mirror of
https://github.com/status-im/status-go.git
synced 2025-01-22 04:31:30 +00:00
238 lines
7.1 KiB
Go
238 lines
7.1 KiB
Go
// Copyright 2014 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package crypto
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"encoding/hex"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"io/ioutil"
|
|
"math/big"
|
|
"os"
|
|
|
|
"golang.org/x/crypto/sha3"
|
|
|
|
"github.com/ethereum/go-ethereum/common/math"
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
|
|
"github.com/status-im/status-go/eth-node/types"
|
|
)
|
|
|
|
// SignatureLength indicates the byte length required to carry a signature with recovery id.
|
|
const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
|
|
|
|
// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
|
|
const RecoveryIDOffset = 64
|
|
|
|
// DigestLength sets the signature digest exact length
|
|
const DigestLength = 32
|
|
|
|
var (
|
|
secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
|
|
)
|
|
|
|
var errInvalidPubkey = errors.New("invalid secp256k1 public key")
|
|
|
|
// Keccak256 calculates and returns the Keccak256 hash of the input data.
|
|
func Keccak256(data ...[]byte) []byte {
|
|
d := sha3.NewLegacyKeccak256()
|
|
for _, b := range data {
|
|
_, _ = d.Write(b)
|
|
}
|
|
return d.Sum(nil)
|
|
}
|
|
|
|
// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
|
|
// converting it to an internal Hash data structure.
|
|
func Keccak256Hash(data ...[]byte) (h types.Hash) {
|
|
d := sha3.NewLegacyKeccak256()
|
|
for _, b := range data {
|
|
_, _ = d.Write(b)
|
|
}
|
|
d.Sum(h[:0])
|
|
return h
|
|
}
|
|
|
|
// Keccak512 calculates and returns the Keccak512 hash of the input data.
|
|
func Keccak512(data ...[]byte) []byte {
|
|
d := sha3.NewLegacyKeccak512()
|
|
for _, b := range data {
|
|
_, _ = d.Write(b)
|
|
}
|
|
return d.Sum(nil)
|
|
}
|
|
|
|
// CreateAddress creates an ethereum address given the bytes and the nonce
|
|
func CreateAddress(b types.Address, nonce uint64) types.Address {
|
|
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
|
|
return types.BytesToAddress(Keccak256(data)[12:])
|
|
}
|
|
|
|
// CreateAddress2 creates an ethereum address given the address bytes, initial
|
|
// contract code hash and a salt.
|
|
func CreateAddress2(b types.Address, salt [32]byte, inithash []byte) types.Address {
|
|
return types.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
|
|
}
|
|
|
|
// ToECDSA creates a private key with the given D value.
|
|
func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
|
|
return toECDSA(d, true)
|
|
}
|
|
|
|
// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
|
|
// never be used unless you are sure the input is valid and want to avoid hitting
|
|
// errors due to bad origin encoding (0 prefixes cut off).
|
|
func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
|
|
priv, _ := toECDSA(d, false)
|
|
return priv
|
|
}
|
|
|
|
// toECDSA creates a private key with the given D value. The strict parameter
|
|
// controls whether the key's length should be enforced at the curve size or
|
|
// it can also accept legacy encodings (0 prefixes).
|
|
func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
|
|
priv := new(ecdsa.PrivateKey)
|
|
priv.PublicKey.Curve = S256()
|
|
if strict && 8*len(d) != priv.Params().BitSize {
|
|
return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
|
|
}
|
|
priv.D = new(big.Int).SetBytes(d)
|
|
|
|
// The priv.D must < N
|
|
if priv.D.Cmp(secp256k1N) >= 0 {
|
|
return nil, fmt.Errorf("invalid private key, >=N")
|
|
}
|
|
// The priv.D must not be zero or negative.
|
|
if priv.D.Sign() <= 0 {
|
|
return nil, fmt.Errorf("invalid private key, zero or negative")
|
|
}
|
|
|
|
priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
|
|
if priv.PublicKey.X == nil {
|
|
return nil, errors.New("invalid private key")
|
|
}
|
|
return priv, nil
|
|
}
|
|
|
|
// FromECDSA exports a private key into a binary dump.
|
|
func FromECDSA(priv *ecdsa.PrivateKey) []byte {
|
|
if priv == nil {
|
|
return nil
|
|
}
|
|
return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
|
|
}
|
|
|
|
// UnmarshalPubkey converts bytes to a secp256k1 public key.
|
|
func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
|
|
x, y := elliptic.Unmarshal(S256(), pub)
|
|
if x == nil {
|
|
return nil, errInvalidPubkey
|
|
}
|
|
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
|
|
}
|
|
|
|
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
|
|
if pub == nil || pub.X == nil || pub.Y == nil {
|
|
return nil
|
|
}
|
|
return elliptic.Marshal(S256(), pub.X, pub.Y)
|
|
}
|
|
|
|
// HexToECDSA parses a secp256k1 private key.
|
|
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
|
|
b, err := hex.DecodeString(hexkey)
|
|
if err != nil {
|
|
return nil, errors.New("invalid hex string")
|
|
}
|
|
return ToECDSA(b)
|
|
}
|
|
|
|
// LoadECDSA loads a secp256k1 private key from the given file.
|
|
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
|
|
buf := make([]byte, 64)
|
|
fd, err := os.Open(file)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer fd.Close()
|
|
if _, err := io.ReadFull(fd, buf); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
key, err := hex.DecodeString(string(buf))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return ToECDSA(key)
|
|
}
|
|
|
|
// SaveECDSA saves a secp256k1 private key to the given file with
|
|
// restrictive permissions. The key data is saved hex-encoded.
|
|
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
|
|
k := hex.EncodeToString(FromECDSA(key))
|
|
return ioutil.WriteFile(file, []byte(k), 0600)
|
|
}
|
|
|
|
func GenerateKey() (*ecdsa.PrivateKey, error) {
|
|
return ecdsa.GenerateKey(S256(), rand.Reader)
|
|
}
|
|
|
|
func PubkeyToAddress(p ecdsa.PublicKey) types.Address {
|
|
pubBytes := FromECDSAPub(&p)
|
|
return types.BytesToAddress(Keccak256(pubBytes[1:])[12:])
|
|
}
|
|
|
|
// Ecrecover returns the uncompressed public key that created the given signature.
|
|
func Ecrecover(hash, sig []byte) ([]byte, error) {
|
|
return secp256k1.RecoverPubkey(hash, sig)
|
|
}
|
|
|
|
// SigToPub returns the public key that created the given signature.
|
|
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
|
|
s, err := Ecrecover(hash, sig)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
x, y := elliptic.Unmarshal(S256(), s)
|
|
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
|
|
}
|
|
|
|
// DecompressPubkey parses a public key in the 33-byte compressed format.
|
|
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
|
|
x, y := secp256k1.DecompressPubkey(pubkey)
|
|
if x == nil {
|
|
return nil, fmt.Errorf("invalid public key")
|
|
}
|
|
return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
|
|
}
|
|
|
|
// CompressPubkey encodes a public key to the 33-byte compressed format.
|
|
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
|
|
return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
|
|
}
|
|
|
|
// S256 returns an instance of the secp256k1 curve.
|
|
func S256() elliptic.Curve {
|
|
return secp256k1.S256()
|
|
}
|