Samuel Hawksby-Robinson c8f9dad554
Feature/key compression (#1990)
## What has changed?

I've introduced to the public binding functionality that will compress and decompress public keys of a variety of encoding and key types. This functionality supports all major byte encoding formats and the following EC public key types:

- `secp256k1` pks
- `bls12-381 g1` pks
- `bls12-381 g2` pks

## Why make the change?

We want shorter public (chat) keys and we want to be future proof and encoding agnostic. See the issue here https://github.com/status-im/status-go/issues/1937

---

* Added basic signature for compresspk and uncompresspk

* Added basic encoding information

* make vendor

* formatted imports for the linter

* Reformatted imports hoping linter likes it

* This linter is capricious

* Added check that the secp256k1 key is valid

* Added test for valid key

* Added multiformat/go-varint dep

* Added public key type handling

* Added key decompression with key type handling

* Added handling for '0x' type indentifying

* Added more robust testing

* Less lint for the linting gods

* make vendor for bls12_381

* Added bls12-381 compression tests

* Added decompress key expected results

* Refactor of typed and untyped keys in tests

* Lint god appeasment

* Refactor of sample public keys

* Implemented bls12-381 decompression

* gofmt

* Renamed decode/encode funcs to be more descriptive

* Added binary bindings for key de/compression

* Refactor of func parameters

gomobile is a bit tempermental using raw bytes as a parameter, so I've decided to use string only inputs and outputs

* gofmt

* Added function documentation

* Moved multiformat de/compression into api/multiformat ns

* Moved multiformat de/compression into api/multiformat ns

* Changed compress to serialize on API
2020-06-23 11:47:17 +01:00

107 lines
2.5 KiB
Go

package bls12381
import (
"errors"
"math/big"
)
// E is type for target group element
type E = fe12
// GT is type for target multiplicative group GT.
type GT struct {
fp12 *fp12
}
// Set copies given value into the destination
func (e *E) Set(e2 *E) *E {
return e.set(e2)
}
// One sets a new target group element to one
func (e *E) One() *E {
e = new(fe12).one()
return e
}
// IsOne returns true if given element equals to one
func (e *E) IsOne() bool {
return e.isOne()
}
// Equal returns true if given two element is equal, otherwise returns false
func (g *E) Equal(g2 *E) bool {
return g.equal(g2)
}
// NewGT constructs new target group instance.
func NewGT() *GT {
fp12 := newFp12(nil)
return &GT{fp12}
}
// Q returns group order in big.Int.
func (g *GT) Q() *big.Int {
return new(big.Int).Set(q)
}
// FromBytes expects 576 byte input and returns target group element
// FromBytes returns error if given element is not on correct subgroup.
func (g *GT) FromBytes(in []byte) (*E, error) {
e, err := g.fp12.fromBytes(in)
if err != nil {
return nil, err
}
if !g.IsValid(e) {
return e, errors.New("invalid element")
}
return e, nil
}
// ToBytes serializes target group element.
func (g *GT) ToBytes(e *E) []byte {
return g.fp12.toBytes(e)
}
// IsValid checks whether given target group element is in correct subgroup.
func (g *GT) IsValid(e *E) bool {
r := g.New()
g.fp12.exp(r, e, q)
return r.isOne()
}
// New initializes a new target group element which is equal to one
func (g *GT) New() *E {
return new(E).One()
}
// Add adds two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Add(c, a, b *E) {
g.fp12.add(c, a, b)
}
// Sub subtracts two field element `a` and `b`, and assigns the result to the element in first argument.
func (g *GT) Sub(c, a, b *E) {
g.fp12.sub(c, a, b)
}
// Mul multiplies two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Mul(c, a, b *E) {
g.fp12.mul(c, a, b)
}
// Square squares an element `a` and assigns the result to the element in first argument.
func (g *GT) Square(c, a *E) {
g.fp12.cyclotomicSquare(c, a)
}
// Exp exponents an element `a` by a scalar `s` and assigns the result to the element in first argument.
func (g *GT) Exp(c, a *E, s *big.Int) {
g.fp12.cyclotomicExp(c, a, s)
}
// Inverse inverses an element `a` and assigns the result to the element in first argument.
func (g *GT) Inverse(c, a *E) {
g.fp12.inverse(c, a)
}