Prem Chaitanya Prathi 97db14083a
chore_: bump go-waku with filter loop fix (#5909)
* chore_: bump go-waku with filter loop fix

* fix_: correct fleet node for staging fleet

* fix_: use shards for lightclient init

---------

Co-authored-by: Richard Ramos <info@richardramos.me>
2024-10-10 17:03:36 +05:30

338 lines
9.4 KiB
Go

// Copyright (c) 2021 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package dig
import (
"bytes"
"fmt"
"math/rand"
"reflect"
"sort"
"time"
"go.uber.org/dig/internal/digclock"
)
// A ScopeOption modifies the default behavior of Scope; currently,
// there are no implementations.
type ScopeOption interface {
noScopeOption() // yet
}
// Scope is a scoped DAG of types and their dependencies.
// A Scope may also have one or more child Scopes that inherit
// from it.
type Scope struct {
// This implements containerStore interface.
// Name of the Scope
name string
// Mapping from key to all the constructor node that can provide a value for that
// key.
providers map[key][]*constructorNode
// Mapping from key to the decorator that decorates a value for that key.
decorators map[key]*decoratorNode
// constructorNodes provided directly to this Scope. i.e. it does not include
// any nodes that were provided to the parent Scope this inherited from.
nodes []*constructorNode
// Values that generated via decorators in the Scope.
decoratedValues map[key]reflect.Value
// Values that generated directly in the Scope.
values map[key]reflect.Value
// Values groups that generated directly in the Scope.
groups map[key][]reflect.Value
// Values groups that generated via decoraters in the Scope.
decoratedGroups map[key]reflect.Value
// Source of randomness.
rand *rand.Rand
// Flag indicating whether the graph has been checked for cycles.
isVerifiedAcyclic bool
// Defer acyclic check on provide until Invoke.
deferAcyclicVerification bool
// Recover from panics in user-provided code and wrap in an exported error type.
recoverFromPanics bool
// invokerFn calls a function with arguments provided to Provide or Invoke.
invokerFn invokerFn
// graph of this Scope. Note that this holds the dependency graph of all the
// nodes that affect this Scope, not just the ones provided directly to this Scope.
gh *graphHolder
// Parent of this Scope.
parentScope *Scope
// All the child scopes of this Scope.
childScopes []*Scope
// clockSrc stores the source of time. Defaults to system clock.
clockSrc digclock.Clock
}
func newScope() *Scope {
s := &Scope{
providers: make(map[key][]*constructorNode),
decorators: make(map[key]*decoratorNode),
values: make(map[key]reflect.Value),
decoratedValues: make(map[key]reflect.Value),
groups: make(map[key][]reflect.Value),
decoratedGroups: make(map[key]reflect.Value),
invokerFn: defaultInvoker,
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
clockSrc: digclock.System,
}
s.gh = newGraphHolder(s)
return s
}
// Scope creates a new Scope with the given name and options from current Scope.
// Any constructors that the current Scope knows about, as well as any modifications
// made to it in the future will be propagated to the child scope.
// However, no modifications made to the child scope being created will be propagated
// to the parent Scope.
func (s *Scope) Scope(name string, opts ...ScopeOption) *Scope {
child := newScope()
child.name = name
child.parentScope = s
child.invokerFn = s.invokerFn
child.clockSrc = s.clockSrc
child.deferAcyclicVerification = s.deferAcyclicVerification
child.recoverFromPanics = s.recoverFromPanics
// child copies the parent's graph nodes.
for _, node := range s.gh.nodes {
child.gh.nodes = append(child.gh.nodes, node)
if ctrNode, ok := node.Wrapped.(*constructorNode); ok {
ctrNode.CopyOrder(s, child)
}
}
for _, opt := range opts {
opt.noScopeOption()
}
s.childScopes = append(s.childScopes, child)
return child
}
// ancestors returns a list of scopes of ancestors of this scope up to the
// root. The scope at at index 0 is this scope itself.
func (s *Scope) ancestors() []*Scope {
var scopes []*Scope
for s := s; s != nil; s = s.parentScope {
scopes = append(scopes, s)
}
return scopes
}
func (s *Scope) appendSubscopes(dest []*Scope) []*Scope {
dest = append(dest, s)
for _, cs := range s.childScopes {
dest = cs.appendSubscopes(dest)
}
return dest
}
func (s *Scope) storesToRoot() []containerStore {
scopes := s.ancestors()
stores := make([]containerStore, len(scopes))
for i, s := range scopes {
stores[i] = s
}
return stores
}
func (s *Scope) knownTypes() []reflect.Type {
typeSet := make(map[reflect.Type]struct{}, len(s.providers))
for k := range s.providers {
typeSet[k.t] = struct{}{}
}
types := make([]reflect.Type, 0, len(typeSet))
for t := range typeSet {
types = append(types, t)
}
sort.Sort(byTypeName(types))
return types
}
func (s *Scope) getValue(name string, t reflect.Type) (v reflect.Value, ok bool) {
v, ok = s.values[key{name: name, t: t}]
return
}
func (s *Scope) getDecoratedValue(name string, t reflect.Type) (v reflect.Value, ok bool) {
v, ok = s.decoratedValues[key{name: name, t: t}]
return
}
func (s *Scope) setValue(name string, t reflect.Type, v reflect.Value) {
s.values[key{name: name, t: t}] = v
}
func (s *Scope) setDecoratedValue(name string, t reflect.Type, v reflect.Value) {
s.decoratedValues[key{name: name, t: t}] = v
}
func (s *Scope) getValueGroup(name string, t reflect.Type) []reflect.Value {
items := s.groups[key{group: name, t: t}]
// shuffle the list so users don't rely on the ordering of grouped values
return shuffledCopy(s.rand, items)
}
func (s *Scope) getDecoratedValueGroup(name string, t reflect.Type) (reflect.Value, bool) {
items, ok := s.decoratedGroups[key{group: name, t: t}]
return items, ok
}
func (s *Scope) submitGroupedValue(name string, t reflect.Type, v reflect.Value) {
k := key{group: name, t: t}
s.groups[k] = append(s.groups[k], v)
}
func (s *Scope) submitDecoratedGroupedValue(name string, t reflect.Type, v reflect.Value) {
k := key{group: name, t: t}
s.decoratedGroups[k] = v
}
func (s *Scope) getValueProviders(name string, t reflect.Type) []provider {
return s.getProviders(key{name: name, t: t})
}
func (s *Scope) getGroupProviders(name string, t reflect.Type) []provider {
return s.getProviders(key{group: name, t: t})
}
func (s *Scope) getValueDecorator(name string, t reflect.Type) (decorator, bool) {
return s.getDecorators(key{name: name, t: t})
}
func (s *Scope) getGroupDecorator(name string, t reflect.Type) (decorator, bool) {
return s.getDecorators(key{group: name, t: t})
}
func (s *Scope) getDecorators(k key) (decorator, bool) {
d, found := s.decorators[k]
return d, found
}
func (s *Scope) getProviders(k key) []provider {
nodes := s.providers[k]
providers := make([]provider, len(nodes))
for i, n := range nodes {
providers[i] = n
}
return providers
}
func (s *Scope) getAllGroupProviders(name string, t reflect.Type) []provider {
return s.getAllProviders(key{group: name, t: t})
}
func (s *Scope) getAllValueProviders(name string, t reflect.Type) []provider {
return s.getAllProviders(key{name: name, t: t})
}
func (s *Scope) getAllProviders(k key) []provider {
allScopes := s.ancestors()
var providers []provider
for _, scope := range allScopes {
providers = append(providers, scope.getProviders(k)...)
}
return providers
}
func (s *Scope) invoker() invokerFn {
return s.invokerFn
}
func (s *Scope) clock() digclock.Clock {
return s.clockSrc
}
// adds a new graphNode to this Scope and all of its descendent
// scope.
func (s *Scope) newGraphNode(wrapped interface{}, orders map[*Scope]int) {
orders[s] = s.gh.NewNode(wrapped)
for _, cs := range s.childScopes {
cs.newGraphNode(wrapped, orders)
}
}
func (s *Scope) cycleDetectedError(cycle []int) error {
var path []cycleErrPathEntry
for _, n := range cycle {
if n, ok := s.gh.Lookup(n).(*constructorNode); ok {
path = append(path, cycleErrPathEntry{
Key: key{
t: n.CType(),
},
Func: n.Location(),
})
}
}
return errCycleDetected{Path: path, scope: s}
}
// Returns the root Scope that can be reached from this Scope.
func (s *Scope) rootScope() *Scope {
curr := s
for curr.parentScope != nil {
curr = curr.parentScope
}
return curr
}
// String representation of the entire Scope
func (s *Scope) String() string {
b := &bytes.Buffer{}
fmt.Fprintln(b, "nodes: {")
for k, vs := range s.providers {
for _, v := range vs {
fmt.Fprintln(b, "\t", k, "->", v)
}
}
fmt.Fprintln(b, "}")
fmt.Fprintln(b, "values: {")
for k, v := range s.values {
fmt.Fprintln(b, "\t", k, "=>", v)
}
for k, vs := range s.groups {
for _, v := range vs {
fmt.Fprintln(b, "\t", k, "=>", v)
}
}
fmt.Fprintln(b, "}")
return b.String()
}