1423 lines
35 KiB
Go
1423 lines
35 KiB
Go
// Copyright 2015 Jean Niklas L'orange. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package edn
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/base64"
|
|
"io"
|
|
"math"
|
|
"math/big"
|
|
"reflect"
|
|
"runtime"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// Marshal returns the EDN encoding of v.
|
|
//
|
|
// Marshal traverses the value v recursively.
|
|
// If an encountered value implements the Marshaler interface
|
|
// and is not a nil pointer, Marshal calls its MarshalEDN method
|
|
// to produce EDN. The nil pointer exception is not strictly necessary
|
|
// but mimics a similar, necessary exception in the behavior of
|
|
// UnmarshalEDN.
|
|
//
|
|
// Otherwise, Marshal uses the following type-dependent default encodings:
|
|
//
|
|
// Boolean values encode as EDN booleans.
|
|
//
|
|
// Integers encode as EDN integers.
|
|
//
|
|
// Floating point values encode as EDN floats.
|
|
//
|
|
// String values encode as EDN strings coerced to valid UTF-8,
|
|
// replacing invalid bytes with the Unicode replacement rune.
|
|
// The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
|
|
// to keep some browsers from misinterpreting EDN output as HTML.
|
|
// Ampersand "&" is also escaped to "\u0026" for the same reason.
|
|
//
|
|
// Array and slice values encode as EDN arrays, except that
|
|
// []byte encodes as a base64-encoded string, and a nil slice
|
|
// encodes as the nil EDN value.
|
|
//
|
|
// Struct values encode as EDN maps. Each exported struct field
|
|
// becomes a member of the map unless
|
|
// - the field's tag is "-", or
|
|
// - the field is empty and its tag specifies the "omitempty" option.
|
|
// The empty values are false, 0, any
|
|
// nil pointer or interface value, and any array, slice, map, or string of
|
|
// length zero. The map's default key is the struct field name as a keyword,
|
|
// but can be specified in the struct field's tag value. The "edn" key in
|
|
// the struct field's tag value is the key name, followed by an optional comma
|
|
// and options. Examples:
|
|
//
|
|
// // Field is ignored by this package.
|
|
// Field int `edn:"-"`
|
|
//
|
|
// // Field appears in EDN as key :my-name.
|
|
// Field int `edn:"myName"`
|
|
//
|
|
// // Field appears in EDN as key :my-name and
|
|
// // the field is omitted from the object if its value is empty,
|
|
// // as defined above.
|
|
// Field int `edn:"my-name,omitempty"`
|
|
//
|
|
// // Field appears in EDN as key :field (the default), but
|
|
// // the field is skipped if empty.
|
|
// // Note the leading comma.
|
|
// Field int `edn:",omitempty"`
|
|
//
|
|
// The "str", "key" and "sym" options signals that a field name should be
|
|
// written as a string, keyword or symbol, respectively. If none are specified,
|
|
// then the default behaviour is to emit them as keywords. Examples:
|
|
//
|
|
// // Default behaviour: field name will be encoded as :foo
|
|
// Foo int
|
|
//
|
|
// // Encode Foo as string with name "string-foo"
|
|
// Foo int `edn:"string-foo,str"`
|
|
//
|
|
// // Encode Foo as symbol with name sym-foo
|
|
// Foo int `edn:"sym-foo,sym"`
|
|
//
|
|
// Anonymous struct fields are usually marshaled as if their inner exported fields
|
|
// were fields in the outer struct, subject to the usual Go visibility rules amended
|
|
// as described in the next paragraph.
|
|
// An anonymous struct field with a name given in its EDN tag is treated as
|
|
// having that name, rather than being anonymous.
|
|
// An anonymous struct field of interface type is treated the same as having
|
|
// that type as its name, rather than being anonymous.
|
|
//
|
|
// The Go visibility rules for struct fields are amended for EDN when
|
|
// deciding which field to marshal or unmarshal. If there are
|
|
// multiple fields at the same level, and that level is the least
|
|
// nested (and would therefore be the nesting level selected by the
|
|
// usual Go rules), the following extra rules apply:
|
|
//
|
|
// 1) Of those fields, if any are EDN-tagged, only tagged fields are considered,
|
|
// even if there are multiple untagged fields that would otherwise conflict.
|
|
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
|
|
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
|
|
//
|
|
// To force ignoring of an anonymous struct field in both current and earlier
|
|
// versions, give the field a EDN tag of "-".
|
|
//
|
|
// Map values usually encode as EDN maps. There are no limitations on the keys
|
|
// or values -- as long as they can be encoded to EDN, anything goes. Map values
|
|
// will be encoded as sets if their value type is either a bool or a struct with
|
|
// no fields.
|
|
//
|
|
// If you want to ensure that a value is encoded as a map, you can specify that
|
|
// as follows:
|
|
//
|
|
// // Encode Foo as a map, instead of the default set
|
|
// Foo map[int]bool `edn:",map"`
|
|
//
|
|
// Arrays and slices are encoded as vectors by default. As with maps and sets,
|
|
// you can specify that a field should be encoded as a list instead, by using
|
|
// the option "list":
|
|
//
|
|
// // Encode Foo as a list, instead of the default vector
|
|
// Foo []int `edn:",list"`
|
|
//
|
|
// Pointer values encode as the value pointed to.
|
|
// A nil pointer encodes as the nil EDN object.
|
|
//
|
|
// Interface values encode as the value contained in the interface.
|
|
// A nil interface value encodes as the nil EDN value.
|
|
//
|
|
// Channel, complex, and function values cannot be encoded in EDN.
|
|
// Attempting to encode such a value causes Marshal to return
|
|
// an UnsupportedTypeError.
|
|
//
|
|
// EDN cannot represent cyclic data structures and Marshal does not
|
|
// handle them. Passing cyclic structures to Marshal will result in
|
|
// an infinite recursion.
|
|
//
|
|
func Marshal(v interface{}) ([]byte, error) {
|
|
e := &encodeState{}
|
|
err := e.marshal(v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return e.Bytes(), nil
|
|
}
|
|
|
|
// MarshalIndent is like Marshal but applies Indent to format the output.
|
|
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
|
|
b, err := Marshal(v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var buf bytes.Buffer
|
|
err = Indent(&buf, b, prefix, indent)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return buf.Bytes(), nil
|
|
}
|
|
|
|
// MarshalPPrint is like Marshal but applies PPrint to format the output.
|
|
func MarshalPPrint(v interface{}, opts *PPrintOpts) ([]byte, error) {
|
|
b, err := Marshal(v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var buf bytes.Buffer
|
|
err = PPrint(&buf, b, opts)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return buf.Bytes(), nil
|
|
}
|
|
|
|
// An Encoder writes EDN values to an output stream.
|
|
type Encoder struct {
|
|
writer io.Writer
|
|
ec encodeState
|
|
}
|
|
|
|
// NewEncoder returns a new encoder that writes to w.
|
|
func NewEncoder(w io.Writer) *Encoder {
|
|
return &Encoder{
|
|
writer: w,
|
|
ec: encodeState{},
|
|
}
|
|
}
|
|
|
|
// Encode writes the EDN encoding of v to the stream, followed by a newline
|
|
// character.
|
|
//
|
|
// See the documentation for Marshal for details about the conversion of Go
|
|
// values to EDN.
|
|
func (e *Encoder) Encode(v interface{}) error {
|
|
e.ec.needsDelim = false
|
|
err := e.ec.marshal(v)
|
|
if err != nil {
|
|
e.ec.Reset()
|
|
return err
|
|
}
|
|
b := e.ec.Bytes()
|
|
e.ec.Reset()
|
|
_, err = e.writer.Write(b)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = e.writer.Write([]byte{'\n'})
|
|
return err
|
|
}
|
|
|
|
// EncodeIndent writes the indented EDN encoding of v to the stream, followed by
|
|
// a newline character.
|
|
//
|
|
// See the documentation for MarshalIndent for details about the conversion of
|
|
// Go values to EDN.
|
|
func (e *Encoder) EncodeIndent(v interface{}, prefix, indent string) error {
|
|
e.ec.needsDelim = false
|
|
err := e.ec.marshal(v)
|
|
if err != nil {
|
|
e.ec.Reset()
|
|
return err
|
|
}
|
|
b := e.ec.Bytes()
|
|
var buf bytes.Buffer
|
|
err = Indent(&buf, b, prefix, indent)
|
|
e.ec.Reset()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = e.writer.Write(buf.Bytes())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = e.writer.Write([]byte{'\n'})
|
|
return err
|
|
}
|
|
|
|
// EncodePPrint writes the pretty-printed EDN encoding of v to the stream,
|
|
// followed by a newline character.
|
|
//
|
|
// See the documentation for MarshalPPrint for details about the conversion of
|
|
// Go values to EDN.
|
|
func (e *Encoder) EncodePPrint(v interface{}, opts *PPrintOpts) error {
|
|
e.ec.needsDelim = false
|
|
err := e.ec.marshal(v)
|
|
if err != nil {
|
|
e.ec.Reset()
|
|
return err
|
|
}
|
|
b := e.ec.Bytes()
|
|
var buf bytes.Buffer
|
|
err = PPrint(&buf, b, opts)
|
|
e.ec.Reset()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = e.writer.Write(buf.Bytes())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, err = e.writer.Write([]byte{'\n'})
|
|
return err
|
|
}
|
|
|
|
// Marshaler is the interface implemented by objects that
|
|
// can marshal themselves into valid EDN.
|
|
type Marshaler interface {
|
|
MarshalEDN() ([]byte, error)
|
|
}
|
|
|
|
// An UnsupportedTypeError is returned by Marshal when attempting
|
|
// to encode an unsupported value type.
|
|
type UnsupportedTypeError struct {
|
|
Type reflect.Type
|
|
}
|
|
|
|
func (e *UnsupportedTypeError) Error() string {
|
|
return "edn: unsupported type: " + e.Type.String()
|
|
}
|
|
|
|
// An UnsupportedValueError is returned by Marshal when attempting to encode an
|
|
// unsupported value. Examples include the float values NaN and Infinity.
|
|
type UnsupportedValueError struct {
|
|
Value reflect.Value
|
|
Str string
|
|
}
|
|
|
|
func (e *UnsupportedValueError) Error() string {
|
|
return "edn: unsupported value: " + e.Str
|
|
}
|
|
|
|
// A MarshalerError is returned by Marshal when encoding a type with a
|
|
// MarshalEDN function fails.
|
|
type MarshalerError struct {
|
|
Type reflect.Type
|
|
Err error
|
|
}
|
|
|
|
func (e *MarshalerError) Error() string {
|
|
return "edn: error calling MarshalEDN for type " + e.Type.String() + ": " + e.Err.Error()
|
|
}
|
|
|
|
var hex = "0123456789abcdef"
|
|
|
|
// An encodeState encodes EDN into a bytes.Buffer.
|
|
type encodeState struct {
|
|
bytes.Buffer // accumulated output
|
|
scratch [64]byte
|
|
needsDelim bool
|
|
mc *MathContext
|
|
}
|
|
|
|
// mathContext returns the math context to use. If not set in the encodeState,
|
|
// the global math context is used.
|
|
func (e *encodeState) mathContext() *MathContext {
|
|
if e.mc != nil {
|
|
return e.mc
|
|
}
|
|
return &GlobalMathContext
|
|
}
|
|
|
|
var encodeStatePool sync.Pool
|
|
|
|
func newEncodeState() *encodeState {
|
|
if v := encodeStatePool.Get(); v != nil {
|
|
e := v.(*encodeState)
|
|
e.Reset()
|
|
return e
|
|
}
|
|
return new(encodeState)
|
|
}
|
|
|
|
func (e *encodeState) marshal(v interface{}) (err error) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
if _, ok := r.(runtime.Error); ok {
|
|
panic(r)
|
|
}
|
|
if s, ok := r.(string); ok {
|
|
panic(s)
|
|
}
|
|
err = r.(error)
|
|
}
|
|
}()
|
|
e.reflectValue(reflect.ValueOf(v))
|
|
return nil
|
|
}
|
|
|
|
func (e *encodeState) error(err error) {
|
|
panic(err)
|
|
}
|
|
|
|
func isEmptyValue(v reflect.Value) bool {
|
|
switch v.Kind() {
|
|
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
|
|
return v.Len() == 0
|
|
case reflect.Bool:
|
|
return !v.Bool()
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return v.Int() == 0
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return v.Uint() == 0
|
|
case reflect.Float32, reflect.Float64:
|
|
return v.Float() == 0
|
|
case reflect.Interface, reflect.Ptr:
|
|
return v.IsNil()
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (e *encodeState) reflectValue(v reflect.Value) {
|
|
valueEncoder(v)(e, v)
|
|
}
|
|
|
|
type encoderFunc func(e *encodeState, v reflect.Value)
|
|
|
|
type typeAndTag struct {
|
|
t reflect.Type
|
|
ctype tagType
|
|
}
|
|
|
|
var encoderCache struct {
|
|
sync.RWMutex
|
|
m map[typeAndTag]encoderFunc
|
|
}
|
|
|
|
func valueEncoder(v reflect.Value) encoderFunc {
|
|
if !v.IsValid() {
|
|
return invalidValueEncoder
|
|
}
|
|
return typeEncoder(v.Type(), tagUndefined)
|
|
}
|
|
|
|
func typeEncoder(t reflect.Type, tagType tagType) encoderFunc {
|
|
tac := typeAndTag{t, tagType}
|
|
encoderCache.RLock()
|
|
f := encoderCache.m[tac]
|
|
encoderCache.RUnlock()
|
|
if f != nil {
|
|
return f
|
|
}
|
|
couldUseJSON := readCanUseJSONTag()
|
|
|
|
// To deal with recursive types, populate the map with an
|
|
// indirect func before we build it. This type waits on the
|
|
// real func (f) to be ready and then calls it. This indirect
|
|
// func is only used for recursive types.
|
|
encoderCache.Lock()
|
|
if encoderCache.m == nil {
|
|
encoderCache.m = make(map[typeAndTag]encoderFunc)
|
|
}
|
|
var wg sync.WaitGroup
|
|
wg.Add(1)
|
|
encoderCache.m[tac] = func(e *encodeState, v reflect.Value) {
|
|
wg.Wait()
|
|
f(e, v)
|
|
}
|
|
encoderCache.Unlock()
|
|
|
|
// Compute fields without lock.
|
|
// Might duplicate effort but won't hold other computations back.
|
|
f = newTypeEncoder(t, tagType, true)
|
|
wg.Done()
|
|
encoderCache.Lock()
|
|
if couldUseJSON != readCanUseJSONTag() {
|
|
// cache has been invalidated, unlock and retry recursively.
|
|
encoderCache.Unlock()
|
|
return typeEncoder(t, tagType)
|
|
}
|
|
encoderCache.m[tac] = f
|
|
encoderCache.Unlock()
|
|
return f
|
|
}
|
|
|
|
var (
|
|
marshalerType = reflect.TypeOf(new(Marshaler)).Elem()
|
|
instType = reflect.TypeOf((*time.Time)(nil)).Elem()
|
|
)
|
|
|
|
// newTypeEncoder constructs an encoderFunc for a type.
|
|
// The returned encoder only checks CanAddr when allowAddr is true.
|
|
func newTypeEncoder(t reflect.Type, tagType tagType, allowAddr bool) encoderFunc {
|
|
if t.Implements(marshalerType) {
|
|
return marshalerEncoder
|
|
}
|
|
if t.Kind() != reflect.Ptr && allowAddr {
|
|
if reflect.PtrTo(t).Implements(marshalerType) {
|
|
return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, tagType, false))
|
|
}
|
|
}
|
|
|
|
// Handle specific types first
|
|
switch t {
|
|
case bigIntType:
|
|
return bigIntEncoder
|
|
case bigFloatType:
|
|
return bigFloatEncoder
|
|
case instType:
|
|
return instEncoder
|
|
}
|
|
|
|
switch t.Kind() {
|
|
case reflect.Bool:
|
|
return boolEncoder
|
|
case reflect.Int32:
|
|
if tagType == tagRune {
|
|
return runeEncoder
|
|
}
|
|
return intEncoder
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int64:
|
|
return intEncoder
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return uintEncoder
|
|
case reflect.Float32:
|
|
return float32Encoder
|
|
case reflect.Float64:
|
|
return float64Encoder
|
|
case reflect.String:
|
|
return stringEncoder
|
|
case reflect.Interface:
|
|
return interfaceEncoder
|
|
case reflect.Struct:
|
|
return newStructEncoder(t, tagType)
|
|
case reflect.Map:
|
|
return newMapEncoder(t, tagType)
|
|
case reflect.Slice:
|
|
return newSliceEncoder(t, tagType)
|
|
case reflect.Array:
|
|
return newArrayEncoder(t, tagType)
|
|
case reflect.Ptr:
|
|
return newPtrEncoder(t, tagType)
|
|
default:
|
|
return unsupportedTypeEncoder
|
|
}
|
|
}
|
|
|
|
func invalidValueEncoder(e *encodeState, v reflect.Value) {
|
|
e.writeNil()
|
|
}
|
|
|
|
func marshalerEncoder(e *encodeState, v reflect.Value) {
|
|
if v.Kind() == reflect.Ptr && v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
m := v.Interface().(Marshaler)
|
|
b, err := m.MarshalEDN()
|
|
if err == nil {
|
|
// copy EDN into buffer, checking (token) validity.
|
|
e.ensureDelim()
|
|
err = Compact(&e.Buffer, b)
|
|
e.needsDelim = true
|
|
}
|
|
if err != nil {
|
|
e.error(&MarshalerError{v.Type(), err})
|
|
}
|
|
}
|
|
|
|
func addrMarshalerEncoder(e *encodeState, v reflect.Value) {
|
|
va := v.Addr()
|
|
if va.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
m := va.Interface().(Marshaler)
|
|
b, err := m.MarshalEDN()
|
|
if err == nil {
|
|
// copy EDN into buffer, checking (token) validity.
|
|
e.ensureDelim()
|
|
err = Compact(&e.Buffer, b)
|
|
e.needsDelim = true
|
|
}
|
|
if err != nil {
|
|
e.error(&MarshalerError{v.Type(), err})
|
|
}
|
|
}
|
|
|
|
func boolEncoder(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
if v.Bool() {
|
|
e.WriteString("true")
|
|
} else {
|
|
e.WriteString("false")
|
|
}
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func runeEncoder(e *encodeState, v reflect.Value) {
|
|
encodeRune(&e.Buffer, rune(v.Int()))
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func intEncoder(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
|
|
e.Write(b)
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func uintEncoder(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
|
|
e.Write(b)
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func bigIntEncoder(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
bi := v.Interface().(big.Int)
|
|
b := []byte(bi.String())
|
|
e.Write(b)
|
|
e.WriteByte('N')
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func bigFloatEncoder(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
bf := new(big.Float)
|
|
mc := e.mathContext()
|
|
val := v.Interface().(big.Float)
|
|
bf.Set(&val).SetMode(mc.Mode)
|
|
b := []byte(bf.Text('g', int(mc.Precision)))
|
|
e.Write(b)
|
|
e.WriteByte('M')
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func instEncoder(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
t := v.Interface().(time.Time)
|
|
e.Write([]byte(t.Format(`#inst"` + time.RFC3339Nano + `"`)))
|
|
}
|
|
|
|
type floatEncoder int // number of bits
|
|
|
|
func (bits floatEncoder) encode(e *encodeState, v reflect.Value) {
|
|
f := v.Float()
|
|
if math.IsInf(f, 0) || math.IsNaN(f) {
|
|
e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
|
|
}
|
|
e.ensureDelim()
|
|
b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
|
|
if ix := bytes.IndexAny(b, ".eE"); ix < 0 {
|
|
b = append(b, '.', '0')
|
|
}
|
|
e.Write(b)
|
|
e.needsDelim = true
|
|
}
|
|
|
|
var (
|
|
float32Encoder = (floatEncoder(32)).encode
|
|
float64Encoder = (floatEncoder(64)).encode
|
|
)
|
|
|
|
func stringEncoder(e *encodeState, v reflect.Value) {
|
|
e.string(v.String())
|
|
}
|
|
|
|
func interfaceEncoder(e *encodeState, v reflect.Value) {
|
|
if v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
e.reflectValue(v.Elem())
|
|
}
|
|
|
|
func unsupportedTypeEncoder(e *encodeState, v reflect.Value) {
|
|
e.error(&UnsupportedTypeError{v.Type()})
|
|
}
|
|
|
|
type structEncoder struct {
|
|
fields []field
|
|
fieldEncs []encoderFunc
|
|
}
|
|
|
|
func (se *structEncoder) encode(e *encodeState, v reflect.Value) {
|
|
e.WriteByte('{')
|
|
e.needsDelim = false
|
|
for i, f := range se.fields {
|
|
fv := fieldByIndex(v, f.index)
|
|
if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
|
|
continue
|
|
}
|
|
switch f.fnameType {
|
|
case emitKey:
|
|
e.ensureDelim()
|
|
e.WriteByte(':')
|
|
e.WriteString(f.name)
|
|
e.needsDelim = true
|
|
case emitString:
|
|
e.string(f.name)
|
|
e.needsDelim = false
|
|
case emitSym:
|
|
e.ensureDelim()
|
|
e.WriteString(f.name)
|
|
e.needsDelim = true
|
|
}
|
|
se.fieldEncs[i](e, fv)
|
|
}
|
|
e.WriteByte('}')
|
|
e.needsDelim = false
|
|
}
|
|
|
|
func newStructEncoder(t reflect.Type, tagType tagType) encoderFunc {
|
|
fields := cachedTypeFields(t)
|
|
se := &structEncoder{
|
|
fields: fields,
|
|
fieldEncs: make([]encoderFunc, len(fields)),
|
|
}
|
|
for i, f := range fields {
|
|
se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index), f.tagType)
|
|
}
|
|
return se.encode
|
|
}
|
|
|
|
type mapEncoder struct {
|
|
keyEnc encoderFunc
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (me *mapEncoder) encode(e *encodeState, v reflect.Value) {
|
|
if v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
e.WriteByte('{')
|
|
e.needsDelim = false
|
|
mk := v.MapKeys()
|
|
// NB: We don't get deterministic results here, because we don't iterate in a
|
|
// determinstic way.
|
|
for _, k := range mk {
|
|
if e.needsDelim { // bypass conventional whitespace to use commas instead
|
|
e.WriteByte(',')
|
|
e.needsDelim = false
|
|
}
|
|
me.keyEnc(e, k)
|
|
me.elemEnc(e, v.MapIndex(k))
|
|
}
|
|
e.WriteByte('}')
|
|
e.needsDelim = false
|
|
}
|
|
|
|
type mapSetEncoder struct {
|
|
keyEnc encoderFunc
|
|
}
|
|
|
|
func (me *mapSetEncoder) encode(e *encodeState, v reflect.Value) {
|
|
if v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
e.ensureDelim()
|
|
e.WriteByte('#')
|
|
e.WriteByte('{')
|
|
e.needsDelim = false
|
|
mk := v.MapKeys()
|
|
// not deterministic this one either.
|
|
for _, k := range mk {
|
|
mval := v.MapIndex(k)
|
|
if mval.Kind() != reflect.Bool || mval.Bool() {
|
|
me.keyEnc(e, k)
|
|
}
|
|
}
|
|
e.WriteByte('}')
|
|
e.needsDelim = false
|
|
}
|
|
|
|
func newMapEncoder(t reflect.Type, tagType tagType) encoderFunc {
|
|
canBeSet := false
|
|
switch t.Elem().Kind() {
|
|
case reflect.Struct:
|
|
if t.Elem().NumField() == 0 {
|
|
canBeSet = true
|
|
}
|
|
case reflect.Bool:
|
|
canBeSet = true
|
|
}
|
|
if (tagType == tagUndefined || tagType == tagSet) && canBeSet {
|
|
me := &mapSetEncoder{typeEncoder(t.Key(), tagUndefined)}
|
|
return me.encode
|
|
}
|
|
if tagType != tagUndefined && tagType != tagMap {
|
|
return unsupportedTypeEncoder
|
|
}
|
|
me := &mapEncoder{
|
|
typeEncoder(t.Key(), tagUndefined),
|
|
typeEncoder(t.Elem(), tagUndefined),
|
|
}
|
|
return me.encode
|
|
}
|
|
|
|
func encodeByteSlice(e *encodeState, v reflect.Value) {
|
|
if v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
s := v.Bytes()
|
|
e.ensureDelim()
|
|
e.WriteString(`#base64"`)
|
|
if len(s) < 1024 {
|
|
// for small buffers, using Encode directly is much faster.
|
|
dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
|
|
base64.StdEncoding.Encode(dst, s)
|
|
e.Write(dst)
|
|
} else {
|
|
// for large buffers, avoid unnecessary extra temporary
|
|
// buffer space.
|
|
enc := base64.NewEncoder(base64.StdEncoding, e)
|
|
enc.Write(s)
|
|
enc.Close()
|
|
}
|
|
e.WriteByte('"')
|
|
}
|
|
|
|
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
|
|
type sliceEncoder struct {
|
|
arrayEnc encoderFunc
|
|
}
|
|
|
|
func (e *encodeState) ensureDelim() {
|
|
if e.needsDelim {
|
|
e.WriteByte(' ')
|
|
}
|
|
}
|
|
|
|
func (e *encodeState) writeNil() {
|
|
e.ensureDelim()
|
|
e.WriteString("nil")
|
|
e.needsDelim = true
|
|
}
|
|
|
|
func (se *sliceEncoder) encode(e *encodeState, v reflect.Value) {
|
|
if v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
se.arrayEnc(e, v)
|
|
}
|
|
|
|
func newSliceEncoder(t reflect.Type, tagType tagType) encoderFunc {
|
|
// Byte slices get special treatment; arrays don't.
|
|
if t.Elem().Kind() == reflect.Uint8 {
|
|
return encodeByteSlice
|
|
}
|
|
enc := &sliceEncoder{newArrayEncoder(t, tagType)}
|
|
return enc.encode
|
|
}
|
|
|
|
type arrayEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value) {
|
|
e.WriteByte('[')
|
|
e.needsDelim = false
|
|
n := v.Len()
|
|
for i := 0; i < n; i++ {
|
|
ae.elemEnc(e, v.Index(i))
|
|
}
|
|
e.WriteByte(']')
|
|
e.needsDelim = false
|
|
}
|
|
|
|
type listArrayEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (ae *listArrayEncoder) encode(e *encodeState, v reflect.Value) {
|
|
e.WriteByte('(')
|
|
e.needsDelim = false
|
|
n := v.Len()
|
|
for i := 0; i < n; i++ {
|
|
ae.elemEnc(e, v.Index(i))
|
|
}
|
|
e.WriteByte(')')
|
|
e.needsDelim = false
|
|
}
|
|
|
|
type setArrayEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (ae *setArrayEncoder) encode(e *encodeState, v reflect.Value) {
|
|
e.ensureDelim()
|
|
e.WriteByte('#')
|
|
e.WriteByte('{')
|
|
e.needsDelim = false
|
|
n := v.Len()
|
|
for i := 0; i < n; i++ {
|
|
ae.elemEnc(e, v.Index(i))
|
|
}
|
|
e.WriteByte('}')
|
|
e.needsDelim = false
|
|
}
|
|
|
|
func newArrayEncoder(t reflect.Type, tagType tagType) encoderFunc {
|
|
switch tagType {
|
|
case tagList:
|
|
enc := &listArrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
|
|
return enc.encode
|
|
case tagSet:
|
|
enc := &setArrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
|
|
return enc.encode
|
|
default:
|
|
enc := &arrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
|
|
return enc.encode
|
|
}
|
|
}
|
|
|
|
type ptrEncoder struct {
|
|
elemEnc encoderFunc
|
|
}
|
|
|
|
func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value) {
|
|
if v.IsNil() {
|
|
e.writeNil()
|
|
return
|
|
}
|
|
pe.elemEnc(e, v.Elem())
|
|
}
|
|
|
|
func newPtrEncoder(t reflect.Type, tagType tagType) encoderFunc {
|
|
enc := &ptrEncoder{typeEncoder(t.Elem(), tagType)}
|
|
return enc.encode
|
|
}
|
|
|
|
type condAddrEncoder struct {
|
|
canAddrEnc, elseEnc encoderFunc
|
|
}
|
|
|
|
func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value) {
|
|
if v.CanAddr() {
|
|
ce.canAddrEnc(e, v)
|
|
} else {
|
|
ce.elseEnc(e, v)
|
|
}
|
|
}
|
|
|
|
// newCondAddrEncoder returns an encoder that checks whether its value
|
|
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
|
|
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
|
|
enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
|
|
return enc.encode
|
|
}
|
|
|
|
// NOTE: keep in sync with stringBytes below.
|
|
func (e *encodeState) string(s string) (int, error) {
|
|
len0 := e.Len()
|
|
e.WriteByte('"')
|
|
start := 0
|
|
for i := 0; i < len(s); {
|
|
if b := s[i]; b < utf8.RuneSelf {
|
|
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
|
|
i++
|
|
continue
|
|
}
|
|
if start < i {
|
|
e.WriteString(s[start:i])
|
|
}
|
|
switch b {
|
|
case '\\', '"':
|
|
e.WriteByte('\\')
|
|
e.WriteByte(b)
|
|
case '\n':
|
|
e.WriteByte('\\')
|
|
e.WriteByte('n')
|
|
case '\r':
|
|
e.WriteByte('\\')
|
|
e.WriteByte('r')
|
|
case '\t':
|
|
e.WriteByte('\\')
|
|
e.WriteByte('t')
|
|
default:
|
|
// This encodes bytes < 0x20 except for \n and \r,
|
|
// as well as <, > and &. The latter are escaped because they
|
|
// can lead to security holes when user-controlled strings
|
|
// are rendered into EDN and served to some browsers.
|
|
e.WriteString(`\u00`)
|
|
e.WriteByte(hex[b>>4])
|
|
e.WriteByte(hex[b&0xF])
|
|
}
|
|
i++
|
|
start = i
|
|
continue
|
|
}
|
|
c, size := utf8.DecodeRuneInString(s[i:])
|
|
if c == utf8.RuneError && size == 1 {
|
|
if start < i {
|
|
e.WriteString(s[start:i])
|
|
}
|
|
e.WriteString(`\ufffd`)
|
|
i += size
|
|
start = i
|
|
continue
|
|
}
|
|
i += size
|
|
}
|
|
if start < len(s) {
|
|
e.WriteString(s[start:])
|
|
}
|
|
e.WriteByte('"')
|
|
e.needsDelim = false
|
|
return e.Len() - len0, nil
|
|
}
|
|
|
|
// NOTE: keep in sync with string above.
|
|
func (e *encodeState) stringBytes(s []byte) (int, error) {
|
|
len0 := e.Len()
|
|
e.WriteByte('"')
|
|
start := 0
|
|
for i := 0; i < len(s); {
|
|
if b := s[i]; b < utf8.RuneSelf {
|
|
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
|
|
i++
|
|
continue
|
|
}
|
|
if start < i {
|
|
e.Write(s[start:i])
|
|
}
|
|
switch b {
|
|
case '\\', '"':
|
|
e.WriteByte('\\')
|
|
e.WriteByte(b)
|
|
case '\n':
|
|
e.WriteByte('\\')
|
|
e.WriteByte('n')
|
|
case '\r':
|
|
e.WriteByte('\\')
|
|
e.WriteByte('r')
|
|
case '\t':
|
|
e.WriteByte('\\')
|
|
e.WriteByte('t')
|
|
default:
|
|
// This encodes bytes < 0x20 except for \n and \r,
|
|
// as well as <, >, and &. The latter are escaped because they
|
|
// can lead to security holes when user-controlled strings
|
|
// are rendered into EDN and served to some browsers.
|
|
e.WriteString(`\u00`)
|
|
e.WriteByte(hex[b>>4])
|
|
e.WriteByte(hex[b&0xF])
|
|
}
|
|
i++
|
|
start = i
|
|
continue
|
|
}
|
|
c, size := utf8.DecodeRune(s[i:])
|
|
if c == utf8.RuneError && size == 1 {
|
|
if start < i {
|
|
e.Write(s[start:i])
|
|
}
|
|
e.WriteString(`\ufffd`)
|
|
i += size
|
|
start = i
|
|
continue
|
|
}
|
|
i += size
|
|
}
|
|
if start < len(s) {
|
|
e.Write(s[start:])
|
|
}
|
|
e.WriteByte('"')
|
|
e.needsDelim = false
|
|
return e.Len() - len0, nil
|
|
}
|
|
|
|
func isValidTag(s string) bool {
|
|
if s == "" {
|
|
return false
|
|
}
|
|
for _, c := range s {
|
|
switch {
|
|
case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
|
|
// Backslash and quote chars are reserved, but
|
|
// otherwise any punctuation chars are allowed
|
|
// in a tag name.
|
|
default:
|
|
if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func fieldByIndex(v reflect.Value, index []int) reflect.Value {
|
|
for _, i := range index {
|
|
if v.Kind() == reflect.Ptr {
|
|
if v.IsNil() {
|
|
return reflect.Value{}
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
v = v.Field(i)
|
|
}
|
|
return v
|
|
}
|
|
|
|
func typeByIndex(t reflect.Type, index []int) reflect.Type {
|
|
for _, i := range index {
|
|
if t.Kind() == reflect.Ptr {
|
|
t = t.Elem()
|
|
}
|
|
t = t.Field(i).Type
|
|
}
|
|
return t
|
|
}
|
|
|
|
// A field represents a single field found in a struct.
|
|
type field struct {
|
|
name string
|
|
nameBytes []byte // []byte(name)
|
|
equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
|
|
|
|
tag bool
|
|
index []int
|
|
typ reflect.Type
|
|
omitEmpty bool
|
|
fnameType emitType
|
|
tagType tagType
|
|
}
|
|
|
|
type emitType int
|
|
|
|
const (
|
|
emitSym emitType = iota
|
|
emitKey
|
|
emitString
|
|
)
|
|
|
|
type tagType int
|
|
|
|
const (
|
|
tagUndefined tagType = iota
|
|
tagSet
|
|
tagMap
|
|
tagVec
|
|
tagList
|
|
tagRune
|
|
)
|
|
|
|
func fillField(f field) field {
|
|
f.nameBytes = []byte(f.name)
|
|
f.equalFold = foldFunc(f.nameBytes)
|
|
return f
|
|
}
|
|
|
|
// byName sorts field by name, breaking ties with depth,
|
|
// then breaking ties with "name came from edn tag", then
|
|
// breaking ties with index sequence.
|
|
type byName []field
|
|
|
|
func (x byName) Len() int { return len(x) }
|
|
|
|
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
func (x byName) Less(i, j int) bool {
|
|
if x[i].name != x[j].name {
|
|
return x[i].name < x[j].name
|
|
}
|
|
if len(x[i].index) != len(x[j].index) {
|
|
return len(x[i].index) < len(x[j].index)
|
|
}
|
|
if x[i].tag != x[j].tag {
|
|
return x[i].tag
|
|
}
|
|
return byIndex(x).Less(i, j)
|
|
}
|
|
|
|
// byIndex sorts field by index sequence.
|
|
type byIndex []field
|
|
|
|
func (x byIndex) Len() int { return len(x) }
|
|
|
|
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
func (x byIndex) Less(i, j int) bool {
|
|
for k, xik := range x[i].index {
|
|
if k >= len(x[j].index) {
|
|
return false
|
|
}
|
|
if xik != x[j].index[k] {
|
|
return xik < x[j].index[k]
|
|
}
|
|
}
|
|
return len(x[i].index) < len(x[j].index)
|
|
}
|
|
|
|
// typeFields returns a list of fields that edn should recognize for the given type.
|
|
// The algorithm is breadth-first search over the set of structs to include - the top struct
|
|
// and then any reachable anonymous structs.
|
|
func typeFields(t reflect.Type) []field {
|
|
// Anonymous fields to explore at the current level and the next.
|
|
current := []field{}
|
|
next := []field{{typ: t}}
|
|
|
|
// Count of queued names for current level and the next.
|
|
count := map[reflect.Type]int{}
|
|
nextCount := map[reflect.Type]int{}
|
|
|
|
// Types already visited at an earlier level.
|
|
visited := map[reflect.Type]bool{}
|
|
|
|
// Fields found.
|
|
var fields []field
|
|
|
|
for len(next) > 0 {
|
|
current, next = next, current[:0]
|
|
count, nextCount = nextCount, map[reflect.Type]int{}
|
|
|
|
for _, f := range current {
|
|
if visited[f.typ] {
|
|
continue
|
|
}
|
|
visited[f.typ] = true
|
|
|
|
// Scan f.typ for fields to include.
|
|
for i := 0; i < f.typ.NumField(); i++ {
|
|
sf := f.typ.Field(i)
|
|
if sf.PkgPath != "" && !sf.Anonymous { // unexported
|
|
continue
|
|
}
|
|
tag := sf.Tag.Get("edn")
|
|
if tag == "" && readCanUseJSONTag() {
|
|
tag = sf.Tag.Get("json")
|
|
}
|
|
if tag == "-" {
|
|
continue
|
|
}
|
|
name, opts := parseTag(tag)
|
|
if !isValidTag(name) {
|
|
name = ""
|
|
}
|
|
index := make([]int, len(f.index)+1)
|
|
copy(index, f.index)
|
|
index[len(f.index)] = i
|
|
|
|
ft := sf.Type
|
|
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
|
|
// Follow pointer.
|
|
ft = ft.Elem()
|
|
}
|
|
|
|
// Add tagging rules:
|
|
var emit emitType
|
|
switch {
|
|
case opts.Contains("sym"):
|
|
emit = emitSym
|
|
case opts.Contains("str"):
|
|
emit = emitString
|
|
case opts.Contains("key"):
|
|
fallthrough
|
|
default:
|
|
emit = emitKey
|
|
}
|
|
// key, sym, str
|
|
|
|
var tagType tagType // add tag rules
|
|
switch {
|
|
case opts.Contains("set"):
|
|
tagType = tagSet
|
|
case opts.Contains("map"):
|
|
tagType = tagMap
|
|
case opts.Contains("vector"):
|
|
tagType = tagVec
|
|
case opts.Contains("list"):
|
|
tagType = tagList
|
|
case opts.Contains("rune"):
|
|
tagType = tagRune
|
|
default:
|
|
tagType = tagUndefined
|
|
}
|
|
|
|
// Record found field and index sequence.
|
|
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
|
|
tagged := name != ""
|
|
if name == "" {
|
|
r := []rune(sf.Name)
|
|
r[0] = unicode.ToLower(r[0])
|
|
name = string(r)
|
|
}
|
|
fields = append(fields, fillField(field{
|
|
name: name,
|
|
tag: tagged,
|
|
index: index,
|
|
typ: ft,
|
|
omitEmpty: opts.Contains("omitempty"),
|
|
fnameType: emit,
|
|
tagType: tagType,
|
|
}))
|
|
if count[f.typ] > 1 {
|
|
// If there were multiple instances, add a second,
|
|
// so that the annihilation code will see a duplicate.
|
|
// It only cares about the distinction between 1 or 2,
|
|
// so don't bother generating any more copies.
|
|
fields = append(fields, fields[len(fields)-1])
|
|
}
|
|
continue
|
|
}
|
|
|
|
// Record new anonymous struct to explore in next round.
|
|
nextCount[ft]++
|
|
if nextCount[ft] == 1 {
|
|
next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sort.Sort(byName(fields))
|
|
|
|
// Delete all fields that are hidden by the Go rules for embedded fields,
|
|
// except that fields with EDN tags are promoted.
|
|
|
|
// The fields are sorted in primary order of name, secondary order
|
|
// of field index length. Loop over names; for each name, delete
|
|
// hidden fields by choosing the one dominant field that survives.
|
|
out := fields[:0]
|
|
for advance, i := 0, 0; i < len(fields); i += advance {
|
|
// One iteration per name.
|
|
// Find the sequence of fields with the name of this first field.
|
|
fi := fields[i]
|
|
name := fi.name
|
|
for advance = 1; i+advance < len(fields); advance++ {
|
|
fj := fields[i+advance]
|
|
if fj.name != name {
|
|
break
|
|
}
|
|
}
|
|
if advance == 1 { // Only one field with this name
|
|
out = append(out, fi)
|
|
continue
|
|
}
|
|
dominant, ok := dominantField(fields[i : i+advance])
|
|
if ok {
|
|
out = append(out, dominant)
|
|
}
|
|
}
|
|
|
|
fields = out
|
|
sort.Sort(byIndex(fields))
|
|
|
|
return fields
|
|
}
|
|
|
|
// dominantField looks through the fields, all of which are known to
|
|
// have the same name, to find the single field that dominates the
|
|
// others using Go's embedding rules, modified by the presence of
|
|
// EDN tags. If there are multiple top-level fields, the boolean
|
|
// will be false: This condition is an error in Go and we skip all
|
|
// the fields.
|
|
func dominantField(fields []field) (field, bool) {
|
|
// The fields are sorted in increasing index-length order. The winner
|
|
// must therefore be one with the shortest index length. Drop all
|
|
// longer entries, which is easy: just truncate the slice.
|
|
length := len(fields[0].index)
|
|
tagged := -1 // Index of first tagged field.
|
|
for i, f := range fields {
|
|
if len(f.index) > length {
|
|
fields = fields[:i]
|
|
break
|
|
}
|
|
if f.tag {
|
|
if tagged >= 0 {
|
|
// Multiple tagged fields at the same level: conflict.
|
|
// Return no field.
|
|
return field{}, false
|
|
}
|
|
tagged = i
|
|
}
|
|
}
|
|
if tagged >= 0 {
|
|
return fields[tagged], true
|
|
}
|
|
// All remaining fields have the same length. If there's more than one,
|
|
// we have a conflict (two fields named "X" at the same level) and we
|
|
// return no field.
|
|
if len(fields) > 1 {
|
|
return field{}, false
|
|
}
|
|
return fields[0], true
|
|
}
|
|
|
|
var canUseJSONTag int32
|
|
|
|
func readCanUseJSONTag() bool {
|
|
return atomic.LoadInt32(&canUseJSONTag) == 1
|
|
}
|
|
|
|
// UseJSONAsFallback can be set to true to let go-edn parse structs with
|
|
// information from the `json` tag for encoding and decoding type fields if not
|
|
// the `edn` tag field is set. This is not threadsafe: Encoding and decoding
|
|
// happening while this is called may return results that mix json and non-json
|
|
// tag reading. Preferably you call this in an init() function to ensure it is
|
|
// either set or unset.
|
|
func UseJSONAsFallback(val bool) {
|
|
set := int32(0)
|
|
if val {
|
|
set = 1
|
|
}
|
|
|
|
// Here comes the funny stuff: Cache invalidation. Right now we lock and
|
|
// unlock these independently of eachother, so it's fine to lock them in this
|
|
// order. However, if we decide to change this later on, the only reasonable
|
|
// change would be that you may grab the encoderCache lock before the
|
|
// fieldCache lock. Therefore we do it in this order, although it should not
|
|
// matter strictly speaking.
|
|
encoderCache.Lock()
|
|
fieldCache.Lock()
|
|
atomic.StoreInt32(&canUseJSONTag, set)
|
|
fieldCache.m = nil
|
|
encoderCache.m = nil
|
|
fieldCache.Unlock()
|
|
encoderCache.Unlock()
|
|
}
|
|
|
|
var fieldCache struct {
|
|
sync.RWMutex
|
|
m map[reflect.Type][]field
|
|
}
|
|
|
|
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
|
|
func cachedTypeFields(t reflect.Type) []field {
|
|
fieldCache.RLock()
|
|
f := fieldCache.m[t]
|
|
fieldCache.RUnlock()
|
|
if f != nil {
|
|
return f
|
|
}
|
|
couldUseJSON := readCanUseJSONTag()
|
|
|
|
// Compute fields without lock.
|
|
// Might duplicate effort but won't hold other computations back.
|
|
f = typeFields(t)
|
|
if f == nil {
|
|
f = []field{}
|
|
}
|
|
|
|
fieldCache.Lock()
|
|
if couldUseJSON != readCanUseJSONTag() {
|
|
// cache has been invalidated, unlock and retry recursively.
|
|
fieldCache.Unlock()
|
|
return cachedTypeFields(t)
|
|
}
|
|
if fieldCache.m == nil {
|
|
fieldCache.m = map[reflect.Type][]field{}
|
|
}
|
|
fieldCache.m[t] = f
|
|
fieldCache.Unlock()
|
|
return f
|
|
}
|