Alex Jbanca e8c4b7647f
chore(upgradeSQLCipher): Upgrading SQLCipher to version 5.4.5 (#3559)
* chore(upgradeSQLCipher): Upgrading SQLCipher to version 5.4.5

Changes:
### github.com/mutecomm/go-sqlcipher
1. The improved crypto argorighms from go-sqlcipher v3 are merged in v4
	Tags:
	v4.4.2-status.1 - merge `burn_stack` improvement
	v4.4.2-status.2 - merge `SHA1` improvement
	v4.4.2-status.4- merge 'AES' improvement
2. Fixed `go-sqlcipher` to support v3 database in compatibility mode (`sqlcipher` already supports this) (Tag: v4.4.2-status.3)
3. Upgrade `sqlcipher` to v5.4.5 (Tag: v4.5.4-status.1)

### github.com/status-im/migrate/v4
1. Upgrade `go-sqlcipher` version in `github.com/status-im/migrate/v4`

### status-go
1. Upgrade `go-sqlcipher` and `migrate` modules in status-go
2. Configure the DB connections to open the DB in v3 compatibility mode

* chore(upgradeSQLCipher): Use sqlcipher v3 configuration to encrypt a plain text database

* chore(upgradeSQLCipher): Scanning NULL BLOB value should return nil

Fixing failing tests: TestSyncDeviceSuite/TestPairingSyncDeviceClientAsReceiver;  TestSyncDeviceSuite/TestPairingSyncDeviceClientAsSender

Considering the following configuration:
1. Table with BLOB column has 1 NULL value
2. Query the value
3. Rows.Scan(&dest sql.NullString)

Expected: dest.Valid == false; dest.String == nil
Actual: dest.Valid == true; dest.String == ""

* chore: Bump go-sqlcipher version to include NULL BLOB fix
2023-06-07 08:58:01 +03:00

121 lines
4.0 KiB
Go

// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
import (
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
)
// This file provides several different implementations for the
// default embedded sqlite_crypt function.
// This function is uses a caesar-cypher by default
// and is used within the UserAuthentication module to encode
// the password.
//
// The provided functions can be used as an overload to the sqlite_crypt
// function through the use of the RegisterFunc on the connection.
//
// Because the functions can serv a purpose to an end-user
// without using the UserAuthentication module
// the functions are default compiled in.
//
// From SQLITE3 - user-auth.txt
// The sqlite_user.pw field is encoded by a built-in SQL function
// "sqlite_crypt(X,Y)". The two arguments are both BLOBs. The first argument
// is the plaintext password supplied to the sqlite3_user_authenticate()
// interface. The second argument is the sqlite_user.pw value and is supplied
// so that the function can extract the "salt" used by the password encoder.
// The result of sqlite_crypt(X,Y) is another blob which is the value that
// ends up being stored in sqlite_user.pw. To verify credentials X supplied
// by the sqlite3_user_authenticate() routine, SQLite runs:
//
// sqlite_user.pw == sqlite_crypt(X, sqlite_user.pw)
//
// To compute an appropriate sqlite_user.pw value from a new or modified
// password X, sqlite_crypt(X,NULL) is run. A new random salt is selected
// when the second argument is NULL.
//
// The built-in version of of sqlite_crypt() uses a simple Caesar-cypher
// which prevents passwords from being revealed by searching the raw database
// for ASCII text, but is otherwise trivally broken. For better password
// security, the database should be encrypted using the SQLite Encryption
// Extension or similar technology. Or, the application can use the
// sqlite3_create_function() interface to provide an alternative
// implementation of sqlite_crypt() that computes a stronger password hash,
// perhaps using a cryptographic hash function like SHA1.
// CryptEncoderSHA1 encodes a password with SHA1
func CryptEncoderSHA1(pass []byte, hash interface{}) []byte {
h := sha1.Sum(pass)
return h[:]
}
// CryptEncoderSSHA1 encodes a password with SHA1 with the
// configured salt.
func CryptEncoderSSHA1(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha1.Sum(p)
return h[:]
}
}
// CryptEncoderSHA256 encodes a password with SHA256
func CryptEncoderSHA256(pass []byte, hash interface{}) []byte {
h := sha256.Sum256(pass)
return h[:]
}
// CryptEncoderSSHA256 encodes a password with SHA256
// with the configured salt
func CryptEncoderSSHA256(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha256.Sum256(p)
return h[:]
}
}
// CryptEncoderSHA384 encodes a password with SHA384
func CryptEncoderSHA384(pass []byte, hash interface{}) []byte {
h := sha512.Sum384(pass)
return h[:]
}
// CryptEncoderSSHA384 encodes a password with SHA384
// with the configured salt
func CryptEncoderSSHA384(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha512.Sum384(p)
return h[:]
}
}
// CryptEncoderSHA512 encodes a password with SHA512
func CryptEncoderSHA512(pass []byte, hash interface{}) []byte {
h := sha512.Sum512(pass)
return h[:]
}
// CryptEncoderSSHA512 encodes a password with SHA512
// with the configured salt
func CryptEncoderSSHA512(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha512.Sum512(p)
return h[:]
}
}
// EOF