Andrea Maria Piana 2f539d3bd2 Upgrade go-ens
Go ens needs to be updated to be compatible with the lastest geth
version
2021-07-20 10:57:38 +02:00

283 lines
6.7 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
type pair struct {
g1 *PointG1
g2 *PointG2
}
func newPair(g1 *PointG1, g2 *PointG2) pair {
return pair{g1, g2}
}
// Engine is BLS12-381 elliptic curve pairing engine
type Engine struct {
G1 *G1
G2 *G2
fp12 *fp12
fp2 *fp2
pairingEngineTemp
pairs []pair
}
// NewPairingEngine creates new pairing engine instance.
func NewPairingEngine() *Engine {
fp2 := newFp2()
fp6 := newFp6(fp2)
fp12 := newFp12(fp6)
g1 := NewG1()
g2 := newG2(fp2)
return &Engine{
fp2: fp2,
fp12: fp12,
G1: g1,
G2: g2,
pairingEngineTemp: newEngineTemp(),
}
}
type pairingEngineTemp struct {
t2 [10]*fe2
t12 [9]fe12
}
func newEngineTemp() pairingEngineTemp {
t2 := [10]*fe2{}
for i := 0; i < 10; i++ {
t2[i] = &fe2{}
}
t12 := [9]fe12{}
return pairingEngineTemp{t2, t12}
}
// AddPair adds a g1, g2 point pair to pairing engine
func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
p := newPair(g1, g2)
if !e.isZero(p) {
e.affine(p)
e.pairs = append(e.pairs, p)
}
return e
}
// AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
e.G1.Neg(g1, g1)
e.AddPair(g1, g2)
return e
}
// Reset deletes added pairs.
func (e *Engine) Reset() *Engine {
e.pairs = []pair{}
return e
}
func (e *Engine) isZero(p pair) bool {
return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
}
func (e *Engine) affine(p pair) {
e.G1.Affine(p.g1)
e.G2.Affine(p.g2)
}
func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &r[0], &r[1])
fp2.mulByFq(t[0], t[0], twoInv)
fp2.square(t[1], &r[1])
fp2.square(t[2], &r[2])
fp2.double(t[7], t[2])
fp2.add(t[7], t[7], t[2])
fp2.mulByB(t[3], t[7])
fp2.double(t[4], t[3])
fp2.add(t[4], t[4], t[3])
fp2.add(t[5], t[1], t[4])
fp2.mulByFq(t[5], t[5], twoInv)
fp2.add(t[6], &r[1], &r[2])
fp2.square(t[6], t[6])
fp2.add(t[7], t[2], t[1])
fp2.sub(t[6], t[6], t[7])
fp2.sub(&coeff[0], t[3], t[1])
fp2.square(t[7], &r[0])
fp2.sub(t[4], t[1], t[4])
fp2.mul(&r[0], t[4], t[0])
fp2.square(t[2], t[3])
fp2.double(t[3], t[2])
fp2.add(t[3], t[3], t[2])
fp2.square(t[5], t[5])
fp2.sub(&r[1], t[5], t[3])
fp2.mul(&r[2], t[1], t[6])
fp2.double(t[0], t[7])
fp2.add(&coeff[1], t[0], t[7])
fp2.neg(&coeff[2], t[6])
}
func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &q[1], &r[2])
fp2.neg(t[0], t[0])
fp2.add(t[0], t[0], &r[1])
fp2.mul(t[1], &q[0], &r[2])
fp2.neg(t[1], t[1])
fp2.add(t[1], t[1], &r[0])
fp2.square(t[2], t[0])
fp2.square(t[3], t[1])
fp2.mul(t[4], t[1], t[3])
fp2.mul(t[2], &r[2], t[2])
fp2.mul(t[3], &r[0], t[3])
fp2.double(t[5], t[3])
fp2.sub(t[5], t[4], t[5])
fp2.add(t[5], t[5], t[2])
fp2.mul(&r[0], t[1], t[5])
fp2.sub(t[2], t[3], t[5])
fp2.mul(t[2], t[2], t[0])
fp2.mul(t[3], &r[1], t[4])
fp2.sub(&r[1], t[2], t[3])
fp2.mul(&r[2], &r[2], t[4])
fp2.mul(t[2], t[1], &q[1])
fp2.mul(t[3], t[0], &q[0])
fp2.sub(&coeff[0], t[3], t[2])
fp2.neg(&coeff[1], t[0])
coeff[2].set(t[1])
}
func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
// Algorithm 5 in https://eprint.iacr.org/2019/077.pdf
if e.G2.IsZero(twistPoint) {
return
}
r := new(PointG2).Set(twistPoint)
j := 0
for i := x.BitLen() - 2; i >= 0; i-- {
e.doublingStep(&ellCoeffs[j], r)
if x.Bit(i) != 0 {
j++
ellCoeffs[j] = fe6{}
e.additionStep(&ellCoeffs[j], r, twistPoint)
}
j++
}
}
func (e *Engine) millerLoop(f *fe12) {
pairs := e.pairs
ellCoeffs := make([][68][3]fe2, len(pairs))
for i := 0; i < len(pairs); i++ {
e.preCompute(&ellCoeffs[i], pairs[i].g2)
}
fp12, fp2 := e.fp12, e.fp2
t := e.t2
f.one()
j := 0
for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
if i != 62 {
fp12.square(f, f)
}
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
if x.Bit(i) != 0 {
j++
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
}
j++
}
fp12.conjugate(f, f)
}
func (e *Engine) exp(c, a *fe12) {
fp12 := e.fp12
fp12.cyclotomicExp(c, a, x)
fp12.conjugate(c, c)
}
func (e *Engine) finalExp(f *fe12) {
fp12 := e.fp12
t := e.t12
// easy part
fp12.frobeniusMap(&t[0], f, 6)
fp12.inverse(&t[1], f)
fp12.mul(&t[2], &t[0], &t[1])
t[1].set(&t[2])
fp12.frobeniusMapAssign(&t[2], 2)
fp12.mulAssign(&t[2], &t[1])
fp12.cyclotomicSquare(&t[1], &t[2])
fp12.conjugate(&t[1], &t[1])
// hard part
e.exp(&t[3], &t[2])
fp12.cyclotomicSquare(&t[4], &t[3])
fp12.mul(&t[5], &t[1], &t[3])
e.exp(&t[1], &t[5])
e.exp(&t[0], &t[1])
e.exp(&t[6], &t[0])
fp12.mulAssign(&t[6], &t[4])
e.exp(&t[4], &t[6])
fp12.conjugate(&t[5], &t[5])
fp12.mulAssign(&t[4], &t[5])
fp12.mulAssign(&t[4], &t[2])
fp12.conjugate(&t[5], &t[2])
fp12.mulAssign(&t[1], &t[2])
fp12.frobeniusMapAssign(&t[1], 3)
fp12.mulAssign(&t[6], &t[5])
fp12.frobeniusMapAssign(&t[6], 1)
fp12.mulAssign(&t[3], &t[0])
fp12.frobeniusMapAssign(&t[3], 2)
fp12.mulAssign(&t[3], &t[1])
fp12.mulAssign(&t[3], &t[6])
fp12.mul(f, &t[3], &t[4])
}
func (e *Engine) calculate() *fe12 {
f := e.fp12.one()
if len(e.pairs) == 0 {
return f
}
e.millerLoop(f)
e.finalExp(f)
return f
}
// Check computes pairing and checks if result is equal to one
func (e *Engine) Check() bool {
return e.calculate().isOne()
}
// Result computes pairing and returns target group element as result.
func (e *Engine) Result() *E {
r := e.calculate()
e.Reset()
return r
}
// GT returns target group instance.
func (e *Engine) GT() *GT {
return NewGT()
}