2019-10-04 17:21:24 +02:00

517 lines
17 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"encoding/binary"
"math"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
)
const makeCostStats = false // make request cost statistics during operation
var (
// average request cost estimates based on serving time
reqAvgTimeCost = requestCostTable{
GetBlockHeadersMsg: {150000, 30000},
GetBlockBodiesMsg: {0, 700000},
GetReceiptsMsg: {0, 1000000},
GetCodeMsg: {0, 450000},
GetProofsV2Msg: {0, 600000},
GetHelperTrieProofsMsg: {0, 1000000},
SendTxV2Msg: {0, 450000},
GetTxStatusMsg: {0, 250000},
}
// maximum incoming message size estimates
reqMaxInSize = requestCostTable{
GetBlockHeadersMsg: {40, 0},
GetBlockBodiesMsg: {0, 40},
GetReceiptsMsg: {0, 40},
GetCodeMsg: {0, 80},
GetProofsV2Msg: {0, 80},
GetHelperTrieProofsMsg: {0, 20},
SendTxV2Msg: {0, 16500},
GetTxStatusMsg: {0, 50},
}
// maximum outgoing message size estimates
reqMaxOutSize = requestCostTable{
GetBlockHeadersMsg: {0, 556},
GetBlockBodiesMsg: {0, 100000},
GetReceiptsMsg: {0, 200000},
GetCodeMsg: {0, 50000},
GetProofsV2Msg: {0, 4000},
GetHelperTrieProofsMsg: {0, 4000},
SendTxV2Msg: {0, 100},
GetTxStatusMsg: {0, 100},
}
// request amounts that have to fit into the minimum buffer size minBufferMultiplier times
minBufferReqAmount = map[uint64]uint64{
GetBlockHeadersMsg: 192,
GetBlockBodiesMsg: 1,
GetReceiptsMsg: 1,
GetCodeMsg: 1,
GetProofsV2Msg: 1,
GetHelperTrieProofsMsg: 16,
SendTxV2Msg: 8,
GetTxStatusMsg: 64,
}
minBufferMultiplier = 3
)
const (
maxCostFactor = 2 // ratio of maximum and average cost estimates
bufLimitRatio = 6000 // fixed bufLimit/MRR ratio
gfUsageThreshold = 0.5
gfUsageTC = time.Second
gfRaiseTC = time.Second * 200
gfDropTC = time.Second * 50
gfDbKey = "_globalCostFactorV6"
)
// costTracker is responsible for calculating costs and cost estimates on the
// server side. It continuously updates the global cost factor which is defined
// as the number of cost units per nanosecond of serving time in a single thread.
// It is based on statistics collected during serving requests in high-load periods
// and practically acts as a one-dimension request price scaling factor over the
// pre-defined cost estimate table.
//
// The reason for dynamically maintaining the global factor on the server side is:
// the estimated time cost of the request is fixed(hardcoded) but the configuration
// of the machine running the server is really different. Therefore, the request serving
// time in different machine will vary greatly. And also, the request serving time
// in same machine may vary greatly with different request pressure.
//
// In order to more effectively limit resources, we apply the global factor to serving
// time to make the result as close as possible to the estimated time cost no matter
// the server is slow or fast. And also we scale the totalRecharge with global factor
// so that fast server can serve more requests than estimation and slow server can
// reduce request pressure.
//
// Instead of scaling the cost values, the real value of cost units is changed by
// applying the factor to the serving times. This is more convenient because the
// changes in the cost factor can be applied immediately without always notifying
// the clients about the changed cost tables.
type costTracker struct {
db ethdb.Database
stopCh chan chan struct{}
inSizeFactor float64
outSizeFactor float64
factor float64
utilTarget float64
minBufLimit uint64
gfLock sync.RWMutex
reqInfoCh chan reqInfo
totalRechargeCh chan uint64
stats map[uint64][]uint64 // Used for testing purpose.
// TestHooks
testing bool // Disable real cost evaluation for testing purpose.
testCostList RequestCostList // Customized cost table for testing purpose.
}
// newCostTracker creates a cost tracker and loads the cost factor statistics from the database.
// It also returns the minimum capacity that can be assigned to any peer.
func newCostTracker(db ethdb.Database, config *eth.Config) (*costTracker, uint64) {
utilTarget := float64(config.LightServ) * flowcontrol.FixedPointMultiplier / 100
ct := &costTracker{
db: db,
stopCh: make(chan chan struct{}),
reqInfoCh: make(chan reqInfo, 100),
utilTarget: utilTarget,
}
if config.LightIngress > 0 {
ct.inSizeFactor = utilTarget / float64(config.LightIngress)
}
if config.LightEgress > 0 {
ct.outSizeFactor = utilTarget / float64(config.LightEgress)
}
if makeCostStats {
ct.stats = make(map[uint64][]uint64)
for code := range reqAvgTimeCost {
ct.stats[code] = make([]uint64, 10)
}
}
ct.gfLoop()
costList := ct.makeCostList(ct.globalFactor() * 1.25)
for _, c := range costList {
amount := minBufferReqAmount[c.MsgCode]
cost := c.BaseCost + amount*c.ReqCost
if cost > ct.minBufLimit {
ct.minBufLimit = cost
}
}
ct.minBufLimit *= uint64(minBufferMultiplier)
return ct, (ct.minBufLimit-1)/bufLimitRatio + 1
}
// stop stops the cost tracker and saves the cost factor statistics to the database
func (ct *costTracker) stop() {
stopCh := make(chan struct{})
ct.stopCh <- stopCh
<-stopCh
if makeCostStats {
ct.printStats()
}
}
// makeCostList returns upper cost estimates based on the hardcoded cost estimate
// tables and the optionally specified incoming/outgoing bandwidth limits
func (ct *costTracker) makeCostList(globalFactor float64) RequestCostList {
maxCost := func(avgTimeCost, inSize, outSize uint64) uint64 {
cost := avgTimeCost * maxCostFactor
inSizeCost := uint64(float64(inSize) * ct.inSizeFactor * globalFactor)
if inSizeCost > cost {
cost = inSizeCost
}
outSizeCost := uint64(float64(outSize) * ct.outSizeFactor * globalFactor)
if outSizeCost > cost {
cost = outSizeCost
}
return cost
}
var list RequestCostList
for code, data := range reqAvgTimeCost {
baseCost := maxCost(data.baseCost, reqMaxInSize[code].baseCost, reqMaxOutSize[code].baseCost)
reqCost := maxCost(data.reqCost, reqMaxInSize[code].reqCost, reqMaxOutSize[code].reqCost)
if ct.minBufLimit != 0 {
// if minBufLimit is set then always enforce maximum request cost <= minBufLimit
maxCost := baseCost + reqCost*minBufferReqAmount[code]
if maxCost > ct.minBufLimit {
mul := 0.999 * float64(ct.minBufLimit) / float64(maxCost)
baseCost = uint64(float64(baseCost) * mul)
reqCost = uint64(float64(reqCost) * mul)
}
}
list = append(list, requestCostListItem{
MsgCode: code,
BaseCost: baseCost,
ReqCost: reqCost,
})
}
return list
}
// reqInfo contains the estimated time cost and the actual request serving time
// which acts as a feed source to update factor maintained by costTracker.
type reqInfo struct {
// avgTimeCost is the estimated time cost corresponding to maxCostTable.
avgTimeCost float64
// servingTime is the CPU time corresponding to the actual processing of
// the request.
servingTime float64
// msgCode indicates the type of request.
msgCode uint64
}
// gfLoop starts an event loop which updates the global cost factor which is
// calculated as a weighted average of the average estimate / serving time ratio.
// The applied weight equals the serving time if gfUsage is over a threshold,
// zero otherwise. gfUsage is the recent average serving time per time unit in
// an exponential moving window. This ensures that statistics are collected only
// under high-load circumstances where the measured serving times are relevant.
// The total recharge parameter of the flow control system which controls the
// total allowed serving time per second but nominated in cost units, should
// also be scaled with the cost factor and is also updated by this loop.
func (ct *costTracker) gfLoop() {
var (
factor, totalRecharge float64
gfLog, recentTime, recentAvg float64
lastUpdate, expUpdate = mclock.Now(), mclock.Now()
)
// Load historical cost factor statistics from the database.
data, _ := ct.db.Get([]byte(gfDbKey))
if len(data) == 8 {
gfLog = math.Float64frombits(binary.BigEndian.Uint64(data[:]))
}
ct.factor = math.Exp(gfLog)
factor, totalRecharge = ct.factor, ct.utilTarget*ct.factor
// In order to perform factor data statistics under the high request pressure,
// we only adjust factor when recent factor usage beyond the threshold.
threshold := gfUsageThreshold * float64(gfUsageTC) * ct.utilTarget / flowcontrol.FixedPointMultiplier
go func() {
saveCostFactor := func() {
var data [8]byte
binary.BigEndian.PutUint64(data[:], math.Float64bits(gfLog))
ct.db.Put([]byte(gfDbKey), data[:])
log.Debug("global cost factor saved", "value", factor)
}
saveTicker := time.NewTicker(time.Minute * 10)
for {
select {
case r := <-ct.reqInfoCh:
relCost := int64(factor * r.servingTime * 100 / r.avgTimeCost) // Convert the value to a percentage form
// Record more metrics if we are debugging
if metrics.EnabledExpensive {
switch r.msgCode {
case GetBlockHeadersMsg:
relativeCostHeaderHistogram.Update(relCost)
case GetBlockBodiesMsg:
relativeCostBodyHistogram.Update(relCost)
case GetReceiptsMsg:
relativeCostReceiptHistogram.Update(relCost)
case GetCodeMsg:
relativeCostCodeHistogram.Update(relCost)
case GetProofsV2Msg:
relativeCostProofHistogram.Update(relCost)
case GetHelperTrieProofsMsg:
relativeCostHelperProofHistogram.Update(relCost)
case SendTxV2Msg:
relativeCostSendTxHistogram.Update(relCost)
case GetTxStatusMsg:
relativeCostTxStatusHistogram.Update(relCost)
}
}
// SendTxV2 and GetTxStatus requests are two special cases.
// All other requests will only put pressure on the database, and
// the corresponding delay is relatively stable. While these two
// requests involve txpool query, which is usually unstable.
//
// TODO(rjl493456442) fixes this.
if r.msgCode == SendTxV2Msg || r.msgCode == GetTxStatusMsg {
continue
}
requestServedMeter.Mark(int64(r.servingTime))
requestServedTimer.Update(time.Duration(r.servingTime))
requestEstimatedMeter.Mark(int64(r.avgTimeCost / factor))
requestEstimatedTimer.Update(time.Duration(r.avgTimeCost / factor))
relativeCostHistogram.Update(relCost)
now := mclock.Now()
dt := float64(now - expUpdate)
expUpdate = now
exp := math.Exp(-dt / float64(gfUsageTC))
// calculate factor correction until now, based on previous values
var gfCorr float64
max := recentTime
if recentAvg > max {
max = recentAvg
}
// we apply continuous correction when MAX(recentTime, recentAvg) > threshold
if max > threshold {
// calculate correction time between last expUpdate and now
if max*exp >= threshold {
gfCorr = dt
} else {
gfCorr = math.Log(max/threshold) * float64(gfUsageTC)
}
// calculate log(factor) correction with the right direction and time constant
if recentTime > recentAvg {
// drop factor if actual serving times are larger than average estimates
gfCorr /= -float64(gfDropTC)
} else {
// raise factor if actual serving times are smaller than average estimates
gfCorr /= float64(gfRaiseTC)
}
}
// update recent cost values with current request
recentTime = recentTime*exp + r.servingTime
recentAvg = recentAvg*exp + r.avgTimeCost/factor
if gfCorr != 0 {
// Apply the correction to factor
gfLog += gfCorr
factor = math.Exp(gfLog)
// Notify outside modules the new factor and totalRecharge.
if time.Duration(now-lastUpdate) > time.Second {
totalRecharge, lastUpdate = ct.utilTarget*factor, now
ct.gfLock.Lock()
ct.factor = factor
ch := ct.totalRechargeCh
ct.gfLock.Unlock()
if ch != nil {
select {
case ct.totalRechargeCh <- uint64(totalRecharge):
default:
}
}
globalFactorGauge.Update(int64(1000 * factor))
log.Debug("global cost factor updated", "factor", factor)
}
}
recentServedGauge.Update(int64(recentTime))
recentEstimatedGauge.Update(int64(recentAvg))
case <-saveTicker.C:
saveCostFactor()
case stopCh := <-ct.stopCh:
saveCostFactor()
close(stopCh)
return
}
}
}()
}
// globalFactor returns the current value of the global cost factor
func (ct *costTracker) globalFactor() float64 {
ct.gfLock.RLock()
defer ct.gfLock.RUnlock()
return ct.factor
}
// totalRecharge returns the current total recharge parameter which is used by
// flowcontrol.ClientManager and is scaled by the global cost factor
func (ct *costTracker) totalRecharge() uint64 {
ct.gfLock.RLock()
defer ct.gfLock.RUnlock()
return uint64(ct.factor * ct.utilTarget)
}
// subscribeTotalRecharge returns all future updates to the total recharge value
// through a channel and also returns the current value
func (ct *costTracker) subscribeTotalRecharge(ch chan uint64) uint64 {
ct.gfLock.Lock()
defer ct.gfLock.Unlock()
ct.totalRechargeCh = ch
return uint64(ct.factor * ct.utilTarget)
}
// updateStats updates the global cost factor and (if enabled) the real cost vs.
// average estimate statistics
func (ct *costTracker) updateStats(code, amount, servingTime, realCost uint64) {
avg := reqAvgTimeCost[code]
avgTimeCost := avg.baseCost + amount*avg.reqCost
select {
case ct.reqInfoCh <- reqInfo{float64(avgTimeCost), float64(servingTime), code}:
default:
}
if makeCostStats {
realCost <<= 4
l := 0
for l < 9 && realCost > avgTimeCost {
l++
realCost >>= 1
}
atomic.AddUint64(&ct.stats[code][l], 1)
}
}
// realCost calculates the final cost of a request based on actual serving time,
// incoming and outgoing message size
//
// Note: message size is only taken into account if bandwidth limitation is applied
// and the cost based on either message size is greater than the cost based on
// serving time. A maximum of the three costs is applied instead of their sum
// because the three limited resources (serving thread time and i/o bandwidth) can
// also be maxed out simultaneously.
func (ct *costTracker) realCost(servingTime uint64, inSize, outSize uint32) uint64 {
cost := float64(servingTime)
inSizeCost := float64(inSize) * ct.inSizeFactor
if inSizeCost > cost {
cost = inSizeCost
}
outSizeCost := float64(outSize) * ct.outSizeFactor
if outSizeCost > cost {
cost = outSizeCost
}
return uint64(cost * ct.globalFactor())
}
// printStats prints the distribution of real request cost relative to the average estimates
func (ct *costTracker) printStats() {
if ct.stats == nil {
return
}
for code, arr := range ct.stats {
log.Info("Request cost statistics", "code", code, "1/16", arr[0], "1/8", arr[1], "1/4", arr[2], "1/2", arr[3], "1", arr[4], "2", arr[5], "4", arr[6], "8", arr[7], "16", arr[8], ">16", arr[9])
}
}
type (
// requestCostTable assigns a cost estimate function to each request type
// which is a linear function of the requested amount
// (cost = baseCost + reqCost * amount)
requestCostTable map[uint64]*requestCosts
requestCosts struct {
baseCost, reqCost uint64
}
// RequestCostList is a list representation of request costs which is used for
// database storage and communication through the network
RequestCostList []requestCostListItem
requestCostListItem struct {
MsgCode, BaseCost, ReqCost uint64
}
)
// getMaxCost calculates the estimated cost for a given request type and amount
func (table requestCostTable) getMaxCost(code, amount uint64) uint64 {
costs := table[code]
return costs.baseCost + amount*costs.reqCost
}
// decode converts a cost list to a cost table
func (list RequestCostList) decode(protocolLength uint64) requestCostTable {
table := make(requestCostTable)
for _, e := range list {
if e.MsgCode < protocolLength {
table[e.MsgCode] = &requestCosts{
baseCost: e.BaseCost,
reqCost: e.ReqCost,
}
}
}
return table
}
// testCostList returns a dummy request cost list used by tests
func testCostList(testCost uint64) RequestCostList {
cl := make(RequestCostList, len(reqAvgTimeCost))
var max uint64
for code := range reqAvgTimeCost {
if code > max {
max = code
}
}
i := 0
for code := uint64(0); code <= max; code++ {
if _, ok := reqAvgTimeCost[code]; ok {
cl[i].MsgCode = code
cl[i].BaseCost = testCost
cl[i].ReqCost = 0
i++
}
}
return cl
}