mirror of
https://github.com/status-im/status-go.git
synced 2025-01-09 22:26:30 +00:00
e8c4b7647f
* chore(upgradeSQLCipher): Upgrading SQLCipher to version 5.4.5 Changes: ### github.com/mutecomm/go-sqlcipher 1. The improved crypto argorighms from go-sqlcipher v3 are merged in v4 Tags: v4.4.2-status.1 - merge `burn_stack` improvement v4.4.2-status.2 - merge `SHA1` improvement v4.4.2-status.4- merge 'AES' improvement 2. Fixed `go-sqlcipher` to support v3 database in compatibility mode (`sqlcipher` already supports this) (Tag: v4.4.2-status.3) 3. Upgrade `sqlcipher` to v5.4.5 (Tag: v4.5.4-status.1) ### github.com/status-im/migrate/v4 1. Upgrade `go-sqlcipher` version in `github.com/status-im/migrate/v4` ### status-go 1. Upgrade `go-sqlcipher` and `migrate` modules in status-go 2. Configure the DB connections to open the DB in v3 compatibility mode * chore(upgradeSQLCipher): Use sqlcipher v3 configuration to encrypt a plain text database * chore(upgradeSQLCipher): Scanning NULL BLOB value should return nil Fixing failing tests: TestSyncDeviceSuite/TestPairingSyncDeviceClientAsReceiver; TestSyncDeviceSuite/TestPairingSyncDeviceClientAsSender Considering the following configuration: 1. Table with BLOB column has 1 NULL value 2. Query the value 3. Rows.Scan(&dest sql.NullString) Expected: dest.Valid == false; dest.String == nil Actual: dest.Valid == true; dest.String == "" * chore: Bump go-sqlcipher version to include NULL BLOB fix
711 lines
21 KiB
C
711 lines
21 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
|
/* SPDX-License-Identifier: Unlicense */
|
|
#include "tomcrypt_private.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
/**
|
|
@file sha1.c
|
|
LTC_SHA1 code by Tom St Denis
|
|
*/
|
|
|
|
|
|
#ifdef LTC_SHA1
|
|
|
|
// -> BEGIN arm intrinsics block
|
|
#if defined(__APPLE__) && (defined(__arm__) || defined(__aarch32__) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM))
|
|
# if defined(__GNUC__)
|
|
# include <stdint.h>
|
|
# endif
|
|
# if defined(__ARM_NEON)|| defined(_MSC_VER) || defined(__GNUC__)
|
|
# include <arm_neon.h>
|
|
# endif
|
|
/* GCC and LLVM Clang, but not Apple Clang */
|
|
# if defined(__GNUC__) && !defined(__apple_build_version__)
|
|
# if defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO)
|
|
# include <arm_acle.h>
|
|
# endif
|
|
# endif
|
|
#define SHA1_TARGET_ARM 1
|
|
// -> END arm intrinsics block
|
|
// -> BEGIN x86_64 intrinsics block
|
|
#elif defined(__x86_64__) || defined(__SHA__)
|
|
#if defined(__GNUC__) /* GCC and LLVM Clang */
|
|
# include <x86intrin.h>
|
|
#endif
|
|
|
|
/* Microsoft supports Intel SHA ACLE extensions as of Visual Studio 2015 */
|
|
#if defined(_MSC_VER)
|
|
# include <immintrin.h>
|
|
# define WIN32_LEAN_AND_MEAN
|
|
# include <Windows.h>
|
|
typedef UINT32 uint32_t;
|
|
typedef UINT8 uint8_t;
|
|
#endif
|
|
//#define SHA1_TARGET_X86 1
|
|
#endif
|
|
// -> END x86_64 intrinsics block
|
|
|
|
#define LENGTH_SIZE 8 // In bytes
|
|
#define BLOCK_LEN 64 // In bytes
|
|
#define STATE_LEN 5 // In words
|
|
|
|
const struct ltc_hash_descriptor sha1_desc =
|
|
{
|
|
"sha1",
|
|
2,
|
|
20,
|
|
64,
|
|
|
|
/* OID */
|
|
{ 1, 3, 14, 3, 2, 26, },
|
|
6,
|
|
|
|
&sha1_init,
|
|
&sha1_process,
|
|
&sha1_done,
|
|
&sha1_test,
|
|
NULL
|
|
};
|
|
|
|
#ifdef LTC_CLEAN_STACK
|
|
static int ss_sha1_compress(hash_state *md, const unsigned char *buf)
|
|
#else
|
|
static int s_sha1_compress(hash_state *md, const unsigned char *buf)
|
|
#endif
|
|
{
|
|
#if SHA1_TARGET_ARM
|
|
/* sha1-arm.c - ARMv8 SHA extensions using C intrinsics */
|
|
/* Written and placed in public domain by Jeffrey Walton */
|
|
/* Based on code from ARM, and by Johannes Schneiders, Skip */
|
|
/* Hovsmith and Barry O'Rourke for the mbedTLS project. */
|
|
// -> BEGIN arm intrinsics block
|
|
uint32x4_t ABCD, ABCD_SAVED;
|
|
uint32x4_t TMP0, TMP1;
|
|
uint32x4_t MSG0, MSG1, MSG2, MSG3;
|
|
uint32_t E0, E0_SAVED, E1;
|
|
|
|
/* Load state */
|
|
ABCD = vld1q_u32(&md->sha1.state[0]);
|
|
E0 = md->sha1.state[4];
|
|
|
|
/* Save state */
|
|
ABCD_SAVED = ABCD;
|
|
E0_SAVED = E0;
|
|
|
|
/* Load message */
|
|
MSG0 = vld1q_u32((const uint32_t*)(buf));
|
|
MSG1 = vld1q_u32((const uint32_t*)(buf + 16));
|
|
MSG2 = vld1q_u32((const uint32_t*)(buf + 32));
|
|
MSG3 = vld1q_u32((const uint32_t*)(buf + 48));
|
|
|
|
/* Reverse for little endian */
|
|
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0)));
|
|
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1)));
|
|
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2)));
|
|
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3)));
|
|
|
|
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x5A827999));
|
|
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x5A827999));
|
|
|
|
/* Rounds 0-3 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x5A827999));
|
|
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
|
|
|
|
/* Rounds 4-7 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1cq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0x5A827999));
|
|
MSG0 = vsha1su1q_u32(MSG0, MSG3);
|
|
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
|
|
|
|
/* Rounds 8-11 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x5A827999));
|
|
MSG1 = vsha1su1q_u32(MSG1, MSG0);
|
|
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
|
|
|
|
/* Rounds 12-15 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1cq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x6ED9EBA1));
|
|
MSG2 = vsha1su1q_u32(MSG2, MSG1);
|
|
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
|
|
|
|
/* Rounds 16-19 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x6ED9EBA1));
|
|
MSG3 = vsha1su1q_u32(MSG3, MSG2);
|
|
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
|
|
|
|
/* Rounds 20-23 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0x6ED9EBA1));
|
|
MSG0 = vsha1su1q_u32(MSG0, MSG3);
|
|
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
|
|
|
|
/* Rounds 24-27 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x6ED9EBA1));
|
|
MSG1 = vsha1su1q_u32(MSG1, MSG0);
|
|
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
|
|
|
|
/* Rounds 28-31 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x6ED9EBA1));
|
|
MSG2 = vsha1su1q_u32(MSG2, MSG1);
|
|
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
|
|
|
|
/* Rounds 32-35 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x8F1BBCDC));
|
|
MSG3 = vsha1su1q_u32(MSG3, MSG2);
|
|
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
|
|
|
|
/* Rounds 36-39 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0x8F1BBCDC));
|
|
MSG0 = vsha1su1q_u32(MSG0, MSG3);
|
|
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
|
|
|
|
/* Rounds 40-43 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x8F1BBCDC));
|
|
MSG1 = vsha1su1q_u32(MSG1, MSG0);
|
|
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
|
|
|
|
/* Rounds 44-47 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1mq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x8F1BBCDC));
|
|
MSG2 = vsha1su1q_u32(MSG2, MSG1);
|
|
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
|
|
|
|
/* Rounds 48-51 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x8F1BBCDC));
|
|
MSG3 = vsha1su1q_u32(MSG3, MSG2);
|
|
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
|
|
|
|
/* Rounds 52-55 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1mq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0xCA62C1D6));
|
|
MSG0 = vsha1su1q_u32(MSG0, MSG3);
|
|
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
|
|
|
|
/* Rounds 56-59 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0xCA62C1D6));
|
|
MSG1 = vsha1su1q_u32(MSG1, MSG0);
|
|
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
|
|
|
|
/* Rounds 60-63 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0xCA62C1D6));
|
|
MSG2 = vsha1su1q_u32(MSG2, MSG1);
|
|
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
|
|
|
|
/* Rounds 64-67 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
|
|
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0xCA62C1D6));
|
|
MSG3 = vsha1su1q_u32(MSG3, MSG2);
|
|
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
|
|
|
|
/* Rounds 68-71 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
|
|
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0xCA62C1D6));
|
|
MSG0 = vsha1su1q_u32(MSG0, MSG3);
|
|
|
|
/* Rounds 72-75 */
|
|
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
|
|
|
|
/* Rounds 76-79 */
|
|
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
|
|
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
|
|
|
|
/* Combine state */
|
|
E0 += E0_SAVED;
|
|
ABCD = vaddq_u32(ABCD_SAVED, ABCD);
|
|
|
|
/* Save state */
|
|
vst1q_u32(&md->sha1.state[0], ABCD);
|
|
md->sha1.state[4] = E0;
|
|
// -> END arm intrinsics block
|
|
#elif SHA1_TARGET_X86
|
|
/* sha1-x86.c - Intel SHA extensions using C intrinsics */
|
|
/* Written and place in public domain by Jeffrey Walton */
|
|
/* Based on code from Intel, and by Sean Gulley for */
|
|
/* the miTLS project. */
|
|
// -> BEGIN x86_64 intrinsics block
|
|
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
|
|
__m128i MSG0, MSG1, MSG2, MSG3;
|
|
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
|
|
|
|
/* Load initial values */
|
|
ABCD = _mm_loadu_si128((const __m128i*) md->sha1.state);
|
|
E0 = _mm_set_epi32(md->sha1.state[4], 0, 0, 0);
|
|
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
|
|
|
|
/* Save current state */
|
|
ABCD_SAVE = ABCD;
|
|
E0_SAVE = E0;
|
|
|
|
/* Rounds 0-3 */
|
|
MSG0 = _mm_loadu_si128((const __m128i*)(buf + 0));
|
|
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
|
|
E0 = _mm_add_epi32(E0, MSG0);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
|
|
/* Rounds 4-7 */
|
|
MSG1 = _mm_loadu_si128((const __m128i*)(buf + 16));
|
|
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 8-11 */
|
|
MSG2 = _mm_loadu_si128((const __m128i*)(buf + 32));
|
|
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 12-15 */
|
|
MSG3 = _mm_loadu_si128((const __m128i*)(buf + 48));
|
|
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 16-19 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 20-23 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 24-27 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 28-31 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 32-35 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 36-39 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 40-43 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 44-47 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 48-51 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 52-55 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
|
|
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 56-59 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
|
|
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
|
|
MSG0 = _mm_xor_si128(MSG0, MSG2);
|
|
|
|
/* Rounds 60-63 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
|
|
MSG1 = _mm_xor_si128(MSG1, MSG3);
|
|
|
|
/* Rounds 64-67 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG0);
|
|
E1 = ABCD;
|
|
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
|
|
MSG2 = _mm_xor_si128(MSG2, MSG0);
|
|
|
|
/* Rounds 68-71 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG1);
|
|
E0 = ABCD;
|
|
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
MSG3 = _mm_xor_si128(MSG3, MSG1);
|
|
|
|
/* Rounds 72-75 */
|
|
E0 = _mm_sha1nexte_epu32(E0, MSG2);
|
|
E1 = ABCD;
|
|
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
|
|
|
|
/* Rounds 76-79 */
|
|
E1 = _mm_sha1nexte_epu32(E1, MSG3);
|
|
E0 = ABCD;
|
|
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
|
|
|
|
/* Combine state */
|
|
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
|
|
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
|
|
|
|
/* Save state */
|
|
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
|
|
_mm_storeu_si128((__m128i*) md->sha1.state, ABCD);
|
|
md->sha1.state[4] = _mm_extract_epi32(E0, 3);
|
|
// -> END x86_64 intrinsics block
|
|
#else
|
|
// -> BEGIN generic, non intrinsics block
|
|
/*
|
|
* SHA-1 hash in C
|
|
*
|
|
* Copyright (c) 2023 Project Nayuki. (MIT License)
|
|
* https://www.nayuki.io/page/fast-sha1-hash-implementation-in-x86-assembly
|
|
*/
|
|
|
|
#define ROTL32(x, n) (((0U + (x)) << (n)) | ((x) >> (32 - (n)))) // Assumes that x is uint32_t and 0 < n < 32
|
|
|
|
#define LOADSCHEDULE(i) \
|
|
schedule[i] = (uint32_t)buf[i * 4 + 0] << 24 \
|
|
| (uint32_t)buf[i * 4 + 1] << 16 \
|
|
| (uint32_t)buf[i * 4 + 2] << 8 \
|
|
| (uint32_t)buf[i * 4 + 3] << 0;
|
|
|
|
#define SCHEDULE(i) \
|
|
temp = schedule[(i - 3) & 0xF] ^ schedule[(i - 8) & 0xF] ^ schedule[(i - 14) & 0xF] ^ schedule[(i - 16) & 0xF]; \
|
|
schedule[i & 0xF] = ROTL32(temp, 1);
|
|
|
|
#define ROUND0a(a, b, c, d, e, i) LOADSCHEDULE(i) ROUNDTAIL(a, b, e, ((b & c) | (~b & d)) , i, 0x5A827999)
|
|
#define ROUND0b(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, ((b & c) | (~b & d)) , i, 0x5A827999)
|
|
#define ROUND1(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, (b ^ c ^ d) , i, 0x6ED9EBA1)
|
|
#define ROUND2(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, ((b & c) ^ (b & d) ^ (c & d)), i, 0x8F1BBCDC)
|
|
#define ROUND3(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, (b ^ c ^ d) , i, 0xCA62C1D6)
|
|
|
|
#define ROUNDTAIL(a, b, e, f, i, k) \
|
|
e = 0U + e + ROTL32(a, 5) + f + UINT32_C(k) + schedule[i & 0xF]; \
|
|
b = ROTL32(b, 30);
|
|
|
|
uint32_t a = md->sha1.state[0];
|
|
uint32_t b = md->sha1.state[1];
|
|
uint32_t c = md->sha1.state[2];
|
|
uint32_t d = md->sha1.state[3];
|
|
uint32_t e = md->sha1.state[4];
|
|
|
|
uint32_t schedule[16];
|
|
uint32_t temp;
|
|
ROUND0a(a, b, c, d, e, 0)
|
|
ROUND0a(e, a, b, c, d, 1)
|
|
ROUND0a(d, e, a, b, c, 2)
|
|
ROUND0a(c, d, e, a, b, 3)
|
|
ROUND0a(b, c, d, e, a, 4)
|
|
ROUND0a(a, b, c, d, e, 5)
|
|
ROUND0a(e, a, b, c, d, 6)
|
|
ROUND0a(d, e, a, b, c, 7)
|
|
ROUND0a(c, d, e, a, b, 8)
|
|
ROUND0a(b, c, d, e, a, 9)
|
|
ROUND0a(a, b, c, d, e, 10)
|
|
ROUND0a(e, a, b, c, d, 11)
|
|
ROUND0a(d, e, a, b, c, 12)
|
|
ROUND0a(c, d, e, a, b, 13)
|
|
ROUND0a(b, c, d, e, a, 14)
|
|
ROUND0a(a, b, c, d, e, 15)
|
|
ROUND0b(e, a, b, c, d, 16)
|
|
ROUND0b(d, e, a, b, c, 17)
|
|
ROUND0b(c, d, e, a, b, 18)
|
|
ROUND0b(b, c, d, e, a, 19)
|
|
ROUND1(a, b, c, d, e, 20)
|
|
ROUND1(e, a, b, c, d, 21)
|
|
ROUND1(d, e, a, b, c, 22)
|
|
ROUND1(c, d, e, a, b, 23)
|
|
ROUND1(b, c, d, e, a, 24)
|
|
ROUND1(a, b, c, d, e, 25)
|
|
ROUND1(e, a, b, c, d, 26)
|
|
ROUND1(d, e, a, b, c, 27)
|
|
ROUND1(c, d, e, a, b, 28)
|
|
ROUND1(b, c, d, e, a, 29)
|
|
ROUND1(a, b, c, d, e, 30)
|
|
ROUND1(e, a, b, c, d, 31)
|
|
ROUND1(d, e, a, b, c, 32)
|
|
ROUND1(c, d, e, a, b, 33)
|
|
ROUND1(b, c, d, e, a, 34)
|
|
ROUND1(a, b, c, d, e, 35)
|
|
ROUND1(e, a, b, c, d, 36)
|
|
ROUND1(d, e, a, b, c, 37)
|
|
ROUND1(c, d, e, a, b, 38)
|
|
ROUND1(b, c, d, e, a, 39)
|
|
ROUND2(a, b, c, d, e, 40)
|
|
ROUND2(e, a, b, c, d, 41)
|
|
ROUND2(d, e, a, b, c, 42)
|
|
ROUND2(c, d, e, a, b, 43)
|
|
ROUND2(b, c, d, e, a, 44)
|
|
ROUND2(a, b, c, d, e, 45)
|
|
ROUND2(e, a, b, c, d, 46)
|
|
ROUND2(d, e, a, b, c, 47)
|
|
ROUND2(c, d, e, a, b, 48)
|
|
ROUND2(b, c, d, e, a, 49)
|
|
ROUND2(a, b, c, d, e, 50)
|
|
ROUND2(e, a, b, c, d, 51)
|
|
ROUND2(d, e, a, b, c, 52)
|
|
ROUND2(c, d, e, a, b, 53)
|
|
ROUND2(b, c, d, e, a, 54)
|
|
ROUND2(a, b, c, d, e, 55)
|
|
ROUND2(e, a, b, c, d, 56)
|
|
ROUND2(d, e, a, b, c, 57)
|
|
ROUND2(c, d, e, a, b, 58)
|
|
ROUND2(b, c, d, e, a, 59)
|
|
ROUND3(a, b, c, d, e, 60)
|
|
ROUND3(e, a, b, c, d, 61)
|
|
ROUND3(d, e, a, b, c, 62)
|
|
ROUND3(c, d, e, a, b, 63)
|
|
ROUND3(b, c, d, e, a, 64)
|
|
ROUND3(a, b, c, d, e, 65)
|
|
ROUND3(e, a, b, c, d, 66)
|
|
ROUND3(d, e, a, b, c, 67)
|
|
ROUND3(c, d, e, a, b, 68)
|
|
ROUND3(b, c, d, e, a, 69)
|
|
ROUND3(a, b, c, d, e, 70)
|
|
ROUND3(e, a, b, c, d, 71)
|
|
ROUND3(d, e, a, b, c, 72)
|
|
ROUND3(c, d, e, a, b, 73)
|
|
ROUND3(b, c, d, e, a, 74)
|
|
ROUND3(a, b, c, d, e, 75)
|
|
ROUND3(e, a, b, c, d, 76)
|
|
ROUND3(d, e, a, b, c, 77)
|
|
ROUND3(c, d, e, a, b, 78)
|
|
ROUND3(b, c, d, e, a, 79)
|
|
|
|
md->sha1.state[0] = 0U + md->sha1.state[0] + a;
|
|
md->sha1.state[1] = 0U + md->sha1.state[1] + b;
|
|
md->sha1.state[2] = 0U + md->sha1.state[2] + c;
|
|
md->sha1.state[3] = 0U + md->sha1.state[3] + d;
|
|
md->sha1.state[4] = 0U + md->sha1.state[4] + e;
|
|
|
|
#undef ROTL32
|
|
#undef LOADSCHEDULE
|
|
#undef SCHEDULE
|
|
#undef ROUND0a
|
|
#undef ROUND0b
|
|
#undef ROUND1
|
|
#undef ROUND2
|
|
#undef ROUND3
|
|
#undef ROUNDTAIL
|
|
// -> END generic, non intrinsics block
|
|
#endif
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#ifdef LTC_CLEAN_STACK
|
|
static int s_sha1_compress(hash_state *md, const unsigned char *buf)
|
|
{
|
|
int err;
|
|
err = ss_sha1_compress(md, buf);
|
|
burn_stack(sizeof(ulong32) * 87);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
Initialize the hash state
|
|
@param md The hash state you wish to initialize
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
int sha1_init(hash_state * md)
|
|
{
|
|
LTC_ARGCHK(md != NULL);
|
|
md->sha1.state[0] = 0x67452301UL;
|
|
md->sha1.state[1] = 0xefcdab89UL;
|
|
md->sha1.state[2] = 0x98badcfeUL;
|
|
md->sha1.state[3] = 0x10325476UL;
|
|
md->sha1.state[4] = 0xc3d2e1f0UL;
|
|
md->sha1.curlen = 0;
|
|
md->sha1.length = 0;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Process a block of memory though the hash
|
|
@param md The hash state
|
|
@param in The data to hash
|
|
@param inlen The length of the data (octets)
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
HASH_PROCESS(sha1_process, s_sha1_compress, sha1, 64)
|
|
|
|
/**
|
|
Terminate the hash to get the digest
|
|
@param md The hash state
|
|
@param out [out] The destination of the hash (20 bytes)
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
int sha1_done(hash_state * md, unsigned char *out)
|
|
{
|
|
int i;
|
|
|
|
LTC_ARGCHK(md != NULL);
|
|
LTC_ARGCHK(out != NULL);
|
|
|
|
if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
|
|
return CRYPT_INVALID_ARG;
|
|
}
|
|
|
|
/* increase the length of the message */
|
|
md->sha1.length += md->sha1.curlen * 8;
|
|
|
|
/* append the '1' bit */
|
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
|
|
|
|
/* if the length is currently above 56 bytes we append zeros
|
|
* then compress. Then we can fall back to padding zeros and length
|
|
* encoding like normal.
|
|
*/
|
|
if (md->sha1.curlen > 56) {
|
|
while (md->sha1.curlen < 64) {
|
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
|
|
}
|
|
s_sha1_compress(md, md->sha1.buf);
|
|
md->sha1.curlen = 0;
|
|
}
|
|
|
|
/* pad upto 56 bytes of zeroes */
|
|
while (md->sha1.curlen < 56) {
|
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
|
|
}
|
|
|
|
/* store length */
|
|
STORE64H(md->sha1.length, md->sha1.buf+56);
|
|
s_sha1_compress(md, md->sha1.buf);
|
|
|
|
/* copy output */
|
|
for (i = 0; i < 5; i++) {
|
|
STORE32H(md->sha1.state[i], out+(4*i));
|
|
}
|
|
#ifdef LTC_CLEAN_STACK
|
|
zeromem(md, sizeof(hash_state));
|
|
#endif
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Self-test the hash
|
|
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
|
|
*/
|
|
int sha1_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
const char *msg;
|
|
unsigned char hash[20];
|
|
} tests[] = {
|
|
{ "abc",
|
|
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
|
|
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
|
|
0x9c, 0xd0, 0xd8, 0x9d }
|
|
},
|
|
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
|
|
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
|
|
0xE5, 0x46, 0x70, 0xF1 }
|
|
}
|
|
};
|
|
|
|
int i;
|
|
unsigned char tmp[20];
|
|
hash_state md;
|
|
|
|
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
|
|
sha1_init(&md);
|
|
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
|
|
sha1_done(&md, tmp);
|
|
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA1", i)) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
|