status-go/vendor/github.com/quic-go/qtls-go1-20/handshake_server_tls13.go
2023-05-30 10:49:52 -04:00

908 lines
27 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"bytes"
"context"
"crypto"
"crypto/hmac"
"crypto/rsa"
"errors"
"hash"
"io"
"time"
)
// maxClientPSKIdentities is the number of client PSK identities the server will
// attempt to validate. It will ignore the rest not to let cheap ClientHello
// messages cause too much work in session ticket decryption attempts.
const maxClientPSKIdentities = 5
type serverHandshakeStateTLS13 struct {
c *Conn
ctx context.Context
clientHello *clientHelloMsg
hello *serverHelloMsg
alpnNegotiationErr error
encryptedExtensions *encryptedExtensionsMsg
sentDummyCCS bool
usingPSK bool
suite *cipherSuiteTLS13
cert *Certificate
sigAlg SignatureScheme
earlySecret []byte
sharedKey []byte
handshakeSecret []byte
masterSecret []byte
trafficSecret []byte // client_application_traffic_secret_0
transcript hash.Hash
clientFinished []byte
}
func (hs *serverHandshakeStateTLS13) handshake() error {
c := hs.c
if needFIPS() {
return errors.New("tls: internal error: TLS 1.3 reached in FIPS mode")
}
// For an overview of the TLS 1.3 handshake, see RFC 8446, Section 2.
if err := hs.processClientHello(); err != nil {
return err
}
if err := hs.checkForResumption(); err != nil {
return err
}
c.updateConnectionState()
if err := hs.pickCertificate(); err != nil {
return err
}
c.buffering = true
if err := hs.sendServerParameters(); err != nil {
return err
}
if err := hs.sendServerCertificate(); err != nil {
return err
}
if err := hs.sendServerFinished(); err != nil {
return err
}
// Note that at this point we could start sending application data without
// waiting for the client's second flight, but the application might not
// expect the lack of replay protection of the ClientHello parameters.
if _, err := c.flush(); err != nil {
return err
}
if err := hs.readClientCertificate(); err != nil {
return err
}
c.updateConnectionState()
if err := hs.readClientFinished(); err != nil {
return err
}
c.isHandshakeComplete.Store(true)
c.updateConnectionState()
return nil
}
func (hs *serverHandshakeStateTLS13) processClientHello() error {
c := hs.c
hs.hello = new(serverHelloMsg)
hs.encryptedExtensions = new(encryptedExtensionsMsg)
// TLS 1.3 froze the ServerHello.legacy_version field, and uses
// supported_versions instead. See RFC 8446, sections 4.1.3 and 4.2.1.
hs.hello.vers = VersionTLS12
hs.hello.supportedVersion = c.vers
if len(hs.clientHello.supportedVersions) == 0 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client used the legacy version field to negotiate TLS 1.3")
}
// Abort if the client is doing a fallback and landing lower than what we
// support. See RFC 7507, which however does not specify the interaction
// with supported_versions. The only difference is that with
// supported_versions a client has a chance to attempt a [TLS 1.2, TLS 1.4]
// handshake in case TLS 1.3 is broken but 1.2 is not. Alas, in that case,
// it will have to drop the TLS_FALLBACK_SCSV protection if it falls back to
// TLS 1.2, because a TLS 1.3 server would abort here. The situation before
// supported_versions was not better because there was just no way to do a
// TLS 1.4 handshake without risking the server selecting TLS 1.3.
for _, id := range hs.clientHello.cipherSuites {
if id == TLS_FALLBACK_SCSV {
// Use c.vers instead of max(supported_versions) because an attacker
// could defeat this by adding an arbitrary high version otherwise.
if c.vers < c.config.maxSupportedVersion(roleServer) {
c.sendAlert(alertInappropriateFallback)
return errors.New("tls: client using inappropriate protocol fallback")
}
break
}
}
if len(hs.clientHello.compressionMethods) != 1 ||
hs.clientHello.compressionMethods[0] != compressionNone {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: TLS 1.3 client supports illegal compression methods")
}
hs.hello.random = make([]byte, 32)
if _, err := io.ReadFull(c.config.rand(), hs.hello.random); err != nil {
c.sendAlert(alertInternalError)
return err
}
if len(hs.clientHello.secureRenegotiation) != 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: initial handshake had non-empty renegotiation extension")
}
hs.hello.sessionId = hs.clientHello.sessionId
hs.hello.compressionMethod = compressionNone
preferenceList := defaultCipherSuitesTLS13
if !hasAESGCMHardwareSupport || !aesgcmPreferred(hs.clientHello.cipherSuites) {
preferenceList = defaultCipherSuitesTLS13NoAES
}
for _, suiteID := range preferenceList {
hs.suite = mutualCipherSuiteTLS13(hs.clientHello.cipherSuites, suiteID)
if hs.suite != nil {
break
}
}
if hs.suite == nil {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no cipher suite supported by both client and server")
}
c.cipherSuite = hs.suite.id
hs.hello.cipherSuite = hs.suite.id
hs.transcript = hs.suite.hash.New()
// Pick the ECDHE group in server preference order, but give priority to
// groups with a key share, to avoid a HelloRetryRequest round-trip.
var selectedGroup CurveID
var clientKeyShare *keyShare
GroupSelection:
for _, preferredGroup := range c.config.curvePreferences() {
for _, ks := range hs.clientHello.keyShares {
if ks.group == preferredGroup {
selectedGroup = ks.group
clientKeyShare = &ks
break GroupSelection
}
}
if selectedGroup != 0 {
continue
}
for _, group := range hs.clientHello.supportedCurves {
if group == preferredGroup {
selectedGroup = group
break
}
}
}
if selectedGroup == 0 {
c.sendAlert(alertHandshakeFailure)
return errors.New("tls: no ECDHE curve supported by both client and server")
}
if clientKeyShare == nil {
if err := hs.doHelloRetryRequest(selectedGroup); err != nil {
return err
}
clientKeyShare = &hs.clientHello.keyShares[0]
}
if _, ok := curveForCurveID(selectedGroup); !ok {
c.sendAlert(alertInternalError)
return errors.New("tls: CurvePreferences includes unsupported curve")
}
key, err := generateECDHEKey(c.config.rand(), selectedGroup)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
hs.hello.serverShare = keyShare{group: selectedGroup, data: key.PublicKey().Bytes()}
peerKey, err := key.Curve().NewPublicKey(clientKeyShare.data)
if err != nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid client key share")
}
hs.sharedKey, err = key.ECDH(peerKey)
if err != nil {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid client key share")
}
c.serverName = hs.clientHello.serverName
if c.extraConfig != nil && c.extraConfig.ReceivedExtensions != nil {
c.extraConfig.ReceivedExtensions(typeClientHello, hs.clientHello.additionalExtensions)
}
selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols)
if err != nil {
hs.alpnNegotiationErr = err
}
hs.encryptedExtensions.alpnProtocol = selectedProto
c.clientProtocol = selectedProto
return nil
}
func (hs *serverHandshakeStateTLS13) checkForResumption() error {
c := hs.c
if c.config.SessionTicketsDisabled {
return nil
}
modeOK := false
for _, mode := range hs.clientHello.pskModes {
if mode == pskModeDHE {
modeOK = true
break
}
}
if !modeOK {
return nil
}
if len(hs.clientHello.pskIdentities) != len(hs.clientHello.pskBinders) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: invalid or missing PSK binders")
}
if len(hs.clientHello.pskIdentities) == 0 {
return nil
}
for i, identity := range hs.clientHello.pskIdentities {
if i >= maxClientPSKIdentities {
break
}
plaintext, _ := c.decryptTicket(identity.label)
if plaintext == nil {
continue
}
sessionState := new(sessionStateTLS13)
if ok := sessionState.unmarshal(plaintext); !ok {
continue
}
if hs.clientHello.earlyData {
if sessionState.maxEarlyData == 0 {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: client sent unexpected early data")
}
if hs.alpnNegotiationErr == nil && sessionState.alpn == c.clientProtocol &&
c.extraConfig != nil && c.extraConfig.MaxEarlyData > 0 &&
c.extraConfig.Accept0RTT != nil && c.extraConfig.Accept0RTT(sessionState.appData) {
hs.encryptedExtensions.earlyData = true
c.used0RTT = true
}
}
createdAt := time.Unix(int64(sessionState.createdAt), 0)
if c.config.time().Sub(createdAt) > maxSessionTicketLifetime {
continue
}
// We don't check the obfuscated ticket age because it's affected by
// clock skew and it's only a freshness signal useful for shrinking the
// window for replay attacks, which don't affect us as we don't do 0-RTT.
pskSuite := cipherSuiteTLS13ByID(sessionState.cipherSuite)
if pskSuite == nil || pskSuite.hash != hs.suite.hash {
continue
}
// PSK connections don't re-establish client certificates, but carry
// them over in the session ticket. Ensure the presence of client certs
// in the ticket is consistent with the configured requirements.
sessionHasClientCerts := len(sessionState.certificate.Certificate) != 0
needClientCerts := requiresClientCert(c.config.ClientAuth)
if needClientCerts && !sessionHasClientCerts {
continue
}
if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
continue
}
psk := hs.suite.expandLabel(sessionState.resumptionSecret, "resumption",
nil, hs.suite.hash.Size())
hs.earlySecret = hs.suite.extract(psk, nil)
binderKey := hs.suite.deriveSecret(hs.earlySecret, resumptionBinderLabel, nil)
// Clone the transcript in case a HelloRetryRequest was recorded.
transcript := cloneHash(hs.transcript, hs.suite.hash)
if transcript == nil {
c.sendAlert(alertInternalError)
return errors.New("tls: internal error: failed to clone hash")
}
clientHelloBytes, err := hs.clientHello.marshalWithoutBinders()
if err != nil {
c.sendAlert(alertInternalError)
return err
}
transcript.Write(clientHelloBytes)
pskBinder := hs.suite.finishedHash(binderKey, transcript)
if !hmac.Equal(hs.clientHello.pskBinders[i], pskBinder) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid PSK binder")
}
c.didResume = true
if err := c.processCertsFromClient(sessionState.certificate); err != nil {
return err
}
h := cloneHash(hs.transcript, hs.suite.hash)
clientHelloWithBindersBytes, err := hs.clientHello.marshal()
if err != nil {
c.sendAlert(alertInternalError)
return err
}
h.Write(clientHelloWithBindersBytes)
if hs.encryptedExtensions.earlyData {
clientEarlySecret := hs.suite.deriveSecret(hs.earlySecret, "c e traffic", h)
c.in.exportKey(Encryption0RTT, hs.suite, clientEarlySecret)
if err := c.config.writeKeyLog(keyLogLabelEarlyTraffic, hs.clientHello.random, clientEarlySecret); err != nil {
c.sendAlert(alertInternalError)
return err
}
}
hs.hello.selectedIdentityPresent = true
hs.hello.selectedIdentity = uint16(i)
hs.usingPSK = true
return nil
}
return nil
}
// cloneHash uses the encoding.BinaryMarshaler and encoding.BinaryUnmarshaler
// interfaces implemented by standard library hashes to clone the state of in
// to a new instance of h. It returns nil if the operation fails.
func cloneHash(in hash.Hash, h crypto.Hash) hash.Hash {
// Recreate the interface to avoid importing encoding.
type binaryMarshaler interface {
MarshalBinary() (data []byte, err error)
UnmarshalBinary(data []byte) error
}
marshaler, ok := in.(binaryMarshaler)
if !ok {
return nil
}
state, err := marshaler.MarshalBinary()
if err != nil {
return nil
}
out := h.New()
unmarshaler, ok := out.(binaryMarshaler)
if !ok {
return nil
}
if err := unmarshaler.UnmarshalBinary(state); err != nil {
return nil
}
return out
}
func (hs *serverHandshakeStateTLS13) pickCertificate() error {
c := hs.c
// Only one of PSK and certificates are used at a time.
if hs.usingPSK {
return nil
}
// signature_algorithms is required in TLS 1.3. See RFC 8446, Section 4.2.3.
if len(hs.clientHello.supportedSignatureAlgorithms) == 0 {
return c.sendAlert(alertMissingExtension)
}
certificate, err := c.config.getCertificate(newClientHelloInfo(hs.ctx, c, hs.clientHello))
if err != nil {
if err == errNoCertificates {
c.sendAlert(alertUnrecognizedName)
} else {
c.sendAlert(alertInternalError)
}
return err
}
hs.sigAlg, err = selectSignatureScheme(c.vers, certificate, hs.clientHello.supportedSignatureAlgorithms)
if err != nil {
// getCertificate returned a certificate that is unsupported or
// incompatible with the client's signature algorithms.
c.sendAlert(alertHandshakeFailure)
return err
}
hs.cert = certificate
return nil
}
// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
func (hs *serverHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
if hs.sentDummyCCS {
return nil
}
hs.sentDummyCCS = true
return hs.c.writeChangeCipherRecord()
}
func (hs *serverHandshakeStateTLS13) doHelloRetryRequest(selectedGroup CurveID) error {
c := hs.c
// The first ClientHello gets double-hashed into the transcript upon a
// HelloRetryRequest. See RFC 8446, Section 4.4.1.
if err := transcriptMsg(hs.clientHello, hs.transcript); err != nil {
return err
}
chHash := hs.transcript.Sum(nil)
hs.transcript.Reset()
hs.transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
hs.transcript.Write(chHash)
helloRetryRequest := &serverHelloMsg{
vers: hs.hello.vers,
random: helloRetryRequestRandom,
sessionId: hs.hello.sessionId,
cipherSuite: hs.hello.cipherSuite,
compressionMethod: hs.hello.compressionMethod,
supportedVersion: hs.hello.supportedVersion,
selectedGroup: selectedGroup,
}
if _, err := hs.c.writeHandshakeRecord(helloRetryRequest, hs.transcript); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
// clientHelloMsg is not included in the transcript.
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
clientHello, ok := msg.(*clientHelloMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(clientHello, msg)
}
if len(clientHello.keyShares) != 1 || clientHello.keyShares[0].group != selectedGroup {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client sent invalid key share in second ClientHello")
}
if clientHello.earlyData {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client indicated early data in second ClientHello")
}
if illegalClientHelloChange(clientHello, hs.clientHello) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client illegally modified second ClientHello")
}
if clientHello.earlyData {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client offered 0-RTT data in second ClientHello")
}
hs.clientHello = clientHello
return nil
}
// illegalClientHelloChange reports whether the two ClientHello messages are
// different, with the exception of the changes allowed before and after a
// HelloRetryRequest. See RFC 8446, Section 4.1.2.
func illegalClientHelloChange(ch, ch1 *clientHelloMsg) bool {
if len(ch.supportedVersions) != len(ch1.supportedVersions) ||
len(ch.cipherSuites) != len(ch1.cipherSuites) ||
len(ch.supportedCurves) != len(ch1.supportedCurves) ||
len(ch.supportedSignatureAlgorithms) != len(ch1.supportedSignatureAlgorithms) ||
len(ch.supportedSignatureAlgorithmsCert) != len(ch1.supportedSignatureAlgorithmsCert) ||
len(ch.alpnProtocols) != len(ch1.alpnProtocols) {
return true
}
for i := range ch.supportedVersions {
if ch.supportedVersions[i] != ch1.supportedVersions[i] {
return true
}
}
for i := range ch.cipherSuites {
if ch.cipherSuites[i] != ch1.cipherSuites[i] {
return true
}
}
for i := range ch.supportedCurves {
if ch.supportedCurves[i] != ch1.supportedCurves[i] {
return true
}
}
for i := range ch.supportedSignatureAlgorithms {
if ch.supportedSignatureAlgorithms[i] != ch1.supportedSignatureAlgorithms[i] {
return true
}
}
for i := range ch.supportedSignatureAlgorithmsCert {
if ch.supportedSignatureAlgorithmsCert[i] != ch1.supportedSignatureAlgorithmsCert[i] {
return true
}
}
for i := range ch.alpnProtocols {
if ch.alpnProtocols[i] != ch1.alpnProtocols[i] {
return true
}
}
return ch.vers != ch1.vers ||
!bytes.Equal(ch.random, ch1.random) ||
!bytes.Equal(ch.sessionId, ch1.sessionId) ||
!bytes.Equal(ch.compressionMethods, ch1.compressionMethods) ||
ch.serverName != ch1.serverName ||
ch.ocspStapling != ch1.ocspStapling ||
!bytes.Equal(ch.supportedPoints, ch1.supportedPoints) ||
ch.ticketSupported != ch1.ticketSupported ||
!bytes.Equal(ch.sessionTicket, ch1.sessionTicket) ||
ch.secureRenegotiationSupported != ch1.secureRenegotiationSupported ||
!bytes.Equal(ch.secureRenegotiation, ch1.secureRenegotiation) ||
ch.scts != ch1.scts ||
!bytes.Equal(ch.cookie, ch1.cookie) ||
!bytes.Equal(ch.pskModes, ch1.pskModes)
}
func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
c := hs.c
if err := transcriptMsg(hs.clientHello, hs.transcript); err != nil {
return err
}
if _, err := hs.c.writeHandshakeRecord(hs.hello, hs.transcript); err != nil {
return err
}
if err := hs.sendDummyChangeCipherSpec(); err != nil {
return err
}
earlySecret := hs.earlySecret
if earlySecret == nil {
earlySecret = hs.suite.extract(nil, nil)
}
hs.handshakeSecret = hs.suite.extract(hs.sharedKey,
hs.suite.deriveSecret(earlySecret, "derived", nil))
clientSecret := hs.suite.deriveSecret(hs.handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
c.in.exportKey(EncryptionHandshake, hs.suite, clientSecret)
c.in.setTrafficSecret(hs.suite, clientSecret)
serverSecret := hs.suite.deriveSecret(hs.handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
c.out.exportKey(EncryptionHandshake, hs.suite, serverSecret)
c.out.setTrafficSecret(hs.suite, serverSecret)
err := c.config.writeKeyLog(keyLogLabelClientHandshake, hs.clientHello.random, clientSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerHandshake, hs.clientHello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
if hs.alpnNegotiationErr != nil {
c.sendAlert(alertNoApplicationProtocol)
return hs.alpnNegotiationErr
}
if hs.c.extraConfig != nil && hs.c.extraConfig.GetExtensions != nil {
hs.encryptedExtensions.additionalExtensions = hs.c.extraConfig.GetExtensions(typeEncryptedExtensions)
}
if _, err := hs.c.writeHandshakeRecord(hs.encryptedExtensions, hs.transcript); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) requestClientCert() bool {
return hs.c.config.ClientAuth >= RequestClientCert && !hs.usingPSK
}
func (hs *serverHandshakeStateTLS13) sendServerCertificate() error {
c := hs.c
// Only one of PSK and certificates are used at a time.
if hs.usingPSK {
return nil
}
if hs.requestClientCert() {
// Request a client certificate
certReq := new(certificateRequestMsgTLS13)
certReq.ocspStapling = true
certReq.scts = true
certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
if c.config.ClientCAs != nil {
certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
}
if _, err := hs.c.writeHandshakeRecord(certReq, hs.transcript); err != nil {
return err
}
}
certMsg := new(certificateMsgTLS13)
certMsg.certificate = *hs.cert
certMsg.scts = hs.clientHello.scts && len(hs.cert.SignedCertificateTimestamps) > 0
certMsg.ocspStapling = hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0
if _, err := hs.c.writeHandshakeRecord(certMsg, hs.transcript); err != nil {
return err
}
certVerifyMsg := new(certificateVerifyMsg)
certVerifyMsg.hasSignatureAlgorithm = true
certVerifyMsg.signatureAlgorithm = hs.sigAlg
sigType, sigHash, err := typeAndHashFromSignatureScheme(hs.sigAlg)
if err != nil {
return c.sendAlert(alertInternalError)
}
signed := signedMessage(sigHash, serverSignatureContext, hs.transcript)
signOpts := crypto.SignerOpts(sigHash)
if sigType == signatureRSAPSS {
signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
}
sig, err := hs.cert.PrivateKey.(crypto.Signer).Sign(c.config.rand(), signed, signOpts)
if err != nil {
public := hs.cert.PrivateKey.(crypto.Signer).Public()
if rsaKey, ok := public.(*rsa.PublicKey); ok && sigType == signatureRSAPSS &&
rsaKey.N.BitLen()/8 < sigHash.Size()*2+2 { // key too small for RSA-PSS
c.sendAlert(alertHandshakeFailure)
} else {
c.sendAlert(alertInternalError)
}
return errors.New("tls: failed to sign handshake: " + err.Error())
}
certVerifyMsg.signature = sig
if _, err := hs.c.writeHandshakeRecord(certVerifyMsg, hs.transcript); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) sendServerFinished() error {
c := hs.c
finished := &finishedMsg{
verifyData: hs.suite.finishedHash(c.out.trafficSecret, hs.transcript),
}
if _, err := hs.c.writeHandshakeRecord(finished, hs.transcript); err != nil {
return err
}
// Derive secrets that take context through the server Finished.
hs.masterSecret = hs.suite.extract(nil,
hs.suite.deriveSecret(hs.handshakeSecret, "derived", nil))
hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
c.out.exportKey(EncryptionApplication, hs.suite, serverSecret)
c.out.setTrafficSecret(hs.suite, serverSecret)
err := c.config.writeKeyLog(keyLogLabelClientTraffic, hs.clientHello.random, hs.trafficSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
err = c.config.writeKeyLog(keyLogLabelServerTraffic, hs.clientHello.random, serverSecret)
if err != nil {
c.sendAlert(alertInternalError)
return err
}
c.ekm = hs.suite.exportKeyingMaterial(hs.masterSecret, hs.transcript)
// If we did not request client certificates, at this point we can
// precompute the client finished and roll the transcript forward to send
// session tickets in our first flight.
if !hs.requestClientCert() {
if err := hs.sendSessionTickets(); err != nil {
return err
}
}
return nil
}
func (hs *serverHandshakeStateTLS13) shouldSendSessionTickets() bool {
if hs.c.config.SessionTicketsDisabled {
return false
}
// Don't send tickets the client wouldn't use. See RFC 8446, Section 4.2.9.
for _, pskMode := range hs.clientHello.pskModes {
if pskMode == pskModeDHE {
return true
}
}
return false
}
func (hs *serverHandshakeStateTLS13) sendSessionTickets() error {
c := hs.c
hs.clientFinished = hs.suite.finishedHash(c.in.trafficSecret, hs.transcript)
finishedMsg := &finishedMsg{
verifyData: hs.clientFinished,
}
if err := transcriptMsg(finishedMsg, hs.transcript); err != nil {
return err
}
if !hs.shouldSendSessionTickets() {
return nil
}
c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
// Don't send session tickets when the alternative record layer is set.
// Instead, save the resumption secret on the Conn.
// Session tickets can then be generated by calling Conn.GetSessionTicket().
if hs.c.extraConfig != nil && hs.c.extraConfig.AlternativeRecordLayer != nil {
return nil
}
m, err := hs.c.getSessionTicketMsg(nil)
if err != nil {
return err
}
if _, err := c.writeHandshakeRecord(m, nil); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) readClientCertificate() error {
c := hs.c
if !hs.requestClientCert() {
// Make sure the connection is still being verified whether or not
// the server requested a client certificate.
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
return nil
}
// If we requested a client certificate, then the client must send a
// certificate message. If it's empty, no CertificateVerify is sent.
msg, err := c.readHandshake(hs.transcript)
if err != nil {
return err
}
certMsg, ok := msg.(*certificateMsgTLS13)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certMsg, msg)
}
if err := c.processCertsFromClient(certMsg.certificate); err != nil {
return err
}
if c.config.VerifyConnection != nil {
if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
c.sendAlert(alertBadCertificate)
return err
}
}
if len(certMsg.certificate.Certificate) != 0 {
// certificateVerifyMsg is included in the transcript, but not until
// after we verify the handshake signature, since the state before
// this message was sent is used.
msg, err = c.readHandshake(nil)
if err != nil {
return err
}
certVerify, ok := msg.(*certificateVerifyMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(certVerify, msg)
}
// See RFC 8446, Section 4.4.3.
if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, supportedSignatureAlgorithms()) {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client certificate used with invalid signature algorithm")
}
sigType, sigHash, err := typeAndHashFromSignatureScheme(certVerify.signatureAlgorithm)
if err != nil {
return c.sendAlert(alertInternalError)
}
if sigType == signaturePKCS1v15 || sigHash == crypto.SHA1 {
c.sendAlert(alertIllegalParameter)
return errors.New("tls: client certificate used with invalid signature algorithm")
}
signed := signedMessage(sigHash, clientSignatureContext, hs.transcript)
if err := verifyHandshakeSignature(sigType, c.peerCertificates[0].PublicKey,
sigHash, signed, certVerify.signature); err != nil {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid signature by the client certificate: " + err.Error())
}
if err := transcriptMsg(certVerify, hs.transcript); err != nil {
return err
}
}
// If we waited until the client certificates to send session tickets, we
// are ready to do it now.
if err := hs.sendSessionTickets(); err != nil {
return err
}
return nil
}
func (hs *serverHandshakeStateTLS13) readClientFinished() error {
c := hs.c
// finishedMsg is not included in the transcript.
msg, err := c.readHandshake(nil)
if err != nil {
return err
}
finished, ok := msg.(*finishedMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(finished, msg)
}
if !hmac.Equal(hs.clientFinished, finished.verifyData) {
c.sendAlert(alertDecryptError)
return errors.New("tls: invalid client finished hash")
}
c.in.exportKey(EncryptionApplication, hs.suite, hs.trafficSecret)
c.in.setTrafficSecret(hs.suite, hs.trafficSecret)
return nil
}