Alex Jbanca e8c4b7647f
chore(upgradeSQLCipher): Upgrading SQLCipher to version 5.4.5 (#3559)
* chore(upgradeSQLCipher): Upgrading SQLCipher to version 5.4.5

Changes:
### github.com/mutecomm/go-sqlcipher
1. The improved crypto argorighms from go-sqlcipher v3 are merged in v4
	Tags:
	v4.4.2-status.1 - merge `burn_stack` improvement
	v4.4.2-status.2 - merge `SHA1` improvement
	v4.4.2-status.4- merge 'AES' improvement
2. Fixed `go-sqlcipher` to support v3 database in compatibility mode (`sqlcipher` already supports this) (Tag: v4.4.2-status.3)
3. Upgrade `sqlcipher` to v5.4.5 (Tag: v4.5.4-status.1)

### github.com/status-im/migrate/v4
1. Upgrade `go-sqlcipher` version in `github.com/status-im/migrate/v4`

### status-go
1. Upgrade `go-sqlcipher` and `migrate` modules in status-go
2. Configure the DB connections to open the DB in v3 compatibility mode

* chore(upgradeSQLCipher): Use sqlcipher v3 configuration to encrypt a plain text database

* chore(upgradeSQLCipher): Scanning NULL BLOB value should return nil

Fixing failing tests: TestSyncDeviceSuite/TestPairingSyncDeviceClientAsReceiver;  TestSyncDeviceSuite/TestPairingSyncDeviceClientAsSender

Considering the following configuration:
1. Table with BLOB column has 1 NULL value
2. Query the value
3. Rows.Scan(&dest sql.NullString)

Expected: dest.Valid == false; dest.String == nil
Actual: dest.Valid == true; dest.String == ""

* chore: Bump go-sqlcipher version to include NULL BLOB fix
2023-06-07 08:58:01 +03:00

520 lines
16 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/** math functions **/
#define LTC_MP_LT -1
#define LTC_MP_EQ 0
#define LTC_MP_GT 1
#define LTC_MP_NO 0
#define LTC_MP_YES 1
#ifndef LTC_MECC
typedef void ecc_point;
#endif
#ifndef LTC_MRSA
typedef void rsa_key;
#endif
#ifndef LTC_MILLER_RABIN_REPS
/* Number of rounds of the Miller-Rabin test
* "Reasonable values of reps are between 15 and 50." c.f. gmp doc of mpz_probab_prime_p()
* As of https://security.stackexchange.com/a/4546 we should use 40 rounds */
#define LTC_MILLER_RABIN_REPS 40
#endif
int radix_to_bin(const void *in, int radix, void *out, unsigned long *len);
/** math descriptor */
typedef struct {
/** Name of the math provider */
const char *name;
/** Bits per digit, amount of bits must fit in an unsigned long */
int bits_per_digit;
/* ---- init/deinit functions ---- */
/** initialize a bignum
@param a The number to initialize
@return CRYPT_OK on success
*/
int (*init)(void **a);
/** init copy
@param dst The number to initialize and write to
@param src The number to copy from
@return CRYPT_OK on success
*/
int (*init_copy)(void **dst, void *src);
/** deinit
@param a The number to free
@return CRYPT_OK on success
*/
void (*deinit)(void *a);
/* ---- data movement ---- */
/** negate
@param src The number to negate
@param dst The destination
@return CRYPT_OK on success
*/
int (*neg)(void *src, void *dst);
/** copy
@param src The number to copy from
@param dst The number to write to
@return CRYPT_OK on success
*/
int (*copy)(void *src, void *dst);
/* ---- trivial low level functions ---- */
/** set small constant
@param a Number to write to
@param n Source upto bits_per_digit (actually meant for very small constants)
@return CRYPT_OK on success
*/
int (*set_int)(void *a, ltc_mp_digit n);
/** get small constant
@param a Small number to read,
only fetches up to bits_per_digit from the number
@return The lower bits_per_digit of the integer (unsigned)
*/
unsigned long (*get_int)(void *a);
/** get digit n
@param a The number to read from
@param n The number of the digit to fetch
@return The bits_per_digit sized n'th digit of a
*/
ltc_mp_digit (*get_digit)(void *a, int n);
/** Get the number of digits that represent the number
@param a The number to count
@return The number of digits used to represent the number
*/
int (*get_digit_count)(void *a);
/** compare two integers
@param a The left side integer
@param b The right side integer
@return LTC_MP_LT if a < b,
LTC_MP_GT if a > b and
LTC_MP_EQ otherwise. (signed comparison)
*/
int (*compare)(void *a, void *b);
/** compare against int
@param a The left side integer
@param b The right side integer (upto bits_per_digit)
@return LTC_MP_LT if a < b,
LTC_MP_GT if a > b and
LTC_MP_EQ otherwise. (signed comparison)
*/
int (*compare_d)(void *a, ltc_mp_digit n);
/** Count the number of bits used to represent the integer
@param a The integer to count
@return The number of bits required to represent the integer
*/
int (*count_bits)(void * a);
/** Count the number of LSB bits which are zero
@param a The integer to count
@return The number of contiguous zero LSB bits
*/
int (*count_lsb_bits)(void *a);
/** Compute a power of two
@param a The integer to store the power in
@param n The power of two you want to store (a = 2^n)
@return CRYPT_OK on success
*/
int (*twoexpt)(void *a , int n);
/* ---- radix conversions ---- */
/** read ascii string
@param a The integer to store into
@param str The string to read
@param radix The radix the integer has been represented in (2-64)
@return CRYPT_OK on success
*/
int (*read_radix)(void *a, const char *str, int radix);
/** write number to string
@param a The integer to store
@param str The destination for the string
@param radix The radix the integer is to be represented in (2-64)
@return CRYPT_OK on success
*/
int (*write_radix)(void *a, char *str, int radix);
/** get size as unsigned char string
@param a The integer to get the size (when stored in array of octets)
@return The length of the integer in octets
*/
unsigned long (*unsigned_size)(void *a);
/** store an integer as an array of octets
@param src The integer to store
@param dst The buffer to store the integer in
@return CRYPT_OK on success
*/
int (*unsigned_write)(void *src, unsigned char *dst);
/** read an array of octets and store as integer
@param dst The integer to load
@param src The array of octets
@param len The number of octets
@return CRYPT_OK on success
*/
int (*unsigned_read)( void *dst,
unsigned char *src,
unsigned long len);
/* ---- basic math ---- */
/** add two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int (*add)(void *a, void *b, void *c);
/** add two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int (*addi)(void *a, ltc_mp_digit b, void *c);
/** subtract two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int (*sub)(void *a, void *b, void *c);
/** subtract two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int (*subi)(void *a, ltc_mp_digit b, void *c);
/** multiply two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int (*mul)(void *a, void *b, void *c);
/** multiply two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int (*muli)(void *a, ltc_mp_digit b, void *c);
/** Square an integer
@param a The integer to square
@param b The destination
@return CRYPT_OK on success
*/
int (*sqr)(void *a, void *b);
/** Square root (mod prime)
@param a The integer to compute square root mod prime from
@param b The prime
@param c The destination
@return CRYPT_OK on success
*/
int (*sqrtmod_prime)(void *a, void *b, void *c);
/** Divide an integer
@param a The dividend
@param b The divisor
@param c The quotient (can be NULL to signify don't care)
@param d The remainder (can be NULL to signify don't care)
@return CRYPT_OK on success
*/
int (*mpdiv)(void *a, void *b, void *c, void *d);
/** divide by two
@param a The integer to divide (shift right)
@param b The destination
@return CRYPT_OK on success
*/
int (*div_2)(void *a, void *b);
/** Get remainder (small value)
@param a The integer to reduce
@param b The modulus (upto bits_per_digit in length)
@param c The destination for the residue
@return CRYPT_OK on success
*/
int (*modi)(void *a, ltc_mp_digit b, ltc_mp_digit *c);
/** gcd
@param a The first integer
@param b The second integer
@param c The destination for (a, b)
@return CRYPT_OK on success
*/
int (*gcd)(void *a, void *b, void *c);
/** lcm
@param a The first integer
@param b The second integer
@param c The destination for [a, b]
@return CRYPT_OK on success
*/
int (*lcm)(void *a, void *b, void *c);
/** Modular multiplication
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a*b mod c)
@return CRYPT_OK on success
*/
int (*mulmod)(void *a, void *b, void *c, void *d);
/** Modular squaring
@param a The first source
@param b The modulus
@param c The destination (a*a mod b)
@return CRYPT_OK on success
*/
int (*sqrmod)(void *a, void *b, void *c);
/** Modular inversion
@param a The value to invert
@param b The modulus
@param c The destination (1/a mod b)
@return CRYPT_OK on success
*/
int (*invmod)(void *, void *, void *);
/* ---- reduction ---- */
/** setup Montgomery
@param a The modulus
@param b The destination for the reduction digit
@return CRYPT_OK on success
*/
int (*montgomery_setup)(void *a, void **b);
/** get normalization value
@param a The destination for the normalization value
@param b The modulus
@return CRYPT_OK on success
*/
int (*montgomery_normalization)(void *a, void *b);
/** reduce a number
@param a The number [and dest] to reduce
@param b The modulus
@param c The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
int (*montgomery_reduce)(void *a, void *b, void *c);
/** clean up (frees memory)
@param a The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
void (*montgomery_deinit)(void *a);
/* ---- exponentiation ---- */
/** Modular exponentiation
@param a The base integer
@param b The power (can be negative) integer
@param c The modulus integer
@param d The destination
@return CRYPT_OK on success
*/
int (*exptmod)(void *a, void *b, void *c, void *d);
/** Primality testing
@param a The integer to test
@param b The number of Miller-Rabin tests that shall be executed
@param c The destination of the result (FP_YES if prime)
@return CRYPT_OK on success
*/
int (*isprime)(void *a, int b, int *c);
/* ---- (optional) ecc point math ---- */
/** ECC GF(p) point multiplication (from the NIST curves)
@param k The integer to multiply the point by
@param G The point to multiply
@param R The destination for kG
@param a ECC curve parameter a
@param modulus The modulus for the field
@param map Boolean indicated whether to map back to affine or not
(can be ignored if you work in affine only)
@return CRYPT_OK on success
*/
int (*ecc_ptmul)( void *k,
const ecc_point *G,
ecc_point *R,
void *a,
void *modulus,
int map);
/** ECC GF(p) point addition
@param P The first point
@param Q The second point
@param R The destination of P + Q
@param ma The curve parameter "a" in montgomery form
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int (*ecc_ptadd)(const ecc_point *P,
const ecc_point *Q,
ecc_point *R,
void *ma,
void *modulus,
void *mp);
/** ECC GF(p) point double
@param P The first point
@param R The destination of 2P
@param ma The curve parameter "a" in montgomery form
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int (*ecc_ptdbl)(const ecc_point *P,
ecc_point *R,
void *ma,
void *modulus,
void *mp);
/** ECC mapping from projective to affine,
currently uses (x,y,z) => (x/z^2, y/z^3, 1)
@param P The point to map
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
@remark The mapping can be different but keep in mind a
ecc_point only has three integers (x,y,z) so if
you use a different mapping you have to make it fit.
*/
int (*ecc_map)(ecc_point *P, void *modulus, void *mp);
/** Computes kA*A + kB*B = C using Shamir's Trick
@param A First point to multiply
@param kA What to multiple A by
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B)
@param ma The curve parameter "a" in montgomery form
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int (*ecc_mul2add)(const ecc_point *A, void *kA,
const ecc_point *B, void *kB,
ecc_point *C,
void *ma,
void *modulus);
/* ---- (optional) rsa optimized math (for internal CRT) ---- */
/** RSA Key Generation
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param size The size of the key in octets
@param e The "e" value (public key).
e==65537 is a good choice
@param key [out] Destination of a newly created private key pair
@return CRYPT_OK if successful, upon error all allocated ram is freed
*/
int (*rsa_keygen)(prng_state *prng,
int wprng,
int size,
long e,
rsa_key *key);
/** RSA exponentiation
@param in The octet array representing the base
@param inlen The length of the input
@param out The destination (to be stored in an octet array format)
@param outlen The length of the output buffer and the resulting size
(zero padded to the size of the modulus)
@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA
@param key The RSA key to use
@return CRYPT_OK on success
*/
int (*rsa_me)(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
const rsa_key *key);
/* ---- basic math continued ---- */
/** Modular addition
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a + b mod c)
@return CRYPT_OK on success
*/
int (*addmod)(void *a, void *b, void *c, void *d);
/** Modular substraction
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a - b mod c)
@return CRYPT_OK on success
*/
int (*submod)(void *a, void *b, void *c, void *d);
/* ---- misc stuff ---- */
/** Make a pseudo-random mpi
@param a The mpi to make random
@param size The desired length
@return CRYPT_OK on success
*/
int (*rand)(void *a, int size);
} ltc_math_descriptor;
extern ltc_math_descriptor ltc_mp;
int ltc_init_multi(void **a, ...);
void ltc_deinit_multi(void *a, ...);
void ltc_cleanup_multi(void **a, ...);
#ifdef LTM_DESC
extern const ltc_math_descriptor ltm_desc;
#endif
#ifdef TFM_DESC
extern const ltc_math_descriptor tfm_desc;
#endif
#ifdef GMP_DESC
extern const ltc_math_descriptor gmp_desc;
#endif