Icaro Motta 919277be38
feat(pairing)_: Fallback pairing seed (#5614) (#5627)
* feat(pairing)!: Add extra parameters and remove v2 compatibility

This commit includes the following changes:

I have added a flag to maintain 2.29 compatibility.

Breaking change in connection string

The local pairing code that was parsing the connection string had a few non-upgradable features:

It was strictly checking the number of parameters, throwing an error if the number was different. This made it impossible to add parameters to it without breaking.
It was strictly checking the version number. This made increasing the version number impossible as older client would just refuse to connect.
The code has been changed so that:

Two parameters have been added, installation-id and key-uid. Those are needed for the fallback flow.
I have also removed version from the payload, since it wasn't used.

This means that we don't support v1 anymore. V2 parsing is supported . Going forward there's a clear strategy on how to update the protocol (append parameters, don't change existing one).

https://www.youtube.com/watch?v=oyLBGkS5ICk Is a must watch video for understanding the strategy

Changed MessengerResponse to use internally a map of installations rather than an array (minor)
Just moving towards maps as arrays tend to lead to subtle bugs.

Moved pairing methods to messenger_pairing.go
Just moved some methods

Added 2 new methods for the fallback flow
FinishPairingThroughSeedPhraseProcess
https://github.com/status-im/status-go/pull/5567/files#diff-1ad620b07fa3bd5fbc96c9f459d88829938a162bf1aaf41c61dea6e38b488d54R29

EnableAndSyncInstallation

https://github.com/status-im/status-go/pull/5567/files#diff-1ad620b07fa3bd5fbc96c9f459d88829938a162bf1aaf41c61dea6e38b488d54R18

Flow for clients
Client A1 is logged in
Client A2 is logged out

Client A1 shows a QR code
Client A2 scans a QR code
If connection fails on A2, the user will be prompted to enter a seed phrase.
If the generated account matches the key-uid from the QR code, A2 should call FinishPairingThroughSeedPhraseProcess with the installation id passed in the QR code. This will send installation information over waku. The user should be shown its own installation id and prompted to check the other device.
Client A1 will receive new installation data through waku, if they are still on the qr code page, they should show a popup to the user showing the received installation id, and a way to Enable and Sync, which should call the EnableAndSyncInstallation endpoint. This should finish the fallback syncing flow.
Current issues
Currently I haven't tested that all the data is synced after finishing the flow. I see that the two devices are paired correctly, but for example the DisplayName is not changed on the receiving device. I haven't had time to look into it further.

* test_: add more test for connection string parser

* fix_: fix panic when parse old connection string

* test_: add comments for TestMessengerPairAfterSeedPhrase

* fix_: correct error description

* feat_:rename FinishPairingThroughSeedPhraseProcess to EnableInstallationAndPair

* fix_: delete leftover

* fix_: add UniqueKey method

* fix_: unify the response for InputConnectionStringForBootstrapping

* fix_: remove fields installationID and keyUID in GethStatusBackend

* fix_: rename messenger_pairing to messenger_pairing_and_syncing

---------

Co-authored-by: frank <lovefree103@gmail.com>
Co-authored-by: Andrea Maria Piana <andrea.maria.piana@gmail.com>
2024-07-30 13:03:43 -03:00

912 lines
26 KiB
Go

package encryption
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"database/sql"
"fmt"
"go.uber.org/zap"
"github.com/golang/protobuf/proto"
"github.com/pkg/errors"
"github.com/status-im/status-go/eth-node/crypto"
"github.com/status-im/status-go/eth-node/types"
"github.com/status-im/status-go/protocol/encryption/multidevice"
"github.com/status-im/status-go/protocol/encryption/publisher"
"github.com/status-im/status-go/protocol/encryption/sharedsecret"
)
//go:generate protoc --go_out=. ./protocol_message.proto
const (
protocolVersion = 1
sharedSecretNegotiationVersion = 1
partitionedTopicMinVersion = 1
defaultMinVersion = 0
maxKeysChannelSize = 10000
)
type PartitionTopicMode int
const (
PartitionTopicNoSupport PartitionTopicMode = iota
PartitionTopicV1
)
type ProtocolMessageSpec struct {
Message *ProtocolMessage
// Installations is the targeted devices
Installations []*multidevice.Installation
// SharedSecret is a shared secret established among the installations
SharedSecret *sharedsecret.Secret
// AgreedSecret indicates whether the shared secret has been agreed
AgreedSecret bool
// Public means that the spec contains a public wrapped message
Public bool
}
func (p *ProtocolMessageSpec) MinVersion() uint32 {
if len(p.Installations) == 0 {
return defaultMinVersion
}
version := p.Installations[0].Version
for _, installation := range p.Installations[1:] {
if installation.Version < version {
version = installation.Version
}
}
return version
}
func (p *ProtocolMessageSpec) PartitionedTopicMode() PartitionTopicMode {
if p.MinVersion() >= partitionedTopicMinVersion {
return PartitionTopicV1
}
return PartitionTopicNoSupport
}
type Protocol struct {
encryptor *encryptor
secret *sharedsecret.SharedSecret
multidevice *multidevice.Multidevice
publisher *publisher.Publisher
subscriptions *Subscriptions
logger *zap.Logger
}
var (
// ErrNoPayload means that there was no payload found in the received protocol message.
ErrNoPayload = errors.New("no payload")
ErrNoRatchetKey = errors.New("no ratchet key for given keyID")
)
// New creates a new ProtocolService instance
func New(
db *sql.DB,
installationID string,
logger *zap.Logger,
) *Protocol {
return NewWithEncryptorConfig(
db,
installationID,
defaultEncryptorConfig(installationID, logger),
logger,
)
}
// DB and migrations are shared between encryption package
// and its sub-packages.
func NewWithEncryptorConfig(
db *sql.DB,
installationID string,
encryptorConfig encryptorConfig,
logger *zap.Logger,
) *Protocol {
return &Protocol{
encryptor: newEncryptor(db, encryptorConfig),
secret: sharedsecret.New(db, logger),
multidevice: multidevice.New(db, &multidevice.Config{
MaxInstallations: 3,
ProtocolVersion: protocolVersion,
InstallationID: installationID,
}),
publisher: publisher.New(logger),
logger: logger.With(zap.Namespace("Protocol")),
}
}
type Subscriptions struct {
SharedSecrets []*sharedsecret.Secret
SendContactCode <-chan struct{}
NewHashRatchetKeys chan []*HashRatchetInfo
Quit chan struct{}
}
func (p *Protocol) Start(myIdentity *ecdsa.PrivateKey) (*Subscriptions, error) {
// Propagate currently cached shared secrets.
secrets, err := p.secret.All()
if err != nil {
return nil, errors.Wrap(err, "failed to get all secrets")
}
p.subscriptions = &Subscriptions{
SharedSecrets: secrets,
SendContactCode: p.publisher.Start(),
NewHashRatchetKeys: make(chan []*HashRatchetInfo, maxKeysChannelSize),
Quit: make(chan struct{}),
}
return p.subscriptions, nil
}
func (p *Protocol) Stop() error {
p.publisher.Stop()
if p.subscriptions != nil {
close(p.subscriptions.Quit)
}
return nil
}
func (p *Protocol) addBundle(myIdentityKey *ecdsa.PrivateKey, msg *ProtocolMessage) error {
// Get a bundle
installations, err := p.multidevice.GetOurActiveInstallations(&myIdentityKey.PublicKey)
if err != nil {
return err
}
bundle, err := p.encryptor.CreateBundle(myIdentityKey, installations)
if err != nil {
return err
}
msg.Bundles = []*Bundle{bundle}
return nil
}
// BuildPublicMessage marshals a public chat message given the user identity private key and a payload
func (p *Protocol) BuildPublicMessage(myIdentityKey *ecdsa.PrivateKey, payload []byte) (*ProtocolMessageSpec, error) {
// Build message not encrypted
message := &ProtocolMessage{
InstallationId: p.encryptor.config.InstallationID,
PublicMessage: payload,
}
err := p.addBundle(myIdentityKey, message)
if err != nil {
return nil, err
}
return &ProtocolMessageSpec{Message: message, Public: true}, nil
}
// BuildEncryptedMessage returns a 1:1 chat message and optionally a negotiated topic given the user identity private key, the recipient's public key, and a payload
func (p *Protocol) BuildEncryptedMessage(myIdentityKey *ecdsa.PrivateKey, publicKey *ecdsa.PublicKey, payload []byte) (*ProtocolMessageSpec, error) {
// Get recipients installations.
activeInstallations, err := p.multidevice.GetActiveInstallations(publicKey)
if err != nil {
return nil, err
}
// Encrypt payload
encryptedMessagesByInstalls, installations, err := p.encryptor.EncryptPayload(publicKey, myIdentityKey, activeInstallations, payload)
if err != nil {
return nil, err
}
// Build message
message := &ProtocolMessage{
InstallationId: p.encryptor.config.InstallationID,
EncryptedMessage: encryptedMessagesByInstalls,
}
err = p.addBundle(myIdentityKey, message)
if err != nil {
return nil, err
}
// Check who we are sending the message to, and see if we have a shared secret
// across devices
var installationIDs []string
for installationID := range message.GetEncryptedMessage() {
if installationID != noInstallationID {
installationIDs = append(installationIDs, installationID)
}
}
sharedSecret, agreed, err := p.secret.Agreed(myIdentityKey, p.encryptor.config.InstallationID, publicKey, installationIDs)
if err != nil {
return nil, err
}
spec := &ProtocolMessageSpec{
SharedSecret: sharedSecret,
AgreedSecret: agreed,
Message: message,
Installations: installations,
}
return spec, nil
}
func (p *Protocol) GenerateHashRatchetKey(groupID []byte) (*HashRatchetKeyCompatibility, error) {
return p.encryptor.GenerateHashRatchetKey(groupID)
}
// Deprecated: This function is deprecated as it does not marshal groupID. Kept for backward compatibility.
func (p *Protocol) GetAllHRKeysMarshaledV1(groupID []byte) ([]byte, error) {
keys, err := p.GetAllHRKeys(groupID)
if err != nil {
return nil, err
}
if keys == nil {
return nil, nil
}
return proto.Marshal(keys)
}
func (p *Protocol) GetAllHRKeysMarshaledV2(groupID []byte) ([]byte, error) {
keys, err := p.GetAllHRKeys(groupID)
if err != nil {
return nil, err
}
if keys == nil {
return nil, nil
}
header := &HRHeader{
SeqNo: 0,
GroupId: groupID,
Keys: keys,
}
return proto.Marshal(header)
}
func (p *Protocol) GetAllHRKeys(groupID []byte) (*HRKeys, error) {
ratchets, err := p.encryptor.persistence.GetKeysForGroup(groupID)
if err != nil {
return nil, err
}
if len(ratchets) == 0 {
return nil, nil
}
return p.GetHRKeys(ratchets), nil
}
// GetKeyIDsForGroup returns a slice of key IDs belonging to a given group ID
func (p *Protocol) GetKeysForGroup(groupID []byte) ([]*HashRatchetKeyCompatibility, error) {
return p.encryptor.persistence.GetKeysForGroup(groupID)
}
func (p *Protocol) GetHRKeys(ratchets []*HashRatchetKeyCompatibility) *HRKeys {
keys := &HRKeys{}
for _, ratchet := range ratchets {
key := &HRKey{
DeprecatedKeyId: ratchet.DeprecatedKeyID(),
Key: ratchet.Key,
Timestamp: ratchet.Timestamp,
}
keys.Keys = append(keys.Keys, key)
}
return keys
}
// BuildHashRatchetRekeyGroup builds a public message
// with the new key
func (p *Protocol) BuildHashRatchetReKeyGroupMessage(myIdentityKey *ecdsa.PrivateKey, recipients []*ecdsa.PublicKey, groupID []byte, payload []byte, ratchet *HashRatchetKeyCompatibility) (*ProtocolMessageSpec, error) {
var err error
if ratchet == nil {
ratchet, err = p.GenerateHashRatchetKey(groupID)
if err != nil {
return nil, err
}
}
message, err := buildGroupRekeyMessage(myIdentityKey, groupID, ratchet.Timestamp, ratchet.Key, recipients)
if err != nil {
return nil, err
}
keys := &HRKeys{
RekeyGroup: message,
}
spec := &ProtocolMessageSpec{
Public: true,
Message: &ProtocolMessage{
InstallationId: p.encryptor.config.InstallationID,
EncryptedMessage: map[string]*EncryptedMessageProtocol{noInstallationID: &EncryptedMessageProtocol{
HRHeader: &HRHeader{
SeqNo: 0,
GroupId: groupID,
Keys: keys,
},
Payload: payload,
},
},
},
}
return spec, nil
}
// BuildHashRatchetKeyExchangeMessage builds a 1:1 message
// containing newly generated hash ratchet key
func (p *Protocol) BuildHashRatchetKeyExchangeMessage(myIdentityKey *ecdsa.PrivateKey, publicKey *ecdsa.PublicKey, groupID []byte, ratchets []*HashRatchetKeyCompatibility) (*ProtocolMessageSpec, error) {
keys := p.GetHRKeys(ratchets)
encodedKeys, err := proto.Marshal(keys)
if err != nil {
return nil, err
}
response, err := p.BuildEncryptedMessage(myIdentityKey, publicKey, encodedKeys)
if err != nil {
return nil, err
}
// Loop through installations and assign HRHeader
// SeqNo=0 has a special meaning for HandleMessage
// and signifies a message with hash ratchet key payload
for _, v := range response.Message.EncryptedMessage {
v.HRHeader = &HRHeader{
SeqNo: 0,
GroupId: groupID,
Keys: keys,
}
}
return response, err
}
func (p *Protocol) BuildHashRatchetKeyExchangeMessageWithPayload(myIdentityKey *ecdsa.PrivateKey, publicKey *ecdsa.PublicKey, groupID []byte, ratchets []*HashRatchetKeyCompatibility, payload []byte) (*ProtocolMessageSpec, error) {
keys := p.GetHRKeys(ratchets)
response, err := p.BuildEncryptedMessage(myIdentityKey, publicKey, payload)
if err != nil {
return nil, err
}
// Loop through installations and assign HRHeader
// SeqNo=0 has a special meaning for HandleMessage
// and signifies a message with hash ratchet key payload
for _, v := range response.Message.EncryptedMessage {
v.HRHeader = &HRHeader{
SeqNo: 0,
GroupId: groupID,
Keys: keys,
}
}
return response, err
}
func (p *Protocol) GetCurrentKeyForGroup(groupID []byte) (*HashRatchetKeyCompatibility, error) {
return p.encryptor.persistence.GetCurrentKeyForGroup(groupID)
}
// BuildHashRatchetMessage returns a hash ratchet chat message
func (p *Protocol) BuildHashRatchetMessage(groupID []byte, payload []byte) (*ProtocolMessageSpec, error) {
ratchet, err := p.encryptor.persistence.GetCurrentKeyForGroup(groupID)
if err != nil {
return nil, err
}
// Encrypt payload
encryptedMessagesByInstalls, err := p.encryptor.EncryptHashRatchetPayload(ratchet, payload)
if err != nil {
return nil, err
}
// Build message
message := &ProtocolMessage{
InstallationId: p.encryptor.config.InstallationID,
EncryptedMessage: encryptedMessagesByInstalls,
}
spec := &ProtocolMessageSpec{
Message: message,
}
return spec, nil
}
func (p *Protocol) EncryptCommunityGrants(privateKey *ecdsa.PrivateKey, recipientGrants map[*ecdsa.PublicKey][]byte) (map[uint32][]byte, error) {
grants := make(map[uint32][]byte)
for recipientKey, grant := range recipientGrants {
sharedKey, err := GenerateSharedKey(privateKey, recipientKey)
if err != nil {
return nil, err
}
encryptedGrant, err := encrypt(grant, sharedKey, rand.Reader)
if err != nil {
return nil, err
}
kBytes := publicKeyMostRelevantBytes(recipientKey)
grants[kBytes] = encryptedGrant
}
return grants, nil
}
func (p *Protocol) DecryptCommunityGrant(myIdentityKey *ecdsa.PrivateKey, senderKey *ecdsa.PublicKey, grants map[uint32][]byte) ([]byte, error) {
kBytes := publicKeyMostRelevantBytes(&myIdentityKey.PublicKey)
ecryptedGrant, ok := grants[kBytes]
if !ok {
return nil, errors.New("can't find related grant in the map")
}
sharedKey, err := GenerateSharedKey(myIdentityKey, senderKey)
if err != nil {
return nil, err
}
return decrypt(ecryptedGrant, sharedKey)
}
func (p *Protocol) GetKeyExMessageSpecs(groupID []byte, identity *ecdsa.PrivateKey, recipients []*ecdsa.PublicKey, forceRekey bool) ([]*ProtocolMessageSpec, error) {
var ratchets []*HashRatchetKeyCompatibility
var err error
if !forceRekey {
ratchets, err = p.encryptor.persistence.GetKeysForGroup(groupID)
if err != nil {
return nil, err
}
}
if len(ratchets) == 0 || forceRekey {
ratchet, err := p.GenerateHashRatchetKey(groupID)
if err != nil {
return nil, err
}
ratchets = []*HashRatchetKeyCompatibility{ratchet}
}
specs := make([]*ProtocolMessageSpec, len(recipients))
for i, recipient := range recipients {
keyExMsg, err := p.BuildHashRatchetKeyExchangeMessage(identity, recipient, groupID, ratchets)
if err != nil {
return nil, err
}
specs[i] = keyExMsg
}
return specs, nil
}
// BuildDHMessage builds a message with DH encryption so that it can be decrypted by any other device.
func (p *Protocol) BuildDHMessage(myIdentityKey *ecdsa.PrivateKey, destination *ecdsa.PublicKey, payload []byte) (*ProtocolMessageSpec, error) {
// Encrypt payload
encryptionResponse, err := p.encryptor.EncryptPayloadWithDH(destination, payload)
if err != nil {
return nil, err
}
// Build message
message := &ProtocolMessage{
InstallationId: p.encryptor.config.InstallationID,
EncryptedMessage: encryptionResponse,
}
err = p.addBundle(myIdentityKey, message)
if err != nil {
return nil, err
}
return &ProtocolMessageSpec{Message: message}, nil
}
// ProcessPublicBundle processes a received X3DH bundle.
func (p *Protocol) ProcessPublicBundle(myIdentityKey *ecdsa.PrivateKey, bundle *Bundle) ([]*multidevice.Installation, error) {
logger := p.logger.With(zap.String("site", "ProcessPublicBundle"))
if err := p.encryptor.ProcessPublicBundle(myIdentityKey, bundle); err != nil {
return nil, err
}
installations, enabled, err := p.recoverInstallationsFromBundle(myIdentityKey, bundle)
if err != nil {
return nil, err
}
// TODO(adam): why do we add installations using identity obtained from GetIdentity()
// instead of the output of crypto.CompressPubkey()? I tried the second option
// and the unit tests TestTopic and TestMaxDevices fail.
identityFromBundle := bundle.GetIdentity()
theirIdentity, err := ExtractIdentity(bundle)
if err != nil {
logger.Panic("unrecoverable error extracting identity", zap.Error(err))
}
compressedIdentity := crypto.CompressPubkey(theirIdentity)
if !bytes.Equal(identityFromBundle, compressedIdentity) {
logger.Panic("identity from bundle and compressed are not equal")
}
return p.multidevice.AddInstallations(bundle.GetIdentity(), bundle.GetTimestamp(), installations, enabled)
}
func (p *Protocol) AddInstallation(identity []byte, timestamp int64, installation *multidevice.Installation, enabled bool) ([]*multidevice.Installation, error) {
return p.multidevice.AddInstallations(identity, timestamp, []*multidevice.Installation{installation}, enabled)
}
func (p *Protocol) GetMultiDevice() *multidevice.Multidevice {
return p.multidevice
}
// recoverInstallationsFromBundle extracts installations from the bundle.
// It returns extracted installations and true if the installations
// are ours, i.e. the bundle was created by our identity key.
func (p *Protocol) recoverInstallationsFromBundle(myIdentityKey *ecdsa.PrivateKey, bundle *Bundle) ([]*multidevice.Installation, bool, error) {
var installations []*multidevice.Installation
theirIdentity, err := ExtractIdentity(bundle)
if err != nil {
return nil, false, err
}
myIdentityStr := fmt.Sprintf("0x%x", crypto.FromECDSAPub(&myIdentityKey.PublicKey))
theirIdentityStr := fmt.Sprintf("0x%x", crypto.FromECDSAPub(theirIdentity))
// Any device from other peers will be considered enabled, ours needs to
// be explicitly enabled.
enabled := theirIdentityStr != myIdentityStr
signedPreKeys := bundle.GetSignedPreKeys()
for installationID, signedPreKey := range signedPreKeys {
if installationID != p.multidevice.InstallationID() {
installations = append(installations, &multidevice.Installation{
Identity: theirIdentityStr,
ID: installationID,
Version: signedPreKey.GetProtocolVersion(),
})
}
}
return installations, enabled, nil
}
// GetBundle retrieves or creates a X3DH bundle, given a private identity key.
func (p *Protocol) GetBundle(myIdentityKey *ecdsa.PrivateKey) (*Bundle, error) {
installations, err := p.multidevice.GetOurActiveInstallations(&myIdentityKey.PublicKey)
if err != nil {
return nil, err
}
return p.encryptor.CreateBundle(myIdentityKey, installations)
}
// EnableInstallation enables an installation for multi-device sync.
func (p *Protocol) EnableInstallation(myIdentityKey *ecdsa.PublicKey, installationID string) error {
return p.multidevice.EnableInstallation(myIdentityKey, installationID)
}
// DisableInstallation disables an installation for multi-device sync.
func (p *Protocol) DisableInstallation(myIdentityKey *ecdsa.PublicKey, installationID string) error {
return p.multidevice.DisableInstallation(myIdentityKey, installationID)
}
// GetOurInstallations returns all the installations available given an identity
func (p *Protocol) GetOurInstallations(myIdentityKey *ecdsa.PublicKey) ([]*multidevice.Installation, error) {
return p.multidevice.GetOurInstallations(myIdentityKey)
}
// GetOurActiveInstallations returns all the active installations available given an identity
func (p *Protocol) GetOurActiveInstallations(myIdentityKey *ecdsa.PublicKey) ([]*multidevice.Installation, error) {
return p.multidevice.GetOurActiveInstallations(myIdentityKey)
}
// SetInstallationMetadata sets the metadata for our own installation
func (p *Protocol) SetInstallationMetadata(myIdentityKey *ecdsa.PublicKey, installationID string, data *multidevice.InstallationMetadata) error {
return p.multidevice.SetInstallationMetadata(myIdentityKey, installationID, data)
}
// SetInstallationName sets the metadata for our own installation
func (p *Protocol) SetInstallationName(myIdentityKey *ecdsa.PublicKey, installationID string, name string) error {
return p.multidevice.SetInstallationName(myIdentityKey, installationID, name)
}
// GetPublicBundle retrieves a public bundle given an identity
func (p *Protocol) GetPublicBundle(theirIdentityKey *ecdsa.PublicKey) (*Bundle, error) {
installations, err := p.multidevice.GetActiveInstallations(theirIdentityKey)
if err != nil {
return nil, err
}
return p.encryptor.GetPublicBundle(theirIdentityKey, installations)
}
// ConfirmMessageProcessed confirms and deletes message keys for the given messages
func (p *Protocol) ConfirmMessageProcessed(messageID []byte) error {
logger := p.logger.With(zap.String("site", "ConfirmMessageProcessed"))
logger.Debug("confirming message", zap.String("messageID", types.EncodeHex(messageID)))
return p.encryptor.ConfirmMessageProcessed(messageID)
}
type HashRatchetInfo struct {
GroupID []byte
KeyID []byte
}
type DecryptMessageResponse struct {
DecryptedMessage []byte
Installations []*multidevice.Installation
SharedSecrets []*sharedsecret.Secret
HashRatchetInfo []*HashRatchetInfo
}
func (p *Protocol) HandleHashRatchetKeysPayload(groupID, encodedKeys []byte, myIdentityKey *ecdsa.PrivateKey, theirIdentityKey *ecdsa.PublicKey) ([]*HashRatchetInfo, error) {
keys := &HRKeys{}
err := proto.Unmarshal(encodedKeys, keys)
if err != nil {
return nil, err
}
return p.HandleHashRatchetKeys(groupID, keys, myIdentityKey, theirIdentityKey)
}
func (p *Protocol) HandleHashRatchetHeadersPayload(encodedHeaders [][]byte) error {
for _, encodedHeader := range encodedHeaders {
header := &HRHeader{}
err := proto.Unmarshal(encodedHeader, header)
if err != nil {
return err
}
_, err = p.HandleHashRatchetKeys(header.GroupId, header.Keys, nil, nil)
if err != nil {
return err
}
}
return nil
}
func (p *Protocol) HandleHashRatchetKeys(groupID []byte, keys *HRKeys, myIdentityKey *ecdsa.PrivateKey, theirIdentityKey *ecdsa.PublicKey) ([]*HashRatchetInfo, error) {
if keys == nil {
return nil, nil
}
var info []*HashRatchetInfo
for _, key := range keys.Keys {
ratchet := &HashRatchetKeyCompatibility{
GroupID: groupID,
Timestamp: key.Timestamp,
Key: key.Key,
}
// If there's no timestamp, is coming from an older client
if key.Timestamp == 0 {
ratchet.Timestamp = uint64(key.DeprecatedKeyId)
}
keyID, err := ratchet.GetKeyID()
if err != nil {
return nil, err
}
p.logger.Debug("retrieved keys", zap.String("keyID", types.Bytes2Hex(keyID)))
// Payload contains hash ratchet key
err = p.encryptor.persistence.SaveHashRatchetKey(ratchet)
if err != nil {
return nil, err
}
info = append(info, &HashRatchetInfo{GroupID: groupID, KeyID: keyID})
}
if keys.RekeyGroup != nil {
if keys.RekeyGroup.Timestamp == 0 {
return nil, errors.New("timestamp can't be nil")
}
encryptionKey, err := decryptGroupRekeyMessage(myIdentityKey, theirIdentityKey, keys.RekeyGroup)
if err != nil {
return nil, err
}
if len(encryptionKey) != 0 {
ratchet := &HashRatchetKeyCompatibility{
GroupID: groupID,
Timestamp: keys.RekeyGroup.Timestamp,
Key: encryptionKey,
}
keyID, err := ratchet.GetKeyID()
if err != nil {
return nil, err
}
p.logger.Debug("retrieved group keys", zap.String("keyID", types.Bytes2Hex(keyID)))
// Payload contains hash ratchet key
err = p.encryptor.persistence.SaveHashRatchetKey(ratchet)
if err != nil {
return nil, err
}
info = append(info, &HashRatchetInfo{GroupID: groupID, KeyID: keyID})
}
}
if p.subscriptions != nil {
p.subscriptions.NewHashRatchetKeys <- info
}
return info, nil
}
// HandleMessage unmarshals a message and processes it, decrypting it if it is a 1:1 message.
func (p *Protocol) HandleMessage(
myIdentityKey *ecdsa.PrivateKey,
theirPublicKey *ecdsa.PublicKey,
protocolMessage *ProtocolMessage,
messageID []byte,
) (*DecryptMessageResponse, error) {
logger := p.logger.With(zap.String("site", "HandleMessage"))
response := &DecryptMessageResponse{}
logger.Debug("received a protocol message",
zap.String("sender-public-key",
types.EncodeHex(crypto.FromECDSAPub(theirPublicKey))),
zap.String("my-installation-id", p.encryptor.config.InstallationID),
zap.String("messageID", types.EncodeHex(messageID)))
if p.encryptor == nil {
return nil, errors.New("encryption service not initialized")
}
// Process bundles
for _, bundle := range protocolMessage.GetBundles() {
// Should we stop processing if the bundle cannot be verified?
newInstallations, err := p.ProcessPublicBundle(myIdentityKey, bundle)
if err != nil {
return nil, err
}
response.Installations = newInstallations
}
// Check if it's a public message
if publicMessage := protocolMessage.GetPublicMessage(); publicMessage != nil {
// Nothing to do, as already in cleartext
response.DecryptedMessage = publicMessage
return response, nil
}
// Decrypt message
if encryptedMessage := protocolMessage.GetEncryptedMessage(); encryptedMessage != nil {
message, err := p.encryptor.DecryptPayload(
myIdentityKey,
theirPublicKey,
protocolMessage.GetInstallationId(),
encryptedMessage,
messageID,
)
if err == ErrHashRatchetGroupIDNotFound {
msg := p.encryptor.GetMessage(encryptedMessage)
if msg != nil {
if header := msg.GetHRHeader(); header != nil {
response.HashRatchetInfo = append(response.HashRatchetInfo, &HashRatchetInfo{GroupID: header.GroupId, KeyID: header.KeyId})
}
}
return response, err
}
if err != nil {
return nil, err
}
dmProtocol := encryptedMessage[p.encryptor.config.InstallationID]
if dmProtocol == nil {
dmProtocol = encryptedMessage[noInstallationID]
}
if dmProtocol != nil {
hrHeader := dmProtocol.HRHeader
if hrHeader != nil && hrHeader.SeqNo == 0 {
var hashRatchetKeys []*HashRatchetInfo
if hrHeader.Keys != nil {
hashRatchetKeys, err = p.HandleHashRatchetKeys(hrHeader.GroupId, hrHeader.Keys, myIdentityKey, theirPublicKey)
if err != nil {
return nil, err
}
} else {
// For backward compatibility
hashRatchetKeys, err = p.HandleHashRatchetKeysPayload(hrHeader.GroupId, message, myIdentityKey, theirPublicKey)
if err != nil {
return nil, err
}
}
response.HashRatchetInfo = hashRatchetKeys
}
}
bundles := protocolMessage.GetBundles()
version := getProtocolVersion(bundles, protocolMessage.GetInstallationId())
if version >= sharedSecretNegotiationVersion {
sharedSecret, err := p.secret.Generate(myIdentityKey, theirPublicKey, protocolMessage.GetInstallationId())
if err != nil {
return nil, err
}
response.SharedSecrets = []*sharedsecret.Secret{sharedSecret}
}
response.DecryptedMessage = message
return response, nil
}
// Return error
return nil, ErrNoPayload
}
func (p *Protocol) ShouldAdvertiseBundle(publicKey *ecdsa.PublicKey, time int64) (bool, error) {
return p.publisher.ShouldAdvertiseBundle(publicKey, time)
}
func (p *Protocol) ConfirmBundleAdvertisement(publicKey *ecdsa.PublicKey, time int64) {
p.publisher.SetLastAck(publicKey, time)
}
func (p *Protocol) BuildBundleAdvertiseMessage(myIdentityKey *ecdsa.PrivateKey, publicKey *ecdsa.PublicKey) (*ProtocolMessageSpec, error) {
return p.BuildDHMessage(myIdentityKey, publicKey, nil)
}
func getProtocolVersion(bundles []*Bundle, installationID string) uint32 {
if installationID == "" {
return defaultMinVersion
}
for _, bundle := range bundles {
if bundle != nil {
signedPreKeys := bundle.GetSignedPreKeys()
if signedPreKeys == nil {
continue
}
signedPreKey := signedPreKeys[installationID]
if signedPreKey == nil {
return defaultMinVersion
}
return signedPreKey.GetProtocolVersion()
}
}
return defaultMinVersion
}
func (p *Protocol) EncryptWithHashRatchet(groupID []byte, payload []byte) ([]byte, *HashRatchetKeyCompatibility, uint32, error) {
ratchet, err := p.encryptor.persistence.GetCurrentKeyForGroup(groupID)
if err != nil {
return nil, nil, 0, err
}
encryptedPayload, newSeqNo, err := p.encryptor.EncryptWithHR(ratchet, payload)
if err != nil {
return nil, nil, 0, err
}
return encryptedPayload, ratchet, newSeqNo, nil
}
func (p *Protocol) DecryptWithHashRatchet(keyID []byte, seqNo uint32, payload []byte) ([]byte, error) {
ratchet, err := p.encryptor.persistence.GetHashRatchetKeyByID(keyID)
if err != nil {
return nil, err
}
if ratchet == nil {
return nil, ErrNoRatchetKey
}
return p.encryptor.DecryptWithHR(ratchet, seqNo, payload)
}