}
return matches
}

69
matching/sequenceMatch.go Normal file
View File

@ -0,0 +1,69 @@
package matching
import (
"github.com/nbutton23/zxcvbn-go/match"
"github.com/nbutton23/zxcvbn-go/entropy"
"strings"
)
func sequenceMatch(password string) []match.Match {
var matches []match.Match
for i := 0; i < len(password); {
j := i + 1
var seq string
var seqName string
seqDirection := 0
for seqCandidateName, seqCandidate := range SEQUENCES {
iN := strings.Index(seqCandidate, string(password[i]))
var jN int
if j < len(password) {
jN = strings.Index(seqCandidate, string(password[j]))
} else {
jN = -1
}
if iN > -1 && jN > -1 {
direction := jN - iN
if direction == 1 || direction == -1 {
seq = seqCandidate
seqName = seqCandidateName
seqDirection = direction
break
}
}
}
if seq != "" {
for {
var prevN, curN int
if j < len(password) {
prevChar, curChar := password[j - 1], password[j]
prevN, curN = strings.Index(seq, string(prevChar)), strings.Index(seq, string(curChar))
}
if j == len(password) || curN - prevN != seqDirection {
if j - i > 2 {
matchSequence := match.Match{
Pattern: "sequence",
I: i,
J: j - 1,
Token: password[i:j],
DictionaryName: seqName,
}
matchSequence.Entropy = entropy.SequenceEntropy(matchSequence, len(seq), (seqDirection == 1))
matches = append(matches, matchSequence)
}
break
} else {
j += 1
}
}
}
i = j
}
return matches
}

81
matching/spatialMatch.go Normal file
View File

@ -0,0 +1,81 @@
package matching
import (
"github.com/nbutton23/zxcvbn-go/match"
"github.com/nbutton23/zxcvbn-go/entropy"
"strings"
"github.com/nbutton23/zxcvbn-go/adjacency"
)
func spatialMatch(password string) (matches []match.Match) {
for _, graph := range ADJACENCY_GRAPHS {
if graph.Graph != nil {
matches = append(matches, spatialMatchHelper(password, graph)...)
}
}
return matches
}
func spatialMatchHelper(password string, graph adjacency.AdjacencyGraph) (matches []match.Match) {
for i := 0; i < len(password)-1; {
j := i + 1
lastDirection := -99 //an int that it should never be!
turns := 0
shiftedCount := 0
for {
prevChar := password[j-1]
found := false
foundDirection := -1
curDirection := -1
//My graphs seem to be wrong. . . and where the hell is qwerty
adjacents := graph.Graph[string(prevChar)]
//Consider growing pattern by one character if j hasn't gone over the edge
if j < len(password) {
curChar := password[j]
for _, adj := range adjacents {
curDirection += 1
if strings.Index(adj, string(curChar)) != -1 {
found = true
foundDirection = curDirection
if strings.Index(adj, string(curChar)) == 1 {
//index 1 in the adjacency means the key is shifted, 0 means unshifted: A vs a, % vs 5, etc.
//for example, 'q' is adjacent to the entry '2@'. @ is shifted w/ index 1, 2 is unshifted.
shiftedCount += 1
}
if lastDirection != foundDirection {
//adding a turn is correct even in the initial case when last_direction is null:
//every spatial pattern starts with a turn.
turns += 1
lastDirection = foundDirection
}
break
}
}
}
//if the current pattern continued, extend j and try to grow again
if found {
j += 1
} else {
//otherwise push the pattern discovered so far, if any...
//don't consider length 1 or 2 chains.
if j-i > 2 {
matchSpc := match.Match{Pattern: "spatial", I: i, J: j - 1, Token: password[i:j], DictionaryName: graph.Name}
matchSpc.Entropy = entropy.SpatialEntropy(matchSpc, turns, shiftedCount)
matches = append(matches, matchSpc)
}
//. . . and then start a new search from the rest of the password
i = j
break
}
}
}
return matches
}

View File

@ -53,11 +53,9 @@ func MinimumEntropyMatchSequence(password string, matches []match.Match) MinEntr
}
i, j := match.I, match.J
// see if best entropy up to i-1 + entropy of match is less that current min at j
//see if best entropy up to i-1 + entropy of match is less that current min at j
upTo := get(upToK, i-1)
calculatedEntropy := match.Entropy
match.Entropy = calculatedEntropy
candidateEntropy := upTo + calculatedEntropy
candidateEntropy := upTo + match.Entropy
if candidateEntropy < upToK[j] {
upToK[j] = candidateEntropy

19
vendor/vendor.json vendored Normal file
View File

@ -0,0 +1,19 @@
{
"comment": "",
"ignore": "",
"package": [
{
"path": "github.com/davecgh/go-spew/spew",
"revision": "5215b55f46b2b919f50a1df0eaa5886afe4e3b3d"
},
{
"path": "github.com/pmezard/go-difflib/difflib",
"revision": "e8554b8641db39598be7f6342874b958f12ae1d4"
},
{
"comment": "v1.1.1",
"path": "github.com/stretchr/testify/assert",
"revision": "38b5d653e3cad9252e69070a3fe23377ab380557"
}
]
}

View File

@ -28,7 +28,7 @@ var numTestRan int
func TestPasswordStrength(t *testing.T) {
//Expected calculated by running zxcvbn-python
// Expected calculated by running zxcvbn-python
runTest(t, "zxcvbn", float64(6.845490050944376))
runTest(t, "Tr0ub4dour&3", float64(17.296))
runTest(t, "qwER43@!", float64(26.44))
@ -36,6 +36,8 @@ func TestPasswordStrength(t *testing.T) {
runTest(t, "coRrecth0rseba++ery9.23.2007staple$", float64(66.018))
runTest(t, "D0g..................", float64(20.678))
runTest(t, "abcdefghijk987654321", float64(11.951))
runTest(t, "neverforget", float64(2))
runTest(t, "13/3/1997", float64(2))
runTest(t, "neverforget13/3/1997", float64(32.628))
runTest(t, "1qaz2wsx3edc", float64(19.314))
runTest(t, "temppass22", float64(22.179))