mirror of
https://github.com/status-im/status-go.git
synced 2025-01-18 18:55:47 +00:00
c8f9dad554
## What has changed? I've introduced to the public binding functionality that will compress and decompress public keys of a variety of encoding and key types. This functionality supports all major byte encoding formats and the following EC public key types: - `secp256k1` pks - `bls12-381 g1` pks - `bls12-381 g2` pks ## Why make the change? We want shorter public (chat) keys and we want to be future proof and encoding agnostic. See the issue here https://github.com/status-im/status-go/issues/1937 --- * Added basic signature for compresspk and uncompresspk * Added basic encoding information * make vendor * formatted imports for the linter * Reformatted imports hoping linter likes it * This linter is capricious * Added check that the secp256k1 key is valid * Added test for valid key * Added multiformat/go-varint dep * Added public key type handling * Added key decompression with key type handling * Added handling for '0x' type indentifying * Added more robust testing * Less lint for the linting gods * make vendor for bls12_381 * Added bls12-381 compression tests * Added decompress key expected results * Refactor of typed and untyped keys in tests * Lint god appeasment * Refactor of sample public keys * Implemented bls12-381 decompression * gofmt * Renamed decode/encode funcs to be more descriptive * Added binary bindings for key de/compression * Refactor of func parameters gomobile is a bit tempermental using raw bytes as a parameter, so I've decided to use string only inputs and outputs * gofmt * Added function documentation * Moved multiformat de/compression into api/multiformat ns * Moved multiformat de/compression into api/multiformat ns * Changed compress to serialize on API
264 lines
5.2 KiB
Go
264 lines
5.2 KiB
Go
package bls12381
|
|
|
|
import (
|
|
"errors"
|
|
"math/big"
|
|
)
|
|
|
|
type fp12 struct {
|
|
fp12temp
|
|
fp6 *fp6
|
|
}
|
|
|
|
type fp12temp struct {
|
|
t2 [9]*fe2
|
|
t6 [5]*fe6
|
|
t12 *fe12
|
|
}
|
|
|
|
func newFp12Temp() fp12temp {
|
|
t2 := [9]*fe2{}
|
|
t6 := [5]*fe6{}
|
|
for i := 0; i < len(t2); i++ {
|
|
t2[i] = &fe2{}
|
|
}
|
|
for i := 0; i < len(t6); i++ {
|
|
t6[i] = &fe6{}
|
|
}
|
|
return fp12temp{t2, t6, &fe12{}}
|
|
}
|
|
|
|
func newFp12(fp6 *fp6) *fp12 {
|
|
t := newFp12Temp()
|
|
if fp6 == nil {
|
|
return &fp12{t, newFp6(nil)}
|
|
}
|
|
return &fp12{t, fp6}
|
|
}
|
|
|
|
func (e *fp12) fp2() *fp2 {
|
|
return e.fp6.fp2
|
|
}
|
|
|
|
func (e *fp12) fromBytes(in []byte) (*fe12, error) {
|
|
if len(in) != 576 {
|
|
return nil, errors.New("input string should be larger than 96 bytes")
|
|
}
|
|
fp6 := e.fp6
|
|
c1, err := fp6.fromBytes(in[:288])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c0, err := fp6.fromBytes(in[288:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &fe12{*c0, *c1}, nil
|
|
}
|
|
|
|
func (e *fp12) toBytes(a *fe12) []byte {
|
|
fp6 := e.fp6
|
|
out := make([]byte, 576)
|
|
copy(out[:288], fp6.toBytes(&a[1]))
|
|
copy(out[288:], fp6.toBytes(&a[0]))
|
|
return out
|
|
}
|
|
|
|
func (e *fp12) new() *fe12 {
|
|
return new(fe12)
|
|
}
|
|
|
|
func (e *fp12) zero() *fe12 {
|
|
return new(fe12)
|
|
}
|
|
|
|
func (e *fp12) one() *fe12 {
|
|
return new(fe12).one()
|
|
}
|
|
|
|
func (e *fp12) add(c, a, b *fe12) {
|
|
fp6 := e.fp6
|
|
fp6.add(&c[0], &a[0], &b[0])
|
|
fp6.add(&c[1], &a[1], &b[1])
|
|
|
|
}
|
|
|
|
func (e *fp12) double(c, a *fe12) {
|
|
fp6 := e.fp6
|
|
fp6.double(&c[0], &a[0])
|
|
fp6.double(&c[1], &a[1])
|
|
}
|
|
|
|
func (e *fp12) sub(c, a, b *fe12) {
|
|
fp6 := e.fp6
|
|
fp6.sub(&c[0], &a[0], &b[0])
|
|
fp6.sub(&c[1], &a[1], &b[1])
|
|
|
|
}
|
|
|
|
func (e *fp12) neg(c, a *fe12) {
|
|
fp6 := e.fp6
|
|
fp6.neg(&c[0], &a[0])
|
|
fp6.neg(&c[1], &a[1])
|
|
}
|
|
|
|
func (e *fp12) conjugate(c, a *fe12) {
|
|
fp6 := e.fp6
|
|
c[0].set(&a[0])
|
|
fp6.neg(&c[1], &a[1])
|
|
}
|
|
|
|
func (e *fp12) square(c, a *fe12) {
|
|
fp6, t := e.fp6, e.t6
|
|
fp6.add(t[0], &a[0], &a[1])
|
|
fp6.mul(t[2], &a[0], &a[1])
|
|
fp6.mulByNonResidue(t[1], &a[1])
|
|
fp6.addAssign(t[1], &a[0])
|
|
fp6.mulByNonResidue(t[3], t[2])
|
|
fp6.mulAssign(t[0], t[1])
|
|
fp6.subAssign(t[0], t[2])
|
|
fp6.sub(&c[0], t[0], t[3])
|
|
fp6.double(&c[1], t[2])
|
|
}
|
|
|
|
func (e *fp12) cyclotomicSquare(c, a *fe12) {
|
|
t, fp2 := e.t2, e.fp2()
|
|
e.fp4Square(t[3], t[4], &a[0][0], &a[1][1])
|
|
fp2.sub(t[2], t[3], &a[0][0])
|
|
fp2.doubleAssign(t[2])
|
|
fp2.add(&c[0][0], t[2], t[3])
|
|
fp2.add(t[2], t[4], &a[1][1])
|
|
fp2.doubleAssign(t[2])
|
|
fp2.add(&c[1][1], t[2], t[4])
|
|
e.fp4Square(t[3], t[4], &a[1][0], &a[0][2])
|
|
e.fp4Square(t[5], t[6], &a[0][1], &a[1][2])
|
|
fp2.sub(t[2], t[3], &a[0][1])
|
|
fp2.doubleAssign(t[2])
|
|
fp2.add(&c[0][1], t[2], t[3])
|
|
fp2.add(t[2], t[4], &a[1][2])
|
|
fp2.doubleAssign(t[2])
|
|
fp2.add(&c[1][2], t[2], t[4])
|
|
fp2.mulByNonResidue(t[3], t[6])
|
|
fp2.add(t[2], t[3], &a[1][0])
|
|
fp2.doubleAssign(t[2])
|
|
fp2.add(&c[1][0], t[2], t[3])
|
|
fp2.sub(t[2], t[5], &a[0][2])
|
|
fp2.doubleAssign(t[2])
|
|
fp2.add(&c[0][2], t[2], t[5])
|
|
}
|
|
|
|
func (e *fp12) mul(c, a, b *fe12) {
|
|
t, fp6 := e.t6, e.fp6
|
|
fp6.mul(t[1], &a[0], &b[0])
|
|
fp6.mul(t[2], &a[1], &b[1])
|
|
fp6.add(t[0], t[1], t[2])
|
|
fp6.mulByNonResidue(t[2], t[2])
|
|
fp6.add(t[3], t[1], t[2])
|
|
fp6.add(t[1], &a[0], &a[1])
|
|
fp6.add(t[2], &b[0], &b[1])
|
|
fp6.mulAssign(t[1], t[2])
|
|
c[0].set(t[3])
|
|
fp6.sub(&c[1], t[1], t[0])
|
|
}
|
|
|
|
func (e *fp12) mulAssign(a, b *fe12) {
|
|
t, fp6 := e.t6, e.fp6
|
|
fp6.mul(t[1], &a[0], &b[0])
|
|
fp6.mul(t[2], &a[1], &b[1])
|
|
fp6.add(t[0], t[1], t[2])
|
|
fp6.mulByNonResidue(t[2], t[2])
|
|
fp6.add(t[3], t[1], t[2])
|
|
fp6.add(t[1], &a[0], &a[1])
|
|
fp6.add(t[2], &b[0], &b[1])
|
|
fp6.mulAssign(t[1], t[2])
|
|
a[0].set(t[3])
|
|
fp6.sub(&a[1], t[1], t[0])
|
|
}
|
|
|
|
func (e *fp12) fp4Square(c0, c1, a0, a1 *fe2) {
|
|
t, fp2 := e.t2, e.fp2()
|
|
fp2.square(t[0], a0)
|
|
fp2.square(t[1], a1)
|
|
fp2.mulByNonResidue(t[2], t[1])
|
|
fp2.add(c0, t[2], t[0])
|
|
fp2.add(t[2], a0, a1)
|
|
fp2.squareAssign(t[2])
|
|
fp2.subAssign(t[2], t[0])
|
|
fp2.sub(c1, t[2], t[1])
|
|
}
|
|
|
|
func (e *fp12) inverse(c, a *fe12) {
|
|
fp6, t := e.fp6, e.t6
|
|
fp6.square(t[0], &a[0])
|
|
fp6.square(t[1], &a[1])
|
|
fp6.mulByNonResidue(t[1], t[1])
|
|
fp6.sub(t[1], t[0], t[1])
|
|
fp6.inverse(t[0], t[1])
|
|
fp6.mul(&c[0], &a[0], t[0])
|
|
fp6.mulAssign(t[0], &a[1])
|
|
fp6.neg(&c[1], t[0])
|
|
}
|
|
|
|
func (e *fp12) mulBy014Assign(a *fe12, c0, c1, c4 *fe2) {
|
|
fp2, fp6, t, t2 := e.fp2(), e.fp6, e.t6, e.t2[0]
|
|
fp6.mulBy01(t[0], &a[0], c0, c1)
|
|
fp6.mulBy1(t[1], &a[1], c4)
|
|
fp2.add(t2, c1, c4)
|
|
fp6.add(t[2], &a[1], &a[0])
|
|
fp6.mulBy01Assign(t[2], c0, t2)
|
|
fp6.subAssign(t[2], t[0])
|
|
fp6.sub(&a[1], t[2], t[1])
|
|
fp6.mulByNonResidue(t[1], t[1])
|
|
fp6.add(&a[0], t[1], t[0])
|
|
}
|
|
|
|
func (e *fp12) exp(c, a *fe12, s *big.Int) {
|
|
z := e.one()
|
|
for i := s.BitLen() - 1; i >= 0; i-- {
|
|
e.square(z, z)
|
|
if s.Bit(i) == 1 {
|
|
e.mul(z, z, a)
|
|
}
|
|
}
|
|
c.set(z)
|
|
}
|
|
|
|
func (e *fp12) cyclotomicExp(c, a *fe12, s *big.Int) {
|
|
z := e.one()
|
|
for i := s.BitLen() - 1; i >= 0; i-- {
|
|
e.cyclotomicSquare(z, z)
|
|
if s.Bit(i) == 1 {
|
|
e.mul(z, z, a)
|
|
}
|
|
}
|
|
c.set(z)
|
|
}
|
|
|
|
func (e *fp12) frobeniusMap(c, a *fe12, power uint) {
|
|
fp6 := e.fp6
|
|
fp6.frobeniusMap(&c[0], &a[0], power)
|
|
fp6.frobeniusMap(&c[1], &a[1], power)
|
|
switch power {
|
|
case 0:
|
|
return
|
|
case 6:
|
|
fp6.neg(&c[1], &c[1])
|
|
default:
|
|
fp6.mulByBaseField(&c[1], &c[1], &frobeniusCoeffs12[power])
|
|
}
|
|
}
|
|
|
|
func (e *fp12) frobeniusMapAssign(a *fe12, power uint) {
|
|
fp6 := e.fp6
|
|
fp6.frobeniusMapAssign(&a[0], power)
|
|
fp6.frobeniusMapAssign(&a[1], power)
|
|
switch power {
|
|
case 0:
|
|
return
|
|
case 6:
|
|
fp6.neg(&a[1], &a[1])
|
|
default:
|
|
fp6.mulByBaseField(&a[1], &a[1], &frobeniusCoeffs12[power])
|
|
}
|
|
}
|