status-go/vendor/github.com/lucas-clemente/quic-go/internal/wire/ack_frame.go

252 lines
6.5 KiB
Go

package wire
import (
"bytes"
"errors"
"sort"
"time"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/quicvarint"
)
var errInvalidAckRanges = errors.New("AckFrame: ACK frame contains invalid ACK ranges")
// An AckFrame is an ACK frame
type AckFrame struct {
AckRanges []AckRange // has to be ordered. The highest ACK range goes first, the lowest ACK range goes last
DelayTime time.Duration
ECT0, ECT1, ECNCE uint64
}
// parseAckFrame reads an ACK frame
func parseAckFrame(r *bytes.Reader, ackDelayExponent uint8, _ protocol.VersionNumber) (*AckFrame, error) {
typeByte, err := r.ReadByte()
if err != nil {
return nil, err
}
ecn := typeByte&0x1 > 0
frame := &AckFrame{}
la, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
largestAcked := protocol.PacketNumber(la)
delay, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
delayTime := time.Duration(delay*1<<ackDelayExponent) * time.Microsecond
if delayTime < 0 {
// If the delay time overflows, set it to the maximum encodable value.
delayTime = utils.InfDuration
}
frame.DelayTime = delayTime
numBlocks, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
// read the first ACK range
ab, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
ackBlock := protocol.PacketNumber(ab)
if ackBlock > largestAcked {
return nil, errors.New("invalid first ACK range")
}
smallest := largestAcked - ackBlock
// read all the other ACK ranges
frame.AckRanges = append(frame.AckRanges, AckRange{Smallest: smallest, Largest: largestAcked})
for i := uint64(0); i < numBlocks; i++ {
g, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
gap := protocol.PacketNumber(g)
if smallest < gap+2 {
return nil, errInvalidAckRanges
}
largest := smallest - gap - 2
ab, err := quicvarint.Read(r)
if err != nil {
return nil, err
}
ackBlock := protocol.PacketNumber(ab)
if ackBlock > largest {
return nil, errInvalidAckRanges
}
smallest = largest - ackBlock
frame.AckRanges = append(frame.AckRanges, AckRange{Smallest: smallest, Largest: largest})
}
if !frame.validateAckRanges() {
return nil, errInvalidAckRanges
}
// parse (and skip) the ECN section
if ecn {
for i := 0; i < 3; i++ {
if _, err := quicvarint.Read(r); err != nil {
return nil, err
}
}
}
return frame, nil
}
// Write writes an ACK frame.
func (f *AckFrame) Write(b *bytes.Buffer, _ protocol.VersionNumber) error {
hasECN := f.ECT0 > 0 || f.ECT1 > 0 || f.ECNCE > 0
if hasECN {
b.WriteByte(0x3)
} else {
b.WriteByte(0x2)
}
quicvarint.Write(b, uint64(f.LargestAcked()))
quicvarint.Write(b, encodeAckDelay(f.DelayTime))
numRanges := f.numEncodableAckRanges()
quicvarint.Write(b, uint64(numRanges-1))
// write the first range
_, firstRange := f.encodeAckRange(0)
quicvarint.Write(b, firstRange)
// write all the other range
for i := 1; i < numRanges; i++ {
gap, len := f.encodeAckRange(i)
quicvarint.Write(b, gap)
quicvarint.Write(b, len)
}
if hasECN {
quicvarint.Write(b, f.ECT0)
quicvarint.Write(b, f.ECT1)
quicvarint.Write(b, f.ECNCE)
}
return nil
}
// Length of a written frame
func (f *AckFrame) Length(version protocol.VersionNumber) protocol.ByteCount {
largestAcked := f.AckRanges[0].Largest
numRanges := f.numEncodableAckRanges()
length := 1 + quicvarint.Len(uint64(largestAcked)) + quicvarint.Len(encodeAckDelay(f.DelayTime))
length += quicvarint.Len(uint64(numRanges - 1))
lowestInFirstRange := f.AckRanges[0].Smallest
length += quicvarint.Len(uint64(largestAcked - lowestInFirstRange))
for i := 1; i < numRanges; i++ {
gap, len := f.encodeAckRange(i)
length += quicvarint.Len(gap)
length += quicvarint.Len(len)
}
if f.ECT0 > 0 || f.ECT1 > 0 || f.ECNCE > 0 {
length += quicvarint.Len(f.ECT0)
length += quicvarint.Len(f.ECT1)
length += quicvarint.Len(f.ECNCE)
}
return length
}
// gets the number of ACK ranges that can be encoded
// such that the resulting frame is smaller than the maximum ACK frame size
func (f *AckFrame) numEncodableAckRanges() int {
length := 1 + quicvarint.Len(uint64(f.LargestAcked())) + quicvarint.Len(encodeAckDelay(f.DelayTime))
length += 2 // assume that the number of ranges will consume 2 bytes
for i := 1; i < len(f.AckRanges); i++ {
gap, len := f.encodeAckRange(i)
rangeLen := quicvarint.Len(gap) + quicvarint.Len(len)
if length+rangeLen > protocol.MaxAckFrameSize {
// Writing range i would exceed the MaxAckFrameSize.
// So encode one range less than that.
return i - 1
}
length += rangeLen
}
return len(f.AckRanges)
}
func (f *AckFrame) encodeAckRange(i int) (uint64 /* gap */, uint64 /* length */) {
if i == 0 {
return 0, uint64(f.AckRanges[0].Largest - f.AckRanges[0].Smallest)
}
return uint64(f.AckRanges[i-1].Smallest - f.AckRanges[i].Largest - 2),
uint64(f.AckRanges[i].Largest - f.AckRanges[i].Smallest)
}
// HasMissingRanges returns if this frame reports any missing packets
func (f *AckFrame) HasMissingRanges() bool {
return len(f.AckRanges) > 1
}
func (f *AckFrame) validateAckRanges() bool {
if len(f.AckRanges) == 0 {
return false
}
// check the validity of every single ACK range
for _, ackRange := range f.AckRanges {
if ackRange.Smallest > ackRange.Largest {
return false
}
}
// check the consistency for ACK with multiple NACK ranges
for i, ackRange := range f.AckRanges {
if i == 0 {
continue
}
lastAckRange := f.AckRanges[i-1]
if lastAckRange.Smallest <= ackRange.Smallest {
return false
}
if lastAckRange.Smallest <= ackRange.Largest+1 {
return false
}
}
return true
}
// LargestAcked is the largest acked packet number
func (f *AckFrame) LargestAcked() protocol.PacketNumber {
return f.AckRanges[0].Largest
}
// LowestAcked is the lowest acked packet number
func (f *AckFrame) LowestAcked() protocol.PacketNumber {
return f.AckRanges[len(f.AckRanges)-1].Smallest
}
// AcksPacket determines if this ACK frame acks a certain packet number
func (f *AckFrame) AcksPacket(p protocol.PacketNumber) bool {
if p < f.LowestAcked() || p > f.LargestAcked() {
return false
}
i := sort.Search(len(f.AckRanges), func(i int) bool {
return p >= f.AckRanges[i].Smallest
})
// i will always be < len(f.AckRanges), since we checked above that p is not bigger than the largest acked
return p <= f.AckRanges[i].Largest
}
func encodeAckDelay(delay time.Duration) uint64 {
return uint64(delay.Nanoseconds() / (1000 * (1 << protocol.AckDelayExponent)))
}