mirror of
https://github.com/status-im/status-go.git
synced 2025-01-12 15:45:07 +00:00
511d6bfc54
* feat(share-links): Add protobuf and encode/decode url data methods * feat(new-links-format): Adds generators for new links format * feat: add parsing for new links format * feat: add messenger-level pubkey serialization and tests * feat: fix and test CreateCommunityURLWithChatKey * feat: impl and test parseCommunityURLWithChatKey * feat: fix and test CreateCommunityURLWithData * feat: impl and test parseCommunityURLWithData (not working) * feat: UrlDataResponse as response share urls api * feat: impl& tested ShareCommunityChannelURLWithChatKey * feat: impl & tested ParseCommunityChannelURLWithChatKey * fix: bring urls to new format * feat: add regexp for community channel urls * feat: impl & test contact urls with chatKey, Ens and data * fix: encodeDataURL/encodeDataURL patch from Samyoul * fix: fix unmarshalling protobufs * fix: fix minor issues, temporary comment TestParseUserURLWithENS * fix: allow url to contain extra `#` in the signature * fix: check signatures with SigToPub * chore: lint fixes * fix: encode the signature * feat: Check provided channelID is Uuid * fix(share-community-url): Remove if community encrypted scope * fix: review fixes * fix: use proto.Unmarshal instead of json.Marshal * feat(share-urls): Adds TagsIndices to community data * feat: support tag indices to community url data --------- Co-authored-by: Boris Melnik <borismelnik@status.im>
437 lines
11 KiB
Go
437 lines
11 KiB
Go
package brotli
|
|
|
|
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* Functions to estimate the bit cost of Huffman trees. */
|
|
func shannonEntropy(population []uint32, size uint, total *uint) float64 {
|
|
var sum uint = 0
|
|
var retval float64 = 0
|
|
var population_end []uint32 = population[size:]
|
|
var p uint
|
|
for -cap(population) < -cap(population_end) {
|
|
p = uint(population[0])
|
|
population = population[1:]
|
|
sum += p
|
|
retval -= float64(p) * fastLog2(p)
|
|
}
|
|
|
|
if sum != 0 {
|
|
retval += float64(sum) * fastLog2(sum)
|
|
}
|
|
*total = sum
|
|
return retval
|
|
}
|
|
|
|
func bitsEntropy(population []uint32, size uint) float64 {
|
|
var sum uint
|
|
var retval float64 = shannonEntropy(population, size, &sum)
|
|
if retval < float64(sum) {
|
|
/* At least one bit per literal is needed. */
|
|
retval = float64(sum)
|
|
}
|
|
|
|
return retval
|
|
}
|
|
|
|
const kOneSymbolHistogramCost float64 = 12
|
|
const kTwoSymbolHistogramCost float64 = 20
|
|
const kThreeSymbolHistogramCost float64 = 28
|
|
const kFourSymbolHistogramCost float64 = 37
|
|
|
|
func populationCostLiteral(histogram *histogramLiteral) float64 {
|
|
var data_size uint = histogramDataSizeLiteral()
|
|
var count int = 0
|
|
var s [5]uint
|
|
var bits float64 = 0.0
|
|
var i uint
|
|
if histogram.total_count_ == 0 {
|
|
return kOneSymbolHistogramCost
|
|
}
|
|
|
|
for i = 0; i < data_size; i++ {
|
|
if histogram.data_[i] > 0 {
|
|
s[count] = i
|
|
count++
|
|
if count > 4 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if count == 1 {
|
|
return kOneSymbolHistogramCost
|
|
}
|
|
|
|
if count == 2 {
|
|
return kTwoSymbolHistogramCost + float64(histogram.total_count_)
|
|
}
|
|
|
|
if count == 3 {
|
|
var histo0 uint32 = histogram.data_[s[0]]
|
|
var histo1 uint32 = histogram.data_[s[1]]
|
|
var histo2 uint32 = histogram.data_[s[2]]
|
|
var histomax uint32 = brotli_max_uint32_t(histo0, brotli_max_uint32_t(histo1, histo2))
|
|
return kThreeSymbolHistogramCost + 2*(float64(histo0)+float64(histo1)+float64(histo2)) - float64(histomax)
|
|
}
|
|
|
|
if count == 4 {
|
|
var histo [4]uint32
|
|
var h23 uint32
|
|
var histomax uint32
|
|
for i = 0; i < 4; i++ {
|
|
histo[i] = histogram.data_[s[i]]
|
|
}
|
|
|
|
/* Sort */
|
|
for i = 0; i < 4; i++ {
|
|
var j uint
|
|
for j = i + 1; j < 4; j++ {
|
|
if histo[j] > histo[i] {
|
|
var tmp uint32 = histo[j]
|
|
histo[j] = histo[i]
|
|
histo[i] = tmp
|
|
}
|
|
}
|
|
}
|
|
|
|
h23 = histo[2] + histo[3]
|
|
histomax = brotli_max_uint32_t(h23, histo[0])
|
|
return kFourSymbolHistogramCost + 3*float64(h23) + 2*(float64(histo[0])+float64(histo[1])) - float64(histomax)
|
|
}
|
|
{
|
|
var max_depth uint = 1
|
|
var depth_histo = [codeLengthCodes]uint32{0}
|
|
/* In this loop we compute the entropy of the histogram and simultaneously
|
|
build a simplified histogram of the code length codes where we use the
|
|
zero repeat code 17, but we don't use the non-zero repeat code 16. */
|
|
|
|
var log2total float64 = fastLog2(histogram.total_count_)
|
|
for i = 0; i < data_size; {
|
|
if histogram.data_[i] > 0 {
|
|
var log2p float64 = log2total - fastLog2(uint(histogram.data_[i]))
|
|
/* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
|
|
= log2(total_count) - log2(count(symbol)) */
|
|
|
|
var depth uint = uint(log2p + 0.5)
|
|
/* Approximate the bit depth by round(-log2(P(symbol))) */
|
|
bits += float64(histogram.data_[i]) * log2p
|
|
|
|
if depth > 15 {
|
|
depth = 15
|
|
}
|
|
|
|
if depth > max_depth {
|
|
max_depth = depth
|
|
}
|
|
|
|
depth_histo[depth]++
|
|
i++
|
|
} else {
|
|
var reps uint32 = 1
|
|
/* Compute the run length of zeros and add the appropriate number of 0
|
|
and 17 code length codes to the code length code histogram. */
|
|
|
|
var k uint
|
|
for k = i + 1; k < data_size && histogram.data_[k] == 0; k++ {
|
|
reps++
|
|
}
|
|
|
|
i += uint(reps)
|
|
if i == data_size {
|
|
/* Don't add any cost for the last zero run, since these are encoded
|
|
only implicitly. */
|
|
break
|
|
}
|
|
|
|
if reps < 3 {
|
|
depth_histo[0] += reps
|
|
} else {
|
|
reps -= 2
|
|
for reps > 0 {
|
|
depth_histo[repeatZeroCodeLength]++
|
|
|
|
/* Add the 3 extra bits for the 17 code length code. */
|
|
bits += 3
|
|
|
|
reps >>= 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the estimated encoding cost of the code length code histogram. */
|
|
bits += float64(18 + 2*max_depth)
|
|
|
|
/* Add the entropy of the code length code histogram. */
|
|
bits += bitsEntropy(depth_histo[:], codeLengthCodes)
|
|
}
|
|
|
|
return bits
|
|
}
|
|
|
|
func populationCostCommand(histogram *histogramCommand) float64 {
|
|
var data_size uint = histogramDataSizeCommand()
|
|
var count int = 0
|
|
var s [5]uint
|
|
var bits float64 = 0.0
|
|
var i uint
|
|
if histogram.total_count_ == 0 {
|
|
return kOneSymbolHistogramCost
|
|
}
|
|
|
|
for i = 0; i < data_size; i++ {
|
|
if histogram.data_[i] > 0 {
|
|
s[count] = i
|
|
count++
|
|
if count > 4 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if count == 1 {
|
|
return kOneSymbolHistogramCost
|
|
}
|
|
|
|
if count == 2 {
|
|
return kTwoSymbolHistogramCost + float64(histogram.total_count_)
|
|
}
|
|
|
|
if count == 3 {
|
|
var histo0 uint32 = histogram.data_[s[0]]
|
|
var histo1 uint32 = histogram.data_[s[1]]
|
|
var histo2 uint32 = histogram.data_[s[2]]
|
|
var histomax uint32 = brotli_max_uint32_t(histo0, brotli_max_uint32_t(histo1, histo2))
|
|
return kThreeSymbolHistogramCost + 2*(float64(histo0)+float64(histo1)+float64(histo2)) - float64(histomax)
|
|
}
|
|
|
|
if count == 4 {
|
|
var histo [4]uint32
|
|
var h23 uint32
|
|
var histomax uint32
|
|
for i = 0; i < 4; i++ {
|
|
histo[i] = histogram.data_[s[i]]
|
|
}
|
|
|
|
/* Sort */
|
|
for i = 0; i < 4; i++ {
|
|
var j uint
|
|
for j = i + 1; j < 4; j++ {
|
|
if histo[j] > histo[i] {
|
|
var tmp uint32 = histo[j]
|
|
histo[j] = histo[i]
|
|
histo[i] = tmp
|
|
}
|
|
}
|
|
}
|
|
|
|
h23 = histo[2] + histo[3]
|
|
histomax = brotli_max_uint32_t(h23, histo[0])
|
|
return kFourSymbolHistogramCost + 3*float64(h23) + 2*(float64(histo[0])+float64(histo[1])) - float64(histomax)
|
|
}
|
|
{
|
|
var max_depth uint = 1
|
|
var depth_histo = [codeLengthCodes]uint32{0}
|
|
/* In this loop we compute the entropy of the histogram and simultaneously
|
|
build a simplified histogram of the code length codes where we use the
|
|
zero repeat code 17, but we don't use the non-zero repeat code 16. */
|
|
|
|
var log2total float64 = fastLog2(histogram.total_count_)
|
|
for i = 0; i < data_size; {
|
|
if histogram.data_[i] > 0 {
|
|
var log2p float64 = log2total - fastLog2(uint(histogram.data_[i]))
|
|
/* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
|
|
= log2(total_count) - log2(count(symbol)) */
|
|
|
|
var depth uint = uint(log2p + 0.5)
|
|
/* Approximate the bit depth by round(-log2(P(symbol))) */
|
|
bits += float64(histogram.data_[i]) * log2p
|
|
|
|
if depth > 15 {
|
|
depth = 15
|
|
}
|
|
|
|
if depth > max_depth {
|
|
max_depth = depth
|
|
}
|
|
|
|
depth_histo[depth]++
|
|
i++
|
|
} else {
|
|
var reps uint32 = 1
|
|
/* Compute the run length of zeros and add the appropriate number of 0
|
|
and 17 code length codes to the code length code histogram. */
|
|
|
|
var k uint
|
|
for k = i + 1; k < data_size && histogram.data_[k] == 0; k++ {
|
|
reps++
|
|
}
|
|
|
|
i += uint(reps)
|
|
if i == data_size {
|
|
/* Don't add any cost for the last zero run, since these are encoded
|
|
only implicitly. */
|
|
break
|
|
}
|
|
|
|
if reps < 3 {
|
|
depth_histo[0] += reps
|
|
} else {
|
|
reps -= 2
|
|
for reps > 0 {
|
|
depth_histo[repeatZeroCodeLength]++
|
|
|
|
/* Add the 3 extra bits for the 17 code length code. */
|
|
bits += 3
|
|
|
|
reps >>= 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the estimated encoding cost of the code length code histogram. */
|
|
bits += float64(18 + 2*max_depth)
|
|
|
|
/* Add the entropy of the code length code histogram. */
|
|
bits += bitsEntropy(depth_histo[:], codeLengthCodes)
|
|
}
|
|
|
|
return bits
|
|
}
|
|
|
|
func populationCostDistance(histogram *histogramDistance) float64 {
|
|
var data_size uint = histogramDataSizeDistance()
|
|
var count int = 0
|
|
var s [5]uint
|
|
var bits float64 = 0.0
|
|
var i uint
|
|
if histogram.total_count_ == 0 {
|
|
return kOneSymbolHistogramCost
|
|
}
|
|
|
|
for i = 0; i < data_size; i++ {
|
|
if histogram.data_[i] > 0 {
|
|
s[count] = i
|
|
count++
|
|
if count > 4 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if count == 1 {
|
|
return kOneSymbolHistogramCost
|
|
}
|
|
|
|
if count == 2 {
|
|
return kTwoSymbolHistogramCost + float64(histogram.total_count_)
|
|
}
|
|
|
|
if count == 3 {
|
|
var histo0 uint32 = histogram.data_[s[0]]
|
|
var histo1 uint32 = histogram.data_[s[1]]
|
|
var histo2 uint32 = histogram.data_[s[2]]
|
|
var histomax uint32 = brotli_max_uint32_t(histo0, brotli_max_uint32_t(histo1, histo2))
|
|
return kThreeSymbolHistogramCost + 2*(float64(histo0)+float64(histo1)+float64(histo2)) - float64(histomax)
|
|
}
|
|
|
|
if count == 4 {
|
|
var histo [4]uint32
|
|
var h23 uint32
|
|
var histomax uint32
|
|
for i = 0; i < 4; i++ {
|
|
histo[i] = histogram.data_[s[i]]
|
|
}
|
|
|
|
/* Sort */
|
|
for i = 0; i < 4; i++ {
|
|
var j uint
|
|
for j = i + 1; j < 4; j++ {
|
|
if histo[j] > histo[i] {
|
|
var tmp uint32 = histo[j]
|
|
histo[j] = histo[i]
|
|
histo[i] = tmp
|
|
}
|
|
}
|
|
}
|
|
|
|
h23 = histo[2] + histo[3]
|
|
histomax = brotli_max_uint32_t(h23, histo[0])
|
|
return kFourSymbolHistogramCost + 3*float64(h23) + 2*(float64(histo[0])+float64(histo[1])) - float64(histomax)
|
|
}
|
|
{
|
|
var max_depth uint = 1
|
|
var depth_histo = [codeLengthCodes]uint32{0}
|
|
/* In this loop we compute the entropy of the histogram and simultaneously
|
|
build a simplified histogram of the code length codes where we use the
|
|
zero repeat code 17, but we don't use the non-zero repeat code 16. */
|
|
|
|
var log2total float64 = fastLog2(histogram.total_count_)
|
|
for i = 0; i < data_size; {
|
|
if histogram.data_[i] > 0 {
|
|
var log2p float64 = log2total - fastLog2(uint(histogram.data_[i]))
|
|
/* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
|
|
= log2(total_count) - log2(count(symbol)) */
|
|
|
|
var depth uint = uint(log2p + 0.5)
|
|
/* Approximate the bit depth by round(-log2(P(symbol))) */
|
|
bits += float64(histogram.data_[i]) * log2p
|
|
|
|
if depth > 15 {
|
|
depth = 15
|
|
}
|
|
|
|
if depth > max_depth {
|
|
max_depth = depth
|
|
}
|
|
|
|
depth_histo[depth]++
|
|
i++
|
|
} else {
|
|
var reps uint32 = 1
|
|
/* Compute the run length of zeros and add the appropriate number of 0
|
|
and 17 code length codes to the code length code histogram. */
|
|
|
|
var k uint
|
|
for k = i + 1; k < data_size && histogram.data_[k] == 0; k++ {
|
|
reps++
|
|
}
|
|
|
|
i += uint(reps)
|
|
if i == data_size {
|
|
/* Don't add any cost for the last zero run, since these are encoded
|
|
only implicitly. */
|
|
break
|
|
}
|
|
|
|
if reps < 3 {
|
|
depth_histo[0] += reps
|
|
} else {
|
|
reps -= 2
|
|
for reps > 0 {
|
|
depth_histo[repeatZeroCodeLength]++
|
|
|
|
/* Add the 3 extra bits for the 17 code length code. */
|
|
bits += 3
|
|
|
|
reps >>= 3
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the estimated encoding cost of the code length code histogram. */
|
|
bits += float64(18 + 2*max_depth)
|
|
|
|
/* Add the entropy of the code length code histogram. */
|
|
bits += bitsEntropy(depth_histo[:], codeLengthCodes)
|
|
}
|
|
|
|
return bits
|
|
}
|