Forging code
with schemas

Presentation’s goals

What is a schema?
Introduction to Malli

Use cases in status-mobile
Conclusion & Next Steps
Questions

Presentation’s Goals

e Share experimental results using Malli in status-mobile.
e Have fun

Schema (plural schemas/schemata)

“A specification or description of the types of data represented in a database, the attributes
they possess, and the relationships between them.”

— Oxford in informatics
https://www.oxfordreference.com/display/10.1093/o1/authority.20110803100445389

Intro to Malli: About

A library by Metosin, created ~4 years old

Already funded by Clojurists Together.

Has been steadily improving based on community feedback.

Jank will implement a gradual type system inspired by Malli’s syntax.

“I believe Spec and Malli can co-exist and can even be friends
together. Spec is an awesome tool for describing the core language
and library APIs, and Malli the world we are living in.”

— https://www.metosin.fi/blog/malli

Intro to Malli: Syntax

:int

;7 Can have properties
[:int $f:min 1%]

;7 Composable
[:or :int :string]

7+ Enumerators
[:enum :blue :orange]

;; Example: "0123"
[:re i]

;7 Example: 1"0x1" :hello}
[:map-of string? :keywoxd]

;7 Example: :t/translation-xyz
[:qualified-keyword {:namespace

;7 Example: {:x 1 :y 2 :z 3%
[:map

[:x :int]

[:y :int]

[:z {:optional true} :int]]

;7 Arbitrary predicates

[:and

[:map

[:x :int]

[:y :int]

[:z {:optional true} :int]]
[:£n

(fn [f:keys [x yI%]

(> x y))1]

ctE]

Intro to Malli: Syntax

;7 :json/rpc-call effect
[:vector
[:map
[:method [:re i# 1]
[:params [:vector :any]]
[:on-success [:or ::event fn?]]
[:on-error [:0r ::event fn?]]]]

;7 Function schema of :int -> :string
[:=> [:cat :int] :string]

;7 Re-frame app db root :activity-center

[:map {:closed true} @
[:filter {:required true}

[:map
[:status [:enum :read :unread]]

[:type :int]]]

[:loading? {:optional true} :boolean]
[:contact-requests {:optional truet

zany]
[:cursor {:optional truet
:string]
[:notifications {:optional true}
[:sequential :schema.shell/notification]]‘3
[:seen? {:optional truet
:boolean]
[:unread-counts-by-type {:optional truet}
[:map-of {:min 1%
:schema.shell/notification-type :int]]]

Capabilities

What can we do with schemas?

What can we do?

@ Validate

© Instrument functions
© Transform data
(4] Generate data

What can we do?

D Validate

© Instrument functions
© Transform data
(4] Generate data

(require "[malli.core :refer [validatel]) Ifvalidation fails, how do you know the

(def ?schema

[:map

[:x :int]

[:y [:maybe :int]]

[:z {:0ptional true} :int]])

(validate ?schema {:x 10 :y 25%)
i => true

(validate ?schema {:x 10 :y nil})
77 => true

(validate ?schema {:x 10 :y 25 :z
;o => false

reason(s)?
(explain ?schema {:x 10 :y 25 :z)
§:schema ffobject [malli$27056]
:value $:x 10 :y 25 :z t
:errors ({:path [:7]
:in [:7]
:schema #object [malli$26962]
:value)¢

£)

([‘:alﬁi .dev.pretty/explain e Malli gives us full control over how
?schema
$ix 10 :y 25 :z 2) error messages are generated and
reported.
-- Validation Error ----------------------
Value:
3:X ..., Y ..., iZ ¢
Errors:
t:z [1%
Schema:
[:map
[:x :int]
[:y [:maybe :int]]
[:z {:0ptional true} :int]]

Validation: Use Case

Problem: test assertions in ClojureScript can result in cryptic output when comparing nested
and/or large data structures.

Solution: define a match function that verifies a given value matches a schema, and if it
does, returns it, otherwise, prints a humanized error and fail the test.

(match :int 42) -- Validation EITOT ----------““—“==--—---
;ro=> 42 Value:
(assert (= 42 (match :int 42)))
;7 => nil (no error) Errors:
[]

(defn find-answer-to-life

[] Schema:

) tint

(deftest find-answer-to-life-test
(let [answer (find-answer-to-life)]
(is (= 42 (match :int answer)))))

Validation: Use Case

Additionally, consider changing from Clojure core predicates to schemas.

(d?fﬁishiﬁﬂi?iﬁme 1. Removecljs.core/=

. rage 25%] 2. Use the : = schema
(is (match

[:map
[:name [9 1]
[:age :int]]
input))))

-- Validation Error -----------------------------
Value:
{:age ..., :name t

Exrrors:

$:name [1%

Schema:
[:map [:name [:= 1] [:age :int]]

Validation: Use Case

Problem: the status-mobile re-frame app db is large, complex, and in great part, modified by
untested event handlers. It’s easy to introduce errors during development and hard to debug
what caused them.

Partial solution: Implement a sort of schema-on-write semantic to guarantee only valid data
is written to the app db. The developer would see precise and fast feedback on every attempt
to write invalid data.

e Very easy to implement on top of re-frame.
But can be a trap to implement in the beginning.
Enormous benefit to be able to generate data during
development and test.

What can we do?

0 Validate

© Instrument functions
© Transform data
(4] Generate data

Definition: a mechanism where a function’s input and/or output are automatically checked
against its function schema.

(defn add
[x v]
(+ x v))

(malli.core/=> add
[:=> [:cat :int :int]

int])

(add 1 2)
ppo=>3

(add 1 :2)
pro=> "1:2"

Instrumentation

-- Schema Error
Invalid function return value:

Function Var:
add

Function arguments:

[1 :2]

Output Schema:
;int

Exrrors:

t:in 1,
:message
:path [1],
:schema :int,
:value 1

Instrumentation

1. When an instrumented function call receives invalid inputs, what should we do?

a.

S

Print/log

Throw

Show message on app screen
It depends

All of the above

The answer to every programming question ever conceived

It Depends

The Definitive Guide

O RLY? @ThePracticalDev

Instrumentation: Use Case

Problem: quo components can have many
variations and receive many arguments.
Mobile devs resort to docstrings with ad-hoc
“type annotations”, but they often get
outdated and can’t be verified by a machine.

Solution: instrument quo components
(functions), and replace type comments with
schemas.

(defn- view-internal

2)

(def ?schema
[:=>
[:cat
[:map {:closed true}o
[:type [:enum :rounded :squared]]
[:number [:re # 1]
[:size [:enum :size/s-32 :size/s-24 :size/s-20
:size/s-16 :size/s-14]]
[:theme {:optional true} :schema.common/theme] e
[:blur? {:optional true} :boolean]]]
rany])

(def view
(->> view-internal
quo.theme/with-theme
(instrument ::number-tag ?schema)))

Instrumentation: Use Case

Schema error -

NOW When the number—tag Component teStS :quc-)é.components.tags.number—tag.view/number—tag -—--
run:

Invalid function arguments:
[f:blur? false,
:number ,

(h/describe 1size :size/s-32,
(h/test) :type :rounded?}]
(h/render [number-tag/view
$:type :rounded Input Schema:
:number o [:cat
:size :size/s-32 [:map
' :blur? falset]) [:type :keyword]
(h/is-truthy (h/get-by-text)))) [:number [#]]
[:bluxr? 3$#% :boolean]
[:size [4#]1]
FAIL [:theme {#% :schema.common/theme]]]
component-spec/quo2.components.tags.number_tag.component_spe
c.js Errors:
number tag component test {:in [0 :number],
X +3 render (555 ms) :message ,
vV +48 render (15 ms) :path [0 :number],

:schema [:re # 1,
e number tag component test > +3 render :value I3

Instrumentation: Use Case

Problem: There are 120+ quo previews. Descriptor for the number-tag
Although easy to maintain, we still have component:

trouble maintaining preview descriptors (def descriptor

up-to-date with the source implementation. SR S

:options [{:key :rounded}?
{:key :squared}]?

o . . . 1ke :number
Solution: derive preview descriptors from ityge Ctextl
. . 1:key :size
instrumented functions. type select
:options [{:key :size/s-32
:value t
i:key :size/s-24
:value t
i:key :size/s-20
:value t
i:key :size/s-16
:value t
i:key :size/s-14
:value i1

i:key :blur?
:type :booleant])

Instrumentation: Use Case

(preview/generate-descriptor number-tag/?schema) We COllld go further and generate entire
2

;7 Returns the same descriptor (notice the sizes pI’CViCW namespaces on-the-ﬂy,
:» are not "humanized"). .

[{:key :type, :type :select, :options [{:key automatlcally'
:rounded} {:key :squaredi}]?

{:key :number, :type :text? (def ?schema

{:key :size, [:=>
:type :select, [:cat
:options [:map {:closed truet

[:type [:enum :rounded :squared]]
[:number {:preview/name

[{:key :size/s-32%
i:key :size/s-24%

{:key :size/s-20% :preview/initial }ﬂ

{:key :size/s-16% [:re # 1]

{:key :size/s-141]% [:size [:enum :size/s-32 :size/s-24 ...]1]
f:key :theme, :type :select, :options [{:key [:theme {:optional true

:1lightt {:key :darki]?
{:key :blur?, :type :booleant]

:preview/show? false}
:schema.common/theme]
[:blur? {:optional true} :boolean]]]
rany])

Instrumentation

Can we write schemas in such a way as to only allow valid component variations?

o Yes, with multi schemas and custom predicates.
What should we instrument?
o Functions at the system’s borders (internal/external)
o Highly reused functions, quo components, src/react-native/**
o Event handlers, subscriptions
o Data store functions
Used in development or test environments, thus not in production!
Gradual type checking ! = instrumentation.

What can we do?

0 Validate

© Instrument functions
© Transform data
(4] Generate data

Transformations

e Every schema can define how it’s encoded and decoded to/from string/JSON.
e Useful to build an anti-corruption layer.
o Decode signals or RPC responses and automatically transform them according to
schemas. No more manual and error prone rename-key calls, etc.
o Encode RPC requests before sending them to status-go.

What can we do?

0 Validate

© Instrument functions
© Transform data
(4] Generate data

Generators

e Generators are a vast and fun topic.
e API surface is bigger, steeper learning curve, but rewarding.
e (Custom generators written for Spec work with Malli and vice-versa.

(require '[malli.generator :refer [generate]]) (def ?emoji-hash
[:sequential
(generate :int) {:gen/gen (gen/vector-distinct
i => -5 (gen/elements [@ .])
i => 197 {:num-elements 3%)%
:string])

(generate [:int §f:min 10 :max 50%])
i => 29 (generate ?emoiji-hash)

= [e "]
(generate

[:map

[:total $:optional truef [:int F:min 99%]1]
[:states [:enum :opened :closed :started]]])
;5 => 3:states :closed, :total 5546874%
;5 => 3:states :started?

Generators: Use Case

Problem: in unit tests calling instrumented functions, it’s necessary to pass valid arguments,
but writing them by hand is a long and tedious process.

Solution: write or use an existing schema, then generate example data and assoc (hardcode)
the minimum amount of data to fulfill assertions.

(deftest mark-as-read-test
(testing
(let [notif (assoc (generate :schema.shell/notification)

:id
:read false e

:type types/one-to-one-chat)
activity-center (assoc (generate :schema.re-frame/db [:activity-center])
:notifications e
[notif])
cofx (assoc-in (generate :schema.re-frame/cofx)
[:db :activity-center]
activity-center)]
(is (= {:json-rpc/call
[$:method
:params [[(:1id notif)]]
:on-success [:activity-center.notifications/mark-as-read-success notif]
:0N-error [:activity-center/process-notification-failure (:id notif)
:notification/mark-as-read]?]?#
© (cvents/mark-as-read cofx (:id notif)))))))

Generators
e Other ideas:

o Show a button in each preview screen that, when pressed, will randomly generate
valid inputs for the descriptor and update the preview state.

o Show a button in each preview screen that, when pressed, will render X number of
instances with randomly generated variations.

o Generate parts of the app db to inspect for correctness and performance levels (e.g.
generate all types of notifications in all possible states, generate hundreds of
messages in different states, etc).

e Malli generators stand on the shoulders of test.check.
e Test.check was inspired by QuickCheck (written in Haskell).
e Test.check is a property-based testing Clojure(Script) library.

Performance

Sometimes even faster than idiomatic code for data transformations.

Much faster than Spec.

Validation, coercion, and other features can be used in production.
What would be the overhead in mobile devices?
o Instrumentation: zero cost

Conclusion & Next Steps

Malli is flexible and schemas can be progressively leveraged.

Complexity can go up in some areas, particularly related to data generation.

A schema-driven approach can help us tackle a codebase with low test coverage and
high churn.

We don’t need to commit to any decision now.

But if we do, I’d recommend we start simple:
o Add the plumbing code to use Malli in the repo (quick, it’s mostly done).
o Instrument a few widely used quo components, €.g. button (quick).
o Repeat until more developers are familiar with a schema-driven approach.
o Eventually attempt to solve other problems.

Thank you :)

Questions?

