mirror of
https://github.com/status-im/status-go.git
synced 2025-01-27 15:05:56 +00:00
c8f9dad554
## What has changed? I've introduced to the public binding functionality that will compress and decompress public keys of a variety of encoding and key types. This functionality supports all major byte encoding formats and the following EC public key types: - `secp256k1` pks - `bls12-381 g1` pks - `bls12-381 g2` pks ## Why make the change? We want shorter public (chat) keys and we want to be future proof and encoding agnostic. See the issue here https://github.com/status-im/status-go/issues/1937 --- * Added basic signature for compresspk and uncompresspk * Added basic encoding information * make vendor * formatted imports for the linter * Reformatted imports hoping linter likes it * This linter is capricious * Added check that the secp256k1 key is valid * Added test for valid key * Added multiformat/go-varint dep * Added public key type handling * Added key decompression with key type handling * Added handling for '0x' type indentifying * Added more robust testing * Less lint for the linting gods * make vendor for bls12_381 * Added bls12-381 compression tests * Added decompress key expected results * Refactor of typed and untyped keys in tests * Lint god appeasment * Refactor of sample public keys * Implemented bls12-381 decompression * gofmt * Renamed decode/encode funcs to be more descriptive * Added binary bindings for key de/compression * Refactor of func parameters gomobile is a bit tempermental using raw bytes as a parameter, so I've decided to use string only inputs and outputs * gofmt * Added function documentation * Moved multiformat de/compression into api/multiformat ns * Moved multiformat de/compression into api/multiformat ns * Changed compress to serialize on API
267 lines
5.9 KiB
Go
267 lines
5.9 KiB
Go
package bls12381
|
|
|
|
type pair struct {
|
|
g1 *PointG1
|
|
g2 *PointG2
|
|
}
|
|
|
|
func newPair(g1 *PointG1, g2 *PointG2) pair {
|
|
return pair{g1, g2}
|
|
}
|
|
|
|
// Engine is BLS12-381 elliptic curve pairing engine
|
|
type Engine struct {
|
|
G1 *G1
|
|
G2 *G2
|
|
fp12 *fp12
|
|
fp2 *fp2
|
|
pairingEngineTemp
|
|
pairs []pair
|
|
}
|
|
|
|
// NewEngine creates new pairing engine insteace.
|
|
func NewEngine() *Engine {
|
|
fp2 := newFp2()
|
|
fp6 := newFp6(fp2)
|
|
fp12 := newFp12(fp6)
|
|
g1 := NewG1()
|
|
g2 := newG2(fp2)
|
|
return &Engine{
|
|
fp2: fp2,
|
|
fp12: fp12,
|
|
G1: g1,
|
|
G2: g2,
|
|
pairingEngineTemp: newEngineTemp(),
|
|
}
|
|
}
|
|
|
|
type pairingEngineTemp struct {
|
|
t2 [10]*fe2
|
|
t12 [9]fe12
|
|
}
|
|
|
|
func newEngineTemp() pairingEngineTemp {
|
|
t2 := [10]*fe2{}
|
|
for i := 0; i < 10; i++ {
|
|
t2[i] = &fe2{}
|
|
}
|
|
t12 := [9]fe12{}
|
|
return pairingEngineTemp{t2, t12}
|
|
}
|
|
|
|
// AddPair adds a g1, g2 point pair to pairing engine
|
|
func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
|
|
p := newPair(g1, g2)
|
|
if !e.isZero(p) {
|
|
e.affine(p)
|
|
e.pairs = append(e.pairs, p)
|
|
}
|
|
return e
|
|
}
|
|
|
|
// AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
|
|
func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
|
|
e.G1.Neg(g1, g1)
|
|
e.AddPair(g1, g2)
|
|
return e
|
|
}
|
|
|
|
// Reset deletes added pairs.
|
|
func (e *Engine) Reset() *Engine {
|
|
e.pairs = []pair{}
|
|
return e
|
|
}
|
|
|
|
func (e *Engine) isZero(p pair) bool {
|
|
return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
|
|
}
|
|
|
|
func (e *Engine) affine(p pair) {
|
|
e.G1.Affine(p.g1)
|
|
e.G2.Affine(p.g2)
|
|
}
|
|
|
|
func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
|
|
// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
|
|
fp2 := e.fp2
|
|
t := e.t2
|
|
fp2.mul(t[0], &r[0], &r[1])
|
|
fp2.mulByFq(t[0], t[0], twoInv)
|
|
fp2.square(t[1], &r[1])
|
|
fp2.square(t[2], &r[2])
|
|
fp2.double(t[7], t[2])
|
|
fp2.add(t[7], t[7], t[2])
|
|
fp2.mulByB(t[3], t[7])
|
|
fp2.double(t[4], t[3])
|
|
fp2.add(t[4], t[4], t[3])
|
|
fp2.add(t[5], t[1], t[4])
|
|
fp2.mulByFq(t[5], t[5], twoInv)
|
|
fp2.add(t[6], &r[1], &r[2])
|
|
fp2.square(t[6], t[6])
|
|
fp2.add(t[7], t[2], t[1])
|
|
fp2.sub(t[6], t[6], t[7])
|
|
fp2.sub(&coeff[0], t[3], t[1])
|
|
fp2.square(t[7], &r[0])
|
|
fp2.sub(t[4], t[1], t[4])
|
|
fp2.mul(&r[0], t[4], t[0])
|
|
fp2.square(t[2], t[3])
|
|
fp2.double(t[3], t[2])
|
|
fp2.add(t[3], t[3], t[2])
|
|
fp2.square(t[5], t[5])
|
|
fp2.sub(&r[1], t[5], t[3])
|
|
fp2.mul(&r[2], t[1], t[6])
|
|
fp2.double(t[0], t[7])
|
|
fp2.add(&coeff[1], t[0], t[7])
|
|
fp2.neg(&coeff[2], t[6])
|
|
}
|
|
|
|
func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
|
|
// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
|
|
fp2 := e.fp2
|
|
t := e.t2
|
|
fp2.mul(t[0], &q[1], &r[2])
|
|
fp2.neg(t[0], t[0])
|
|
fp2.add(t[0], t[0], &r[1])
|
|
fp2.mul(t[1], &q[0], &r[2])
|
|
fp2.neg(t[1], t[1])
|
|
fp2.add(t[1], t[1], &r[0])
|
|
fp2.square(t[2], t[0])
|
|
fp2.square(t[3], t[1])
|
|
fp2.mul(t[4], t[1], t[3])
|
|
fp2.mul(t[2], &r[2], t[2])
|
|
fp2.mul(t[3], &r[0], t[3])
|
|
fp2.double(t[5], t[3])
|
|
fp2.sub(t[5], t[4], t[5])
|
|
fp2.add(t[5], t[5], t[2])
|
|
fp2.mul(&r[0], t[1], t[5])
|
|
fp2.sub(t[2], t[3], t[5])
|
|
fp2.mul(t[2], t[2], t[0])
|
|
fp2.mul(t[3], &r[1], t[4])
|
|
fp2.sub(&r[1], t[2], t[3])
|
|
fp2.mul(&r[2], &r[2], t[4])
|
|
fp2.mul(t[2], t[1], &q[1])
|
|
fp2.mul(t[3], t[0], &q[0])
|
|
fp2.sub(&coeff[0], t[3], t[2])
|
|
fp2.neg(&coeff[1], t[0])
|
|
coeff[2].set(t[1])
|
|
}
|
|
|
|
func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
|
|
// Algorithm 5 in https://eprint.iacr.org/2019/077.pdf
|
|
if e.G2.IsZero(twistPoint) {
|
|
return
|
|
}
|
|
r := new(PointG2).Set(twistPoint)
|
|
j := 0
|
|
for i := int(x.BitLen() - 2); i >= 0; i-- {
|
|
e.doublingStep(&ellCoeffs[j], r)
|
|
if x.Bit(i) != 0 {
|
|
j++
|
|
ellCoeffs[j] = fe6{}
|
|
e.additionStep(&ellCoeffs[j], r, twistPoint)
|
|
}
|
|
j++
|
|
}
|
|
}
|
|
|
|
func (e *Engine) millerLoop(f *fe12) {
|
|
pairs := e.pairs
|
|
ellCoeffs := make([][68][3]fe2, len(pairs))
|
|
for i := 0; i < len(pairs); i++ {
|
|
e.preCompute(&ellCoeffs[i], pairs[i].g2)
|
|
}
|
|
fp12, fp2 := e.fp12, e.fp2
|
|
t := e.t2
|
|
f.one()
|
|
j := 0
|
|
for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
|
|
if i != 62 {
|
|
fp12.square(f, f)
|
|
}
|
|
for i := 0; i <= len(pairs)-1; i++ {
|
|
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
|
|
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
|
|
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
|
|
}
|
|
if x.Bit(i) != 0 {
|
|
j++
|
|
for i := 0; i <= len(pairs)-1; i++ {
|
|
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
|
|
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
|
|
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
|
|
}
|
|
}
|
|
j++
|
|
}
|
|
fp12.conjugate(f, f)
|
|
}
|
|
|
|
func (e *Engine) exp(c, a *fe12) {
|
|
fp12 := e.fp12
|
|
fp12.cyclotomicExp(c, a, x)
|
|
fp12.conjugate(c, c)
|
|
}
|
|
|
|
func (e *Engine) finalExp(f *fe12) {
|
|
fp12 := e.fp12
|
|
t := e.t12
|
|
// easy part
|
|
fp12.frobeniusMap(&t[0], f, 6)
|
|
fp12.inverse(&t[1], f)
|
|
fp12.mul(&t[2], &t[0], &t[1])
|
|
t[1].set(&t[2])
|
|
fp12.frobeniusMapAssign(&t[2], 2)
|
|
fp12.mulAssign(&t[2], &t[1])
|
|
fp12.cyclotomicSquare(&t[1], &t[2])
|
|
fp12.conjugate(&t[1], &t[1])
|
|
// hard part
|
|
e.exp(&t[3], &t[2])
|
|
fp12.cyclotomicSquare(&t[4], &t[3])
|
|
fp12.mul(&t[5], &t[1], &t[3])
|
|
e.exp(&t[1], &t[5])
|
|
e.exp(&t[0], &t[1])
|
|
e.exp(&t[6], &t[0])
|
|
fp12.mulAssign(&t[6], &t[4])
|
|
e.exp(&t[4], &t[6])
|
|
fp12.conjugate(&t[5], &t[5])
|
|
fp12.mulAssign(&t[4], &t[5])
|
|
fp12.mulAssign(&t[4], &t[2])
|
|
fp12.conjugate(&t[5], &t[2])
|
|
fp12.mulAssign(&t[1], &t[2])
|
|
fp12.frobeniusMapAssign(&t[1], 3)
|
|
fp12.mulAssign(&t[6], &t[5])
|
|
fp12.frobeniusMapAssign(&t[6], 1)
|
|
fp12.mulAssign(&t[3], &t[0])
|
|
fp12.frobeniusMapAssign(&t[3], 2)
|
|
fp12.mulAssign(&t[3], &t[1])
|
|
fp12.mulAssign(&t[3], &t[6])
|
|
fp12.mul(f, &t[3], &t[4])
|
|
}
|
|
|
|
func (e *Engine) calculate() *fe12 {
|
|
f := e.fp12.one()
|
|
if len(e.pairs) == 0 {
|
|
return f
|
|
}
|
|
e.millerLoop(f)
|
|
e.finalExp(f)
|
|
return f
|
|
}
|
|
|
|
// Check computes pairing and checks if result is equal to one
|
|
func (e *Engine) Check() bool {
|
|
return e.calculate().isOne()
|
|
}
|
|
|
|
// Result computes pairing and returns target group element as result.
|
|
func (e *Engine) Result() *E {
|
|
r := e.calculate()
|
|
e.Reset()
|
|
return r
|
|
}
|
|
|
|
// GT returns target group instance.
|
|
func (e *Engine) GT() *GT {
|
|
return NewGT()
|
|
}
|