status-go/waku/waku.go

1575 lines
45 KiB
Go

// Copyright 2019 The Waku Library Authors.
//
// The Waku library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The Waku library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty off
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the Waku library. If not, see <http://www.gnu.org/licenses/>.
//
// This software uses the go-ethereum library, which is licensed
// under the GNU Lesser General Public Library, version 3 or any later.
package waku
import (
"bytes"
"crypto/ecdsa"
"crypto/sha256"
"errors"
"fmt"
"io"
"io/ioutil"
"math"
"runtime"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/hexutil"
"go.uber.org/zap"
mapset "github.com/deckarep/golang-set"
"golang.org/x/crypto/pbkdf2"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/rpc"
)
// TimeSyncError error for clock skew errors.
type TimeSyncError error
type Bridge interface {
Pipe() (<-chan *Envelope, chan<- *Envelope)
}
type settings struct {
MaxMsgSize uint32 // Maximal message length allowed by the waku node
EnableConfirmations bool // Enable sending message confirmations
MinPow float64 // Minimal PoW required by the waku node
MinPowTolerance float64 // Minimal PoW tolerated by the waku node for a limited time
BloomFilter []byte // Bloom filter for topics of interest for this node
BloomFilterTolerance []byte // Bloom filter tolerated by the waku node for a limited time
LightClient bool // Light client mode enabled does not forward messages
RestrictLightClientsConn bool // Restrict connection between two light clients
SyncAllowance int // Maximum time in seconds allowed to process the waku-related messages
}
// Waku represents a dark communication interface through the Ethereum
// network, using its very own P2P communication layer.
type Waku struct {
protocol p2p.Protocol // Protocol description and parameters
filters *Filters // Message filters installed with Subscribe function
privateKeys map[string]*ecdsa.PrivateKey // Private key storage
symKeys map[string][]byte // Symmetric key storage
keyMu sync.RWMutex // Mutex associated with key stores
envelopes map[common.Hash]*Envelope // Pool of envelopes currently tracked by this node
expirations map[uint32]mapset.Set // Message expiration pool
poolMu sync.RWMutex // Mutex to sync the message and expiration pools
peers map[*Peer]struct{} // Set of currently active peers
peerMu sync.RWMutex // Mutex to sync the active peer set
msgQueue chan *Envelope // Message queue for normal waku messages
p2pMsgQueue chan interface{} // Message queue for peer-to-peer messages (not to be forwarded any further) and history delivery confirmations.
quit chan struct{} // Channel used for graceful exit
settings settings // Holds configuration settings that can be dynamically changed
settingsMu sync.RWMutex // Mutex to sync the settings access
mailServer MailServer
rateLimiter *PeerRateLimiter
envelopeFeed event.Feed
timeSource func() time.Time // source of time for waku
bridge Bridge
bridgeWg sync.WaitGroup
cancelBridge chan struct{}
logger *zap.Logger
}
// New creates a Waku client ready to communicate through the Ethereum P2P network.
func New(cfg *Config, logger *zap.Logger) *Waku {
if cfg == nil {
c := DefaultConfig
cfg = &c
}
if logger == nil {
logger = zap.NewNop()
}
waku := &Waku{
privateKeys: make(map[string]*ecdsa.PrivateKey),
symKeys: make(map[string][]byte),
envelopes: make(map[common.Hash]*Envelope),
expirations: make(map[uint32]mapset.Set),
peers: make(map[*Peer]struct{}),
msgQueue: make(chan *Envelope, messageQueueLimit),
p2pMsgQueue: make(chan interface{}, messageQueueLimit),
quit: make(chan struct{}),
timeSource: time.Now,
logger: logger,
}
waku.settings = settings{
MaxMsgSize: cfg.MaxMessageSize,
MinPow: cfg.MinimumAcceptedPoW,
MinPowTolerance: cfg.MinimumAcceptedPoW,
EnableConfirmations: cfg.EnableConfirmations,
LightClient: cfg.LightClient,
RestrictLightClientsConn: cfg.RestrictLightClientsConn,
SyncAllowance: DefaultSyncAllowance,
}
if cfg.FullNode {
waku.settings.BloomFilter = MakeFullNodeBloom()
waku.settings.BloomFilterTolerance = MakeFullNodeBloom()
}
waku.filters = NewFilters(waku)
// p2p waku sub-protocol handler
waku.protocol = p2p.Protocol{
Name: ProtocolName,
Version: uint(ProtocolVersion),
Length: NumberOfMessageCodes,
Run: waku.HandlePeer,
NodeInfo: func() interface{} {
return map[string]interface{}{
"version": ProtocolVersionStr,
"maxMessageSize": waku.MaxMessageSize(),
"minimumPoW": waku.MinPow(),
}
},
}
return waku
}
// Version returns the waku sub-protocol version number.
func (w *Waku) Version() uint {
return w.protocol.Version
}
// MinPow returns the PoW value required by this node.
func (w *Waku) MinPow() float64 {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.MinPow
}
// SetMinimumPoW sets the minimal PoW required by this node
func (w *Waku) SetMinimumPoW(val float64, tolerate bool) error {
if val < 0.0 {
return fmt.Errorf("invalid PoW: %f", val)
}
w.settingsMu.Lock()
w.settings.MinPow = val
w.settingsMu.Unlock()
w.notifyPeersAboutPowRequirementChange(val)
if tolerate {
go func() {
// allow some time before all the peers have processed the notification
time.Sleep(time.Duration(w.settings.SyncAllowance) * time.Second)
w.settingsMu.Lock()
w.settings.MinPowTolerance = val
w.settingsMu.Unlock()
}()
}
return nil
}
// MinPowTolerance returns the value of minimum PoW which is tolerated for a limited
// time after PoW was changed. If sufficient time have elapsed or no change of PoW
// have ever occurred, the return value will be the same as return value of MinPow().
func (w *Waku) MinPowTolerance() float64 {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.MinPowTolerance
}
// BloomFilter returns the aggregated bloom filter for all the topics of interest.
// The nodes are required to send only messages that match the advertised bloom filter.
// If a message does not match the bloom, it will tantamount to spam, and the peer will
// be disconnected.
func (w *Waku) BloomFilter() []byte {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.BloomFilter
}
// BloomFilterTolerance returns the bloom filter which is tolerated for a limited
// time after new bloom was advertised to the peers. If sufficient time have elapsed
// or no change of bloom filter have ever occurred, the return value will be the same
// as return value of BloomFilter().
func (w *Waku) BloomFilterTolerance() []byte {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.BloomFilterTolerance
}
// SetBloomFilter sets the new bloom filter
func (w *Waku) SetBloomFilter(bloom []byte) error {
if len(bloom) != BloomFilterSize {
return fmt.Errorf("invalid bloom filter size: %d", len(bloom))
}
b := make([]byte, BloomFilterSize)
copy(b, bloom)
w.settingsMu.Lock()
w.settings.BloomFilter = b
w.settingsMu.Unlock()
w.notifyPeersAboutBloomFilterChange(b)
go func() {
// allow some time before all the peers have processed the notification
time.Sleep(time.Duration(w.settings.SyncAllowance) * time.Second)
w.settingsMu.Lock()
w.settings.BloomFilterTolerance = b
w.settingsMu.Unlock()
}()
return nil
}
// MaxMessageSize returns the maximum accepted message size.
func (w *Waku) MaxMessageSize() uint32 {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.MaxMsgSize
}
// SetMaxMessageSize sets the maximal message size allowed by this node
func (w *Waku) SetMaxMessageSize(size uint32) error {
if size > MaxMessageSize {
return fmt.Errorf("message size too large [%d>%d]", size, MaxMessageSize)
}
w.settingsMu.Lock()
w.settings.MaxMsgSize = size
w.settingsMu.Unlock()
return nil
}
// LightClientMode indicates is this node is light client (does not forward any messages)
func (w *Waku) LightClientMode() bool {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.LightClient
}
// SetLightClientMode makes node light client (does not forward any messages)
func (w *Waku) SetLightClientMode(v bool) {
w.settingsMu.Lock()
w.settings.LightClient = v
w.settingsMu.Unlock()
}
// LightClientModeConnectionRestricted indicates that connection to light client in light client mode not allowed
func (w *Waku) LightClientModeConnectionRestricted() bool {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.RestrictLightClientsConn
}
// RateLimiting returns RateLimits information.
func (w *Waku) RateLimits() RateLimits {
if w.rateLimiter == nil {
return RateLimits{}
}
return RateLimits{
IPLimits: uint64(w.rateLimiter.limitPerSecIP),
PeerIDLimits: uint64(w.rateLimiter.limitPerSecPeerID),
}
}
// ConfirmationsEnabled returns true if message confirmations are enabled.
func (w *Waku) ConfirmationsEnabled() bool {
w.settingsMu.RLock()
defer w.settingsMu.RUnlock()
return w.settings.EnableConfirmations
}
// CurrentTime returns current time.
func (w *Waku) CurrentTime() time.Time {
return w.timeSource()
}
// SetTimeSource assigns a particular source of time to a waku object.
func (w *Waku) SetTimeSource(timesource func() time.Time) {
w.timeSource = timesource
}
// APIs returns the RPC descriptors the Waku implementation offers
func (w *Waku) APIs() []rpc.API {
return []rpc.API{
{
Namespace: ProtocolName,
Version: ProtocolVersionStr,
Service: NewPublicWakuAPI(w),
Public: true,
},
}
}
// Protocols returns the waku sub-protocols ran by this particular client.
func (w *Waku) Protocols() []p2p.Protocol {
return []p2p.Protocol{w.protocol}
}
// RegisterMailServer registers MailServer interface.
// MailServer will process all the incoming messages with p2pRequestCode.
func (w *Waku) RegisterMailServer(server MailServer) {
w.mailServer = server
}
// SetRateLimiter registers a rate limiter.
func (w *Waku) RegisterRateLimiter(r *PeerRateLimiter) {
w.rateLimiter = r
}
// RegisterBridge registers a new Bridge that moves envelopes
// between different subprotocols.
// It's important that a bridge is registered before the service
// is started, otherwise, it won't read and propagate envelopes.
func (w *Waku) RegisterBridge(b Bridge) {
if w.cancelBridge != nil {
close(w.cancelBridge)
}
w.bridge = b
w.cancelBridge = make(chan struct{})
w.bridgeWg.Add(1)
go w.readBridgeLoop()
}
func (w *Waku) readBridgeLoop() {
defer w.bridgeWg.Done()
out, _ := w.bridge.Pipe()
for {
select {
case <-w.cancelBridge:
return
case env := <-out:
_, err := w.addAndBridge(env, false, true)
if err != nil {
bridgeReceivedFailed.Inc()
w.logger.Warn(
"failed to add a bridged envelope",
zap.Binary("ID", env.Hash().Bytes()),
zap.Error(err),
)
} else {
bridgeReceivedSucceed.Inc()
w.logger.Debug("bridged envelope successfully", zap.Binary("ID", env.Hash().Bytes()))
w.envelopeFeed.Send(EnvelopeEvent{
Event: EventEnvelopeReceived,
Topic: env.Topic,
Hash: env.Hash(),
})
}
}
}
}
// SubscribeEnvelopeEvents subscribes to envelopes feed.
// In order to prevent blocking waku producers events must be amply buffered.
func (w *Waku) SubscribeEnvelopeEvents(events chan<- EnvelopeEvent) event.Subscription {
return w.envelopeFeed.Subscribe(events)
}
func (w *Waku) notifyPeersAboutPowRequirementChange(pow float64) {
arr := w.getPeers()
for _, p := range arr {
err := p.notifyAboutPowRequirementChange(pow)
if err != nil {
// allow one retry
err = p.notifyAboutPowRequirementChange(pow)
}
if err != nil {
w.logger.Warn("failed to notify peer about new pow requirement", zap.Binary("peer", p.ID()), zap.Error(err))
}
}
}
func (w *Waku) notifyPeersAboutBloomFilterChange(bloom []byte) {
arr := w.getPeers()
for _, p := range arr {
err := p.notifyAboutBloomFilterChange(bloom)
if err != nil {
// allow one retry
err = p.notifyAboutBloomFilterChange(bloom)
}
if err != nil {
w.logger.Warn("failed to notify peer about new pow requirement", zap.Binary("peer", p.ID()), zap.Error(err))
}
}
}
func (w *Waku) getPeers() []*Peer {
arr := make([]*Peer, len(w.peers))
i := 0
w.peerMu.Lock()
for p := range w.peers {
arr[i] = p
i++
}
w.peerMu.Unlock()
return arr
}
// getPeer retrieves peer by ID
func (w *Waku) getPeer(peerID []byte) (*Peer, error) {
w.peerMu.Lock()
defer w.peerMu.Unlock()
for p := range w.peers {
id := p.peer.ID()
if bytes.Equal(peerID, id[:]) {
return p, nil
}
}
return nil, fmt.Errorf("could not find peer with ID: %x", peerID)
}
// AllowP2PMessagesFromPeer marks specific peer trusted,
// which will allow it to send historic (expired) messages.
func (w *Waku) AllowP2PMessagesFromPeer(peerID []byte) error {
p, err := w.getPeer(peerID)
if err != nil {
return err
}
p.trusted = true
return nil
}
// RequestHistoricMessages sends a message with p2pRequestCode to a specific peer,
// which is known to implement MailServer interface, and is supposed to process this
// request and respond with a number of peer-to-peer messages (possibly expired),
// which are not supposed to be forwarded any further.
// The waku protocol is agnostic of the format and contents of envelope.
func (w *Waku) RequestHistoricMessages(peerID []byte, envelope *Envelope) error {
return w.RequestHistoricMessagesWithTimeout(peerID, envelope, 0)
}
// RequestHistoricMessagesWithTimeout acts as RequestHistoricMessages but requires to pass a timeout.
// It sends an event EventMailServerRequestExpired after the timeout.
func (w *Waku) RequestHistoricMessagesWithTimeout(peerID []byte, envelope *Envelope, timeout time.Duration) error {
p, err := w.getPeer(peerID)
if err != nil {
return err
}
p.trusted = true
w.envelopeFeed.Send(EnvelopeEvent{
Peer: p.peer.ID(),
Topic: envelope.Topic,
Hash: envelope.Hash(),
Event: EventMailServerRequestSent,
})
err = p2p.Send(p.ws, p2pRequestCode, envelope)
if timeout != 0 {
go w.expireRequestHistoricMessages(p.peer.ID(), envelope.Hash(), timeout)
}
return err
}
func (w *Waku) SendMessagesRequest(peerID []byte, request MessagesRequest) error {
if err := request.Validate(); err != nil {
return err
}
p, err := w.getPeer(peerID)
if err != nil {
return err
}
p.trusted = true
if err := p2p.Send(p.ws, p2pRequestCode, request); err != nil {
return err
}
w.envelopeFeed.Send(EnvelopeEvent{
Peer: p.peer.ID(),
Hash: common.BytesToHash(request.ID),
Event: EventMailServerRequestSent,
})
return nil
}
func (w *Waku) expireRequestHistoricMessages(peer enode.ID, hash common.Hash, timeout time.Duration) {
timer := time.NewTimer(timeout)
defer timer.Stop()
select {
case <-w.quit:
return
case <-timer.C:
w.envelopeFeed.Send(EnvelopeEvent{
Peer: peer,
Hash: hash,
Event: EventMailServerRequestExpired,
})
}
}
func (w *Waku) SendHistoricMessageResponse(peerID []byte, payload []byte) error {
size, r, err := rlp.EncodeToReader(payload)
if err != nil {
return err
}
peer, err := w.getPeer(peerID)
if err != nil {
return err
}
return peer.ws.WriteMsg(p2p.Msg{Code: p2pRequestCompleteCode, Size: uint32(size), Payload: r})
}
// SendP2PMessage sends a peer-to-peer message to a specific peer.
// It sends one or more envelopes in a single batch.
func (w *Waku) SendP2PMessages(peerID []byte, envelopes ...*Envelope) error {
p, err := w.getPeer(peerID)
if err != nil {
return err
}
return p2p.Send(p.ws, p2pMessageCode, envelopes)
}
// SendP2PDirect sends a peer-to-peer message to a specific peer.
// It sends one or more envelopes in a single batch.
func (w *Waku) SendP2PDirect(peerID []byte, envelopes ...*Envelope) error {
peer, err := w.getPeer(peerID)
if err != nil {
return err
}
return p2p.Send(peer.ws, p2pMessageCode, envelopes)
}
// SendRawP2PDirect sends a peer-to-peer message to a specific peer.
// It sends one or more envelopes in a single batch.
func (w *Waku) SendRawP2PDirect(peerID []byte, envelopes ...rlp.RawValue) error {
peer, err := w.getPeer(peerID)
if err != nil {
return err
}
return p2p.Send(peer.ws, p2pMessageCode, envelopes)
}
// NewKeyPair generates a new cryptographic identity for the client, and injects
// it into the known identities for message decryption. Returns ID of the new key pair.
func (w *Waku) NewKeyPair() (string, error) {
key, err := crypto.GenerateKey()
if err != nil || !validatePrivateKey(key) {
key, err = crypto.GenerateKey() // retry once
}
if err != nil {
return "", err
}
if !validatePrivateKey(key) {
return "", fmt.Errorf("failed to generate valid key")
}
id, err := toDeterministicID(hexutil.Encode(crypto.FromECDSAPub(&key.PublicKey)), keyIDSize)
if err != nil {
return "", err
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
if w.privateKeys[id] != nil {
return "", fmt.Errorf("failed to generate unique ID")
}
w.privateKeys[id] = key
return id, nil
}
// DeleteKeyPair deletes the specified key if it exists.
func (w *Waku) DeleteKeyPair(key string) bool {
deterministicID, err := toDeterministicID(key, keyIDSize)
if err != nil {
return false
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
if w.privateKeys[deterministicID] != nil {
delete(w.privateKeys, deterministicID)
return true
}
return false
}
// AddKeyPair imports a asymmetric private key and returns it identifier.
func (w *Waku) AddKeyPair(key *ecdsa.PrivateKey) (string, error) {
id, err := makeDeterministicID(hexutil.Encode(crypto.FromECDSAPub(&key.PublicKey)), keyIDSize)
if err != nil {
return "", err
}
if w.HasKeyPair(id) {
return id, nil // no need to re-inject
}
w.keyMu.Lock()
w.privateKeys[id] = key
w.keyMu.Unlock()
return id, nil
}
// SelectKeyPair adds cryptographic identity, and makes sure
// that it is the only private key known to the node.
func (w *Waku) SelectKeyPair(key *ecdsa.PrivateKey) error {
id, err := makeDeterministicID(common.ToHex(crypto.FromECDSAPub(&key.PublicKey)), keyIDSize)
if err != nil {
return err
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
w.privateKeys = make(map[string]*ecdsa.PrivateKey) // reset key store
w.privateKeys[id] = key
return nil
}
// DeleteKeyPairs removes all cryptographic identities known to the node
func (w *Waku) DeleteKeyPairs() error {
w.keyMu.Lock()
defer w.keyMu.Unlock()
w.privateKeys = make(map[string]*ecdsa.PrivateKey)
return nil
}
// HasKeyPair checks if the waku node is configured with the private key
// of the specified public pair.
func (w *Waku) HasKeyPair(id string) bool {
deterministicID, err := toDeterministicID(id, keyIDSize)
if err != nil {
return false
}
w.keyMu.RLock()
defer w.keyMu.RUnlock()
return w.privateKeys[deterministicID] != nil
}
// GetPrivateKey retrieves the private key of the specified identity.
func (w *Waku) GetPrivateKey(id string) (*ecdsa.PrivateKey, error) {
deterministicID, err := toDeterministicID(id, keyIDSize)
if err != nil {
return nil, err
}
w.keyMu.RLock()
defer w.keyMu.RUnlock()
key := w.privateKeys[deterministicID]
if key == nil {
return nil, fmt.Errorf("invalid id")
}
return key, nil
}
// GenerateSymKey generates a random symmetric key and stores it under id,
// which is then returned. Will be used in the future for session key exchange.
func (w *Waku) GenerateSymKey() (string, error) {
key, err := generateSecureRandomData(aesKeyLength)
if err != nil {
return "", err
} else if !validateDataIntegrity(key, aesKeyLength) {
return "", fmt.Errorf("error in GenerateSymKey: crypto/rand failed to generate random data")
}
id, err := GenerateRandomID()
if err != nil {
return "", fmt.Errorf("failed to generate ID: %s", err)
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
if w.symKeys[id] != nil {
return "", fmt.Errorf("failed to generate unique ID")
}
w.symKeys[id] = key
return id, nil
}
// AddSymKey stores the key with a given id.
func (w *Waku) AddSymKey(id string, key []byte) (string, error) {
deterministicID, err := toDeterministicID(id, keyIDSize)
if err != nil {
return "", err
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
if w.symKeys[deterministicID] != nil {
return "", fmt.Errorf("key already exists: %v", id)
}
w.symKeys[deterministicID] = key
return deterministicID, nil
}
// AddSymKeyDirect stores the key, and returns its id.
func (w *Waku) AddSymKeyDirect(key []byte) (string, error) {
if len(key) != aesKeyLength {
return "", fmt.Errorf("wrong key size: %d", len(key))
}
id, err := GenerateRandomID()
if err != nil {
return "", fmt.Errorf("failed to generate ID: %s", err)
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
if w.symKeys[id] != nil {
return "", fmt.Errorf("failed to generate unique ID")
}
w.symKeys[id] = key
return id, nil
}
// AddSymKeyFromPassword generates the key from password, stores it, and returns its id.
func (w *Waku) AddSymKeyFromPassword(password string) (string, error) {
id, err := GenerateRandomID()
if err != nil {
return "", fmt.Errorf("failed to generate ID: %s", err)
}
if w.HasSymKey(id) {
return "", fmt.Errorf("failed to generate unique ID")
}
// kdf should run no less than 0.1 seconds on an average computer,
// because it's an once in a session experience
derived := pbkdf2.Key([]byte(password), nil, 65356, aesKeyLength, sha256.New)
if err != nil {
return "", err
}
w.keyMu.Lock()
defer w.keyMu.Unlock()
// double check is necessary, because deriveKeyMaterial() is very slow
if w.symKeys[id] != nil {
return "", fmt.Errorf("critical error: failed to generate unique ID")
}
w.symKeys[id] = derived
return id, nil
}
// HasSymKey returns true if there is a key associated with the given id.
// Otherwise returns false.
func (w *Waku) HasSymKey(id string) bool {
w.keyMu.RLock()
defer w.keyMu.RUnlock()
return w.symKeys[id] != nil
}
// DeleteSymKey deletes the key associated with the name string if it exists.
func (w *Waku) DeleteSymKey(id string) bool {
w.keyMu.Lock()
defer w.keyMu.Unlock()
if w.symKeys[id] != nil {
delete(w.symKeys, id)
return true
}
return false
}
// GetSymKey returns the symmetric key associated with the given id.
func (w *Waku) GetSymKey(id string) ([]byte, error) {
w.keyMu.RLock()
defer w.keyMu.RUnlock()
if w.symKeys[id] != nil {
return w.symKeys[id], nil
}
return nil, fmt.Errorf("non-existent key ID")
}
// Subscribe installs a new message handler used for filtering, decrypting
// and subsequent storing of incoming messages.
func (w *Waku) Subscribe(f *Filter) (string, error) {
s, err := w.filters.Install(f)
if err == nil {
w.updateBloomFilter(f)
}
return s, err
}
// updateBloomFilter recalculates the new value of bloom filter,
// and informs the peers if necessary.
func (w *Waku) updateBloomFilter(f *Filter) {
aggregate := make([]byte, BloomFilterSize)
for _, t := range f.Topics {
top := BytesToTopic(t)
b := TopicToBloom(top)
aggregate = addBloom(aggregate, b)
}
if !BloomFilterMatch(w.BloomFilter(), aggregate) {
// existing bloom filter must be updated
aggregate = addBloom(w.BloomFilter(), aggregate)
w.SetBloomFilter(aggregate)
}
}
// GetFilter returns the filter by id.
func (w *Waku) GetFilter(id string) *Filter {
return w.filters.Get(id)
}
// Unsubscribe removes an installed message handler.
func (w *Waku) Unsubscribe(id string) error {
ok := w.filters.Uninstall(id)
if !ok {
return fmt.Errorf("Unsubscribe: Invalid ID")
}
return nil
}
// Send injects a message into the waku send queue, to be distributed in the
// network in the coming cycles.
func (w *Waku) Send(envelope *Envelope) error {
ok, err := w.add(envelope, false)
if err == nil && !ok {
return fmt.Errorf("failed to add envelope")
}
return err
}
// Start implements node.Service, starting the background data propagation thread
// of the Waku protocol.
func (w *Waku) Start(*p2p.Server) error {
go w.update()
numCPU := runtime.NumCPU()
for i := 0; i < numCPU; i++ {
go w.processQueue()
}
go w.processP2P()
return nil
}
// Stop implements node.Service, stopping the background data propagation thread
// of the Waku protocol.
func (w *Waku) Stop() error {
if w.cancelBridge != nil {
close(w.cancelBridge)
w.cancelBridge = nil
w.bridgeWg.Wait()
}
close(w.quit)
return nil
}
// HandlePeer is called by the underlying P2P layer when the waku sub-protocol
// connection is negotiated.
func (w *Waku) HandlePeer(peer *p2p.Peer, rw p2p.MsgReadWriter) error {
// Create the new peer and start tracking it
wakuPeer := newPeer(w, peer, rw, w.logger.Named("waku/peer"))
w.peerMu.Lock()
w.peers[wakuPeer] = struct{}{}
w.peerMu.Unlock()
defer func() {
w.peerMu.Lock()
delete(w.peers, wakuPeer)
w.peerMu.Unlock()
}()
// Run the peer handshake and state updates
if err := wakuPeer.handshake(); err != nil {
return err
}
wakuPeer.start()
defer wakuPeer.stop()
if w.rateLimiter != nil {
return w.rateLimiter.decorate(wakuPeer, rw, w.runMessageLoop)
}
return w.runMessageLoop(wakuPeer, rw)
}
// sendConfirmation sends messageResponseCode and batchAcknowledgedCode messages.
func (w *Waku) sendConfirmation(rw p2p.MsgReadWriter, data []byte, envelopeErrors []EnvelopeError) (err error) {
batchHash := crypto.Keccak256Hash(data)
err = p2p.Send(rw, messageResponseCode, NewMessagesResponse(batchHash, envelopeErrors))
err = p2p.Send(rw, batchAcknowledgedCode, batchHash) // DEPRECATED
return
}
// runMessageLoop reads and processes inbound messages directly to merge into client-global state.
func (w *Waku) runMessageLoop(p *Peer, rw p2p.MsgReadWriter) error {
logger := w.logger.Named("runMessageLoop")
peerID := p.peer.ID()
for {
// fetch the next packet
packet, err := rw.ReadMsg()
if err != nil {
logger.Info("failed to read a message", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
if packet.Size > w.MaxMessageSize() {
logger.Warn("oversize message received", zap.Binary("peer", peerID[:]), zap.Uint32("size", packet.Size))
return errors.New("oversize message received")
}
switch packet.Code {
case messagesCode:
if err := w.handleMessagesCode(p, rw, packet, logger); err != nil {
logger.Warn("failed to handle messagesCode message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case messageResponseCode:
if err := w.handleMessageResponseCode(p, packet, logger); err != nil {
logger.Warn("failed to handle messageResponseCode message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case batchAcknowledgedCode:
if err := w.handleBatchAcknowledgeCode(p, packet, logger); err != nil {
logger.Warn("failed to handle batchAcknowledgedCode message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case powRequirementCode:
if err := w.handlePowRequirementCode(p, packet, logger); err != nil {
logger.Warn("failed to handle powRequirementCode message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case bloomFilterExCode:
if err := w.handleBloomFilterExCode(p, packet, logger); err != nil {
logger.Warn("failed to decode bloom filter exchange message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case rateLimitingCode:
if err := w.handleRateLimitingCode(p, packet, logger); err != nil {
logger.Warn("failed to decode rate limits, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
}
case p2pMessageCode:
if err := w.handleP2PMessageCode(p, packet, logger); err != nil {
logger.Warn("failed to decode direct message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case p2pRequestCode:
if err := w.handleP2PRequestCode(p, packet, logger); err != nil {
logger.Warn("failed to decode p2p request message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
case p2pRequestCompleteCode:
if err := w.handleP2PRequestCompleteCode(p, packet, logger); err != nil {
logger.Warn("failed to decode p2p request complete message, peer will be disconnected", zap.Binary("peer", peerID[:]), zap.Error(err))
return err
}
default:
// New message types might be implemented in the future versions of Waku.
// For forward compatibility, just ignore.
logger.Debug("ignored packet with message code", zap.Uint64("code", packet.Code))
}
_ = packet.Discard()
}
}
func (w *Waku) handleMessagesCode(p *Peer, rw p2p.MsgReadWriter, packet p2p.Msg, logger *zap.Logger) error {
peerID := p.peer.ID()
// decode the contained envelopes
data, err := ioutil.ReadAll(packet.Payload)
if err != nil {
envelopesRejectedCounter.WithLabelValues("failed_read").Inc()
return fmt.Errorf("failed to read packet payload: %w", err)
}
var envelopes []*Envelope
if err := rlp.DecodeBytes(data, &envelopes); err != nil {
envelopesRejectedCounter.WithLabelValues("invalid_data").Inc()
return fmt.Errorf("invalid payload: %w", err)
}
envelopeErrors := make([]EnvelopeError, 0)
trouble := false
for _, env := range envelopes {
cached, err := w.add(env, w.LightClientMode())
if err != nil {
_, isTimeSyncError := err.(TimeSyncError)
if !isTimeSyncError {
trouble = true
logger.Info("invalid envelope received", zap.Binary("peer", peerID[:]), zap.Error(err))
}
envelopeErrors = append(envelopeErrors, ErrorToEnvelopeError(env.Hash(), err))
} else if cached {
p.mark(env)
}
w.envelopeFeed.Send(EnvelopeEvent{
Event: EventEnvelopeReceived,
Topic: env.Topic,
Hash: env.Hash(),
Peer: p.peer.ID(),
})
envelopesValidatedCounter.Inc()
}
if w.ConfirmationsEnabled() {
go w.sendConfirmation(rw, data, envelopeErrors)
}
if trouble {
return errors.New("received invalid envelope")
}
return nil
}
func (w *Waku) handlePowRequirementCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
s := rlp.NewStream(packet.Payload, uint64(packet.Size))
i, err := s.Uint()
if err != nil {
envelopesRejectedCounter.WithLabelValues("invalid_pow_req").Inc()
return fmt.Errorf("invalid powRequirementCode message: %w", err)
}
f := math.Float64frombits(i)
if math.IsInf(f, 0) || math.IsNaN(f) || f < 0.0 {
envelopesRejectedCounter.WithLabelValues("invalid_pow_req").Inc()
return errors.New("invalid value in powRequirementCode message")
}
p.powRequirement = f
return nil
}
func (w *Waku) handleBloomFilterExCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
var bloom []byte
err := packet.Decode(&bloom)
if err == nil && len(bloom) != BloomFilterSize {
err = fmt.Errorf("wrong bloom filter size %d", len(bloom))
}
if err != nil {
envelopesRejectedCounter.WithLabelValues("invalid_bloom").Inc()
return errors.New("invalid bloom filter exchange message")
}
p.setBloomFilter(bloom)
return nil
}
func (w *Waku) handleRateLimitingCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
var rateLimits RateLimits
if err := packet.Decode(&rateLimits); err != nil {
logger.Warn("invalid rate limits information", zap.Binary("peerID", p.peer.ID().Bytes()), zap.Error(err))
return errors.New("invalid rate limits exchange message")
}
p.setRateLimits(rateLimits)
return nil
}
func (w *Waku) handleP2PMessageCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
// peer-to-peer message, sent directly to peer bypassing PoW checks, etc.
// this message is not supposed to be forwarded to other peers, and
// therefore might not satisfy the PoW, expiry and other requirements.
// these messages are only accepted from the trusted peer.
if !p.trusted {
return nil
}
var (
envelopes []*Envelope
err error
)
if err = packet.Decode(&envelopes); err != nil {
return fmt.Errorf("invalid direct message payload: %w", err)
}
for _, envelope := range envelopes {
w.postP2P(envelope)
}
return nil
}
func (w *Waku) handleP2PRequestCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
peerID := p.peer.ID()
// Must be processed if mail server is implemented. Otherwise ignore.
if w.mailServer == nil {
return nil
}
// Read all data as we will try to decode it possibly twice.
data, err := ioutil.ReadAll(packet.Payload)
if err != nil {
return fmt.Errorf("invalid p2p request messages: %w", err)
}
r := bytes.NewReader(data)
packet.Payload = r
var requestDeprecated Envelope
errDepReq := packet.Decode(&requestDeprecated)
if errDepReq == nil {
w.mailServer.DeliverMail(p.ID(), &requestDeprecated)
return nil
} else {
logger.Info("failed to decode p2p request message (deprecated)", zap.Binary("peer", peerID[:]), zap.Error(errDepReq))
}
// As we failed to decode the request, let's set the offset
// to the beginning and try decode it again.
if _, err := r.Seek(0, io.SeekStart); err != nil {
return fmt.Errorf("invalid p2p request message: %w", err)
}
var request MessagesRequest
errReq := packet.Decode(&request)
if errReq == nil {
w.mailServer.Deliver(p.ID(), request)
return nil
} else {
logger.Info("failed to decode p2p request message", zap.Binary("peer", peerID[:]), zap.Error(errDepReq))
}
return errors.New("invalid p2p request message")
}
func (w *Waku) handleP2PRequestCompleteCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
if !p.trusted {
return nil
}
var payload []byte
if err := packet.Decode(&payload); err != nil {
return fmt.Errorf("invalid p2p request complete message: %w", err)
}
event, err := CreateMailServerEvent(p.peer.ID(), payload)
if err != nil {
return fmt.Errorf("invalid p2p request complete payload: %w", err)
}
w.postP2P(*event)
return nil
}
func (w *Waku) handleMessageResponseCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
var resp MultiVersionResponse
if err := packet.Decode(&resp); err != nil {
envelopesRejectedCounter.WithLabelValues("failed_read").Inc()
return fmt.Errorf("invalid response message: %w", err)
}
if resp.Version != 1 {
logger.Info("received unsupported version of MultiVersionResponse for messageResponseCode packet", zap.Uint("version", resp.Version))
return nil
}
response, err := resp.DecodeResponse1()
if err != nil {
envelopesRejectedCounter.WithLabelValues("invalid_data").Inc()
return fmt.Errorf("failed to decode response message: %w", err)
}
w.envelopeFeed.Send(EnvelopeEvent{
Batch: response.Hash,
Event: EventBatchAcknowledged,
Peer: p.peer.ID(),
Data: response.Errors,
})
return nil
}
func (w *Waku) handleBatchAcknowledgeCode(p *Peer, packet p2p.Msg, logger *zap.Logger) error {
var batchHash common.Hash
if err := packet.Decode(&batchHash); err != nil {
return fmt.Errorf("invalid batch ack message: %w", err)
}
w.envelopeFeed.Send(EnvelopeEvent{
Batch: batchHash,
Event: EventBatchAcknowledged,
Peer: p.peer.ID(),
})
return nil
}
func (w *Waku) add(envelope *Envelope, isP2P bool) (bool, error) {
return w.addAndBridge(envelope, isP2P, false)
}
// addAndBridge inserts a new envelope into the message pool to be distributed within the
// waku network. It also inserts the envelope into the expiration pool at the
// appropriate time-stamp. In case of error, connection should be dropped.
// param isP2P indicates whether the message is peer-to-peer (should not be forwarded).
func (w *Waku) addAndBridge(envelope *Envelope, isP2P bool, bridged bool) (bool, error) {
now := uint32(w.timeSource().Unix())
sent := envelope.Expiry - envelope.TTL
envelopesReceivedCounter.Inc()
if sent > now {
if sent-DefaultSyncAllowance > now {
envelopesCacheFailedCounter.WithLabelValues("in_future").Inc()
log.Warn("envelope created in the future", "hash", envelope.Hash())
return false, TimeSyncError(errors.New("envelope from future"))
}
// recalculate PoW, adjusted for the time difference, plus one second for latency
envelope.calculatePoW(sent - now + 1)
}
if envelope.Expiry < now {
if envelope.Expiry+DefaultSyncAllowance*2 < now {
envelopesCacheFailedCounter.WithLabelValues("very_old").Inc()
log.Warn("very old envelope", "hash", envelope.Hash())
return false, TimeSyncError(errors.New("very old envelope"))
}
log.Debug("expired envelope dropped", "hash", envelope.Hash().Hex())
envelopesCacheFailedCounter.WithLabelValues("expired").Inc()
return false, nil // drop envelope without error
}
if uint32(envelope.size()) > w.MaxMessageSize() {
envelopesCacheFailedCounter.WithLabelValues("oversized").Inc()
return false, fmt.Errorf("huge messages are not allowed [%x]", envelope.Hash())
}
if envelope.PoW() < w.MinPow() {
// maybe the value was recently changed, and the peers did not adjust yet.
// in this case the previous value is retrieved by MinPowTolerance()
// for a short period of peer synchronization.
if envelope.PoW() < w.MinPowTolerance() {
envelopesCacheFailedCounter.WithLabelValues("low_pow").Inc()
return false, fmt.Errorf("envelope with low PoW received: PoW=%f, hash=[%v]", envelope.PoW(), envelope.Hash().Hex())
}
}
if !BloomFilterMatch(w.BloomFilter(), envelope.Bloom()) {
// maybe the value was recently changed, and the peers did not adjust yet.
// in this case the previous value is retrieved by BloomFilterTolerance()
// for a short period of peer synchronization.
if !BloomFilterMatch(w.BloomFilterTolerance(), envelope.Bloom()) {
envelopesCacheFailedCounter.WithLabelValues("no_bloom_match").Inc()
return false, fmt.Errorf("envelope does not match bloom filter, hash=[%v], bloom: \n%x \n%x \n%x",
envelope.Hash().Hex(), w.BloomFilter(), envelope.Bloom(), envelope.Topic)
}
}
hash := envelope.Hash()
w.poolMu.Lock()
_, alreadyCached := w.envelopes[hash]
if !alreadyCached {
w.envelopes[hash] = envelope
if w.expirations[envelope.Expiry] == nil {
w.expirations[envelope.Expiry] = mapset.NewThreadUnsafeSet()
}
if !w.expirations[envelope.Expiry].Contains(hash) {
w.expirations[envelope.Expiry].Add(hash)
}
}
w.poolMu.Unlock()
if alreadyCached {
log.Trace("w envelope already cached", "hash", envelope.Hash().Hex())
envelopesCachedCounter.WithLabelValues("hit").Inc()
} else {
log.Trace("cached w envelope", "hash", envelope.Hash().Hex())
envelopesCachedCounter.WithLabelValues("miss").Inc()
envelopesSizeMeter.Observe(float64(envelope.size()))
w.postEvent(envelope, isP2P) // notify the local node about the new message
if w.mailServer != nil {
w.mailServer.Archive(envelope)
w.envelopeFeed.Send(EnvelopeEvent{
Topic: envelope.Topic,
Hash: envelope.Hash(),
Event: EventMailServerEnvelopeArchived,
})
}
// Bridge only envelopes that are not p2p messages.
// In particular, if a node is a lightweight node,
// it should not bridge any envelopes.
if !isP2P && !bridged && w.bridge != nil {
log.Debug("bridging envelope from Waku", "hash", envelope.Hash().Hex())
_, in := w.bridge.Pipe()
in <- envelope
bridgeSent.Inc()
}
}
return true, nil
}
func (w *Waku) postP2P(event interface{}) {
w.p2pMsgQueue <- event
}
// postEvent queues the message for further processing.
func (w *Waku) postEvent(envelope *Envelope, isP2P bool) {
if isP2P {
w.postP2P(envelope)
} else {
w.msgQueue <- envelope
}
}
// processQueue delivers the messages to the watchers during the lifetime of the waku node.
func (w *Waku) processQueue() {
for {
select {
case <-w.quit:
return
case e := <-w.msgQueue:
w.filters.NotifyWatchers(e, false)
w.envelopeFeed.Send(EnvelopeEvent{
Topic: e.Topic,
Hash: e.Hash(),
Event: EventEnvelopeAvailable,
})
}
}
}
func (w *Waku) processP2P() {
for {
select {
case <-w.quit:
return
case e := <-w.p2pMsgQueue:
switch event := e.(type) {
case *Envelope:
w.filters.NotifyWatchers(event, true)
w.envelopeFeed.Send(EnvelopeEvent{
Topic: event.Topic,
Hash: event.Hash(),
Event: EventEnvelopeAvailable,
})
case EnvelopeEvent:
w.envelopeFeed.Send(event)
}
}
}
}
// update loops until the lifetime of the waku node, updating its internal
// state by expiring stale messages from the pool.
func (w *Waku) update() {
// Start a ticker to check for expirations
expire := time.NewTicker(expirationCycle)
// Repeat updates until termination is requested
for {
select {
case <-expire.C:
w.expire()
case <-w.quit:
return
}
}
}
// expire iterates over all the expiration timestamps, removing all stale
// messages from the pools.
func (w *Waku) expire() {
w.poolMu.Lock()
defer w.poolMu.Unlock()
now := uint32(w.timeSource().Unix())
for expiry, hashSet := range w.expirations {
if expiry < now {
// Dump all expired messages and remove timestamp
hashSet.Each(func(v interface{}) bool {
delete(w.envelopes, v.(common.Hash))
envelopesCachedCounter.WithLabelValues("clear").Inc()
w.envelopeFeed.Send(EnvelopeEvent{
Hash: v.(common.Hash),
Event: EventEnvelopeExpired,
})
return false
})
w.expirations[expiry].Clear()
delete(w.expirations, expiry)
}
}
}
// Envelopes retrieves all the messages currently pooled by the node.
func (w *Waku) Envelopes() []*Envelope {
w.poolMu.RLock()
defer w.poolMu.RUnlock()
all := make([]*Envelope, 0, len(w.envelopes))
for _, envelope := range w.envelopes {
all = append(all, envelope)
}
return all
}
// GetEnvelope retrieves an envelope from the message queue by its hash.
// It returns nil if the envelope can not be found.
func (w *Waku) GetEnvelope(hash common.Hash) *Envelope {
w.poolMu.RLock()
defer w.poolMu.RUnlock()
return w.envelopes[hash]
}
// isEnvelopeCached checks if envelope with specific hash has already been received and cached.
func (w *Waku) isEnvelopeCached(hash common.Hash) bool {
w.poolMu.Lock()
defer w.poolMu.Unlock()
_, exist := w.envelopes[hash]
return exist
}
// ValidatePublicKey checks the format of the given public key.
func ValidatePublicKey(k *ecdsa.PublicKey) bool {
return k != nil && k.X != nil && k.Y != nil && k.X.Sign() != 0 && k.Y.Sign() != 0
}
// validatePrivateKey checks the format of the given private key.
func validatePrivateKey(k *ecdsa.PrivateKey) bool {
if k == nil || k.D == nil || k.D.Sign() == 0 {
return false
}
return ValidatePublicKey(&k.PublicKey)
}
// validateDataIntegrity returns false if the data have the wrong or contains all zeros,
// which is the simplest and the most common bug.
func validateDataIntegrity(k []byte, expectedSize int) bool {
if len(k) != expectedSize {
return false
}
if expectedSize > 3 && containsOnlyZeros(k) {
return false
}
return true
}
// containsOnlyZeros checks if the data contain only zeros.
func containsOnlyZeros(data []byte) bool {
for _, b := range data {
if b != 0 {
return false
}
}
return true
}
// bytesToUintLittleEndian converts the slice to 64-bit unsigned integer.
func bytesToUintLittleEndian(b []byte) (res uint64) {
mul := uint64(1)
for i := 0; i < len(b); i++ {
res += uint64(b[i]) * mul
mul *= 256
}
return res
}
// BytesToUintBigEndian converts the slice to 64-bit unsigned integer.
func BytesToUintBigEndian(b []byte) (res uint64) {
for i := 0; i < len(b); i++ {
res *= 256
res += uint64(b[i])
}
return res
}
// GenerateRandomID generates a random string, which is then returned to be used as a key id
func GenerateRandomID() (id string, err error) {
buf, err := generateSecureRandomData(keyIDSize)
if err != nil {
return "", err
}
if !validateDataIntegrity(buf, keyIDSize) {
return "", fmt.Errorf("error in generateRandomID: crypto/rand failed to generate random data")
}
id = common.Bytes2Hex(buf)
return id, err
}
// makeDeterministicID generates a deterministic ID, based on a given input
func makeDeterministicID(input string, keyLen int) (id string, err error) {
buf := pbkdf2.Key([]byte(input), nil, 4096, keyLen, sha256.New)
if !validateDataIntegrity(buf, keyIDSize) {
return "", fmt.Errorf("error in GenerateDeterministicID: failed to generate key")
}
id = common.Bytes2Hex(buf)
return id, err
}
// toDeterministicID reviews incoming id, and transforms it to format
// expected internally be private key store. Originally, public keys
// were used as keys, now random keys are being used. And in order to
// make it easier to consume, we now allow both random IDs and public
// keys to be passed.
func toDeterministicID(id string, expectedLen int) (string, error) {
if len(id) != (expectedLen * 2) { // we received hex key, so number of chars in id is doubled
var err error
id, err = makeDeterministicID(id, expectedLen)
if err != nil {
return "", err
}
}
return id, nil
}
func isFullNode(bloom []byte) bool {
if bloom == nil {
return true
}
for _, b := range bloom {
if b != 255 {
return false
}
}
return true
}
func BloomFilterMatch(filter, sample []byte) bool {
if filter == nil {
return true
}
for i := 0; i < BloomFilterSize; i++ {
f := filter[i]
s := sample[i]
if (f | s) != f {
return false
}
}
return true
}
func addBloom(a, b []byte) []byte {
c := make([]byte, BloomFilterSize)
for i := 0; i < BloomFilterSize; i++ {
c[i] = a[i] | b[i]
}
return c
}