2024-06-05 16:10:03 -04:00

254 lines
6.0 KiB
Go

// Copyright (c) 2022 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package fx
import (
"context"
"fmt"
"os"
"os/signal"
"sync"
)
// ShutdownSignal represents a signal to be written to Wait or Done.
// Should a user call the Shutdown method via the Shutdowner interface with
// a provided ExitCode, that exit code will be populated in the ExitCode field.
//
// Should the application receive an operating system signal,
// the Signal field will be populated with the received os.Signal.
type ShutdownSignal struct {
Signal os.Signal
ExitCode int
}
// String will render a ShutdownSignal type as a string suitable for printing.
func (sig ShutdownSignal) String() string {
return fmt.Sprintf("%v", sig.Signal)
}
func newSignalReceivers() signalReceivers {
return signalReceivers{
notify: signal.Notify,
signals: make(chan os.Signal, 1),
}
}
type signalReceivers struct {
// this mutex protects writes and reads of this struct to prevent
// race conditions in a parallel execution pattern
m sync.Mutex
// our os.Signal channel we relay from
signals chan os.Signal
// when written to, will instruct the signal relayer to shutdown
shutdown chan struct{}
// is written to when signal relay has finished shutting down
finished chan struct{}
// this stub allows us to unit test signal relay functionality
notify func(c chan<- os.Signal, sig ...os.Signal)
// last will contain a pointer to the last ShutdownSignal received, or
// nil if none, if a new channel is created by Wait or Done, this last
// signal will be immediately written to, this allows Wait or Done state
// to be read after application stop
last *ShutdownSignal
// contains channels created by Done
done []chan os.Signal
// contains channels created by Wait
wait []chan ShutdownSignal
}
func (recv *signalReceivers) relayer() {
defer func() {
recv.finished <- struct{}{}
}()
select {
case <-recv.shutdown:
return
case signal := <-recv.signals:
recv.Broadcast(ShutdownSignal{
Signal: signal,
})
}
}
// running returns true if the the signal relay go-routine is running.
// this method must be invoked under locked mutex to avoid race condition.
func (recv *signalReceivers) running() bool {
return recv.shutdown != nil && recv.finished != nil
}
func (recv *signalReceivers) Start(ctx context.Context) {
recv.m.Lock()
defer recv.m.Unlock()
// if the receiver has already been started; don't start it again
if recv.running() {
return
}
recv.finished = make(chan struct{}, 1)
recv.shutdown = make(chan struct{}, 1)
recv.notify(recv.signals, os.Interrupt, _sigINT, _sigTERM)
go recv.relayer()
}
func (recv *signalReceivers) Stop(ctx context.Context) error {
recv.m.Lock()
defer recv.m.Unlock()
// if the relayer is not running; return nil error
if !recv.running() {
return nil
}
recv.shutdown <- struct{}{}
select {
case <-ctx.Done():
return ctx.Err()
case <-recv.finished:
close(recv.shutdown)
close(recv.finished)
recv.shutdown = nil
recv.finished = nil
recv.last = nil
return nil
}
}
func (recv *signalReceivers) Done() <-chan os.Signal {
recv.m.Lock()
defer recv.m.Unlock()
ch := make(chan os.Signal, 1)
// If we had received a signal prior to the call of done, send it's
// os.Signal to the new channel.
// However we still want to have the operating system notify signals to this
// channel should the application receive another.
if recv.last != nil {
ch <- recv.last.Signal
}
recv.done = append(recv.done, ch)
return ch
}
func (recv *signalReceivers) Wait() <-chan ShutdownSignal {
recv.m.Lock()
defer recv.m.Unlock()
ch := make(chan ShutdownSignal, 1)
if recv.last != nil {
ch <- *recv.last
}
recv.wait = append(recv.wait, ch)
return ch
}
func (recv *signalReceivers) Broadcast(signal ShutdownSignal) error {
recv.m.Lock()
defer recv.m.Unlock()
recv.last = &signal
channels, unsent := recv.broadcast(
signal,
recv.broadcastDone,
recv.broadcastWait,
)
if unsent != 0 {
return &unsentSignalError{
Signal: signal,
Total: channels,
Unsent: unsent,
}
}
return nil
}
func (recv *signalReceivers) broadcast(
signal ShutdownSignal,
anchors ...func(ShutdownSignal) (int, int),
) (int, int) {
var channels, unsent int
for _, anchor := range anchors {
c, u := anchor(signal)
channels += c
unsent += u
}
return channels, unsent
}
func (recv *signalReceivers) broadcastDone(signal ShutdownSignal) (int, int) {
var unsent int
for _, reader := range recv.done {
select {
case reader <- signal.Signal:
default:
unsent++
}
}
return len(recv.done), unsent
}
func (recv *signalReceivers) broadcastWait(signal ShutdownSignal) (int, int) {
var unsent int
for _, reader := range recv.wait {
select {
case reader <- signal:
default:
unsent++
}
}
return len(recv.wait), unsent
}
type unsentSignalError struct {
Signal ShutdownSignal
Unsent int
Total int
}
func (err *unsentSignalError) Error() string {
return fmt.Sprintf(
"send %v signal: %v/%v channels are blocked",
err.Signal,
err.Unsent,
err.Total,
)
}