mirror of
https://github.com/status-im/status-go.git
synced 2025-01-11 23:25:29 +00:00
1273 lines
51 KiB
Go
1273 lines
51 KiB
Go
// Copyright (c) 2015-2022 The Decred developers
|
||
// Copyright 2013-2014 The btcsuite developers
|
||
// Use of this source code is governed by an ISC
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package secp256k1
|
||
|
||
import (
|
||
"encoding/hex"
|
||
"math/bits"
|
||
)
|
||
|
||
// References:
|
||
// [SECG]: Recommended Elliptic Curve Domain Parameters
|
||
// https://www.secg.org/sec2-v2.pdf
|
||
//
|
||
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
|
||
//
|
||
// [BRID]: On Binary Representations of Integers with Digits -1, 0, 1
|
||
// (Prodinger, Helmut)
|
||
//
|
||
// [STWS]: Secure-TWS: Authenticating Node to Multi-user Communication in
|
||
// Shared Sensor Networks (Oliveira, Leonardo B. et al)
|
||
|
||
// All group operations are performed using Jacobian coordinates. For a given
|
||
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
||
// where x = x1/z1^2 and y = y1/z1^3.
|
||
|
||
// hexToFieldVal converts the passed hex string into a FieldVal and will panic
|
||
// if there is an error. This is only provided for the hard-coded constants so
|
||
// errors in the source code can be detected. It will only (and must only) be
|
||
// called with hard-coded values.
|
||
func hexToFieldVal(s string) *FieldVal {
|
||
b, err := hex.DecodeString(s)
|
||
if err != nil {
|
||
panic("invalid hex in source file: " + s)
|
||
}
|
||
var f FieldVal
|
||
if overflow := f.SetByteSlice(b); overflow {
|
||
panic("hex in source file overflows mod P: " + s)
|
||
}
|
||
return &f
|
||
}
|
||
|
||
// hexToModNScalar converts the passed hex string into a ModNScalar and will
|
||
// panic if there is an error. This is only provided for the hard-coded
|
||
// constants so errors in the source code can be detected. It will only (and
|
||
// must only) be called with hard-coded values.
|
||
func hexToModNScalar(s string) *ModNScalar {
|
||
var isNegative bool
|
||
if len(s) > 0 && s[0] == '-' {
|
||
isNegative = true
|
||
s = s[1:]
|
||
}
|
||
if len(s)%2 != 0 {
|
||
s = "0" + s
|
||
}
|
||
b, err := hex.DecodeString(s)
|
||
if err != nil {
|
||
panic("invalid hex in source file: " + s)
|
||
}
|
||
var scalar ModNScalar
|
||
if overflow := scalar.SetByteSlice(b); overflow {
|
||
panic("hex in source file overflows mod N scalar: " + s)
|
||
}
|
||
if isNegative {
|
||
scalar.Negate()
|
||
}
|
||
return &scalar
|
||
}
|
||
|
||
var (
|
||
// The following constants are used to accelerate scalar point
|
||
// multiplication through the use of the endomorphism:
|
||
//
|
||
// φ(Q) ⟼ λ*Q = (β*Q.x mod p, Q.y)
|
||
//
|
||
// See the code in the deriveEndomorphismParams function in genprecomps.go
|
||
// for details on their derivation.
|
||
//
|
||
// Additionally, see the scalar multiplication function in this file for
|
||
// details on how they are used.
|
||
endoNegLambda = hexToModNScalar("-5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72")
|
||
endoBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee")
|
||
endoNegB1 = hexToModNScalar("e4437ed6010e88286f547fa90abfe4c3")
|
||
endoNegB2 = hexToModNScalar("-3086d221a7d46bcde86c90e49284eb15")
|
||
endoZ1 = hexToModNScalar("3086d221a7d46bcde86c90e49284eb153daa8a1471e8ca7f")
|
||
endoZ2 = hexToModNScalar("e4437ed6010e88286f547fa90abfe4c4221208ac9df506c6")
|
||
|
||
// Alternatively, the following parameters are valid as well, however,
|
||
// benchmarks show them to be about 2% slower in practice.
|
||
// endoNegLambda = hexToModNScalar("-ac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283ce")
|
||
// endoBeta = hexToFieldVal("851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40")
|
||
// endoNegB1 = hexToModNScalar("3086d221a7d46bcde86c90e49284eb15")
|
||
// endoNegB2 = hexToModNScalar("-114ca50f7a8e2f3f657c1108d9d44cfd8")
|
||
// endoZ1 = hexToModNScalar("114ca50f7a8e2f3f657c1108d9d44cfd95fbc92c10fddd145")
|
||
// endoZ2 = hexToModNScalar("3086d221a7d46bcde86c90e49284eb153daa8a1471e8ca7f")
|
||
)
|
||
|
||
// JacobianPoint is an element of the group formed by the secp256k1 curve in
|
||
// Jacobian projective coordinates and thus represents a point on the curve.
|
||
type JacobianPoint struct {
|
||
// The X coordinate in Jacobian projective coordinates. The affine point is
|
||
// X/z^2.
|
||
X FieldVal
|
||
|
||
// The Y coordinate in Jacobian projective coordinates. The affine point is
|
||
// Y/z^3.
|
||
Y FieldVal
|
||
|
||
// The Z coordinate in Jacobian projective coordinates.
|
||
Z FieldVal
|
||
}
|
||
|
||
// MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z
|
||
// coordinates.
|
||
func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint {
|
||
var p JacobianPoint
|
||
p.X.Set(x)
|
||
p.Y.Set(y)
|
||
p.Z.Set(z)
|
||
return p
|
||
}
|
||
|
||
// Set sets the Jacobian point to the provided point.
|
||
func (p *JacobianPoint) Set(other *JacobianPoint) {
|
||
p.X.Set(&other.X)
|
||
p.Y.Set(&other.Y)
|
||
p.Z.Set(&other.Z)
|
||
}
|
||
|
||
// ToAffine reduces the Z value of the existing point to 1 effectively
|
||
// making it an affine coordinate in constant time. The point will be
|
||
// normalized.
|
||
func (p *JacobianPoint) ToAffine() {
|
||
// Inversions are expensive and both point addition and point doubling
|
||
// are faster when working with points that have a z value of one. So,
|
||
// if the point needs to be converted to affine, go ahead and normalize
|
||
// the point itself at the same time as the calculation is the same.
|
||
var zInv, tempZ FieldVal
|
||
zInv.Set(&p.Z).Inverse() // zInv = Z^-1
|
||
tempZ.SquareVal(&zInv) // tempZ = Z^-2
|
||
p.X.Mul(&tempZ) // X = X/Z^2 (mag: 1)
|
||
p.Y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
|
||
p.Z.SetInt(1) // Z = 1 (mag: 1)
|
||
|
||
// Normalize the x and y values.
|
||
p.X.Normalize()
|
||
p.Y.Normalize()
|
||
}
|
||
|
||
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
|
||
// z values of 1 and stores the result in the provided result param. That is to
|
||
// say result = p1 + p2. It performs faster addition than the generic add
|
||
// routine since less arithmetic is needed due to the ability to avoid the z
|
||
// value multiplications.
|
||
//
|
||
// NOTE: The points must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func addZ1AndZ2EqualsOne(p1, p2, result *JacobianPoint) {
|
||
// To compute the point addition efficiently, this implementation splits
|
||
// the equation into intermediate elements which are used to minimize
|
||
// the number of field multiplications using the method shown at:
|
||
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
||
//
|
||
// In particular it performs the calculations using the following:
|
||
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
|
||
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
|
||
//
|
||
// This results in a cost of 4 field multiplications, 2 field squarings,
|
||
// 6 field additions, and 5 integer multiplications.
|
||
x1, y1 := &p1.X, &p1.Y
|
||
x2, y2 := &p2.X, &p2.Y
|
||
x3, y3, z3 := &result.X, &result.Y, &result.Z
|
||
|
||
// When the x coordinates are the same for two points on the curve, the
|
||
// y coordinates either must be the same, in which case it is point
|
||
// doubling, or they are opposite and the result is the point at
|
||
// infinity per the group law for elliptic curve cryptography.
|
||
if x1.Equals(x2) {
|
||
if y1.Equals(y2) {
|
||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||
// done, otherwise the addition would end up dividing
|
||
// by zero.
|
||
DoubleNonConst(p1, result)
|
||
return
|
||
}
|
||
|
||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||
// infinity per the group law.
|
||
x3.SetInt(0)
|
||
y3.SetInt(0)
|
||
z3.SetInt(0)
|
||
return
|
||
}
|
||
|
||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||
// breakdown above.
|
||
var h, i, j, r, v FieldVal
|
||
var negJ, neg2V, negX3 FieldVal
|
||
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
|
||
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
|
||
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
||
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
|
||
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
||
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
|
||
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
|
||
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
|
||
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
|
||
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
|
||
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
|
||
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
|
||
|
||
// Normalize the resulting field values as needed.
|
||
x3.Normalize()
|
||
y3.Normalize()
|
||
z3.Normalize()
|
||
}
|
||
|
||
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
|
||
// same z value and stores the result in the provided result param. That is to
|
||
// say result = p1 + p2. It performs faster addition than the generic add
|
||
// routine since less arithmetic is needed due to the known equivalence.
|
||
//
|
||
// NOTE: The points must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func addZ1EqualsZ2(p1, p2, result *JacobianPoint) {
|
||
// To compute the point addition efficiently, this implementation splits
|
||
// the equation into intermediate elements which are used to minimize
|
||
// the number of field multiplications using a slightly modified version
|
||
// of the method shown at:
|
||
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-zadd-2007-m
|
||
//
|
||
// In particular it performs the calculations using the following:
|
||
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
|
||
// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
|
||
//
|
||
// This results in a cost of 5 field multiplications, 2 field squarings,
|
||
// 9 field additions, and 0 integer multiplications.
|
||
x1, y1, z1 := &p1.X, &p1.Y, &p1.Z
|
||
x2, y2 := &p2.X, &p2.Y
|
||
x3, y3, z3 := &result.X, &result.Y, &result.Z
|
||
|
||
// When the x coordinates are the same for two points on the curve, the
|
||
// y coordinates either must be the same, in which case it is point
|
||
// doubling, or they are opposite and the result is the point at
|
||
// infinity per the group law for elliptic curve cryptography.
|
||
if x1.Equals(x2) {
|
||
if y1.Equals(y2) {
|
||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||
// done, otherwise the addition would end up dividing
|
||
// by zero.
|
||
DoubleNonConst(p1, result)
|
||
return
|
||
}
|
||
|
||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||
// infinity per the group law.
|
||
x3.SetInt(0)
|
||
y3.SetInt(0)
|
||
z3.SetInt(0)
|
||
return
|
||
}
|
||
|
||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||
// breakdown above.
|
||
var a, b, c, d, e, f FieldVal
|
||
var negX1, negY1, negE, negX3 FieldVal
|
||
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
||
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
||
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
|
||
b.SquareVal(&a) // B = A^2 (mag: 1)
|
||
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
|
||
d.SquareVal(&c) // D = C^2 (mag: 1)
|
||
e.Mul2(x1, &b) // E = X1*B (mag: 1)
|
||
negE.Set(&e).Negate(1) // negE = -E (mag: 2)
|
||
f.Mul2(x2, &b) // F = X2*B (mag: 1)
|
||
x3.Add2(&e, &f).Negate(2).Add(&d) // X3 = D-E-F (mag: 4)
|
||
negX3.Set(x3).Negate(4) // negX3 = -X3 (mag: 5)
|
||
y3.Set(y1).Mul(f.Add(&negE)).Negate(1) // Y3 = -(Y1*(F-E)) (mag: 2)
|
||
y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 3)
|
||
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
|
||
|
||
// Normalize the resulting field values as needed.
|
||
x3.Normalize()
|
||
y3.Normalize()
|
||
z3.Normalize()
|
||
}
|
||
|
||
// addZ2EqualsOne adds two Jacobian points when the second point is already
|
||
// known to have a z value of 1 (and the z value for the first point is not 1)
|
||
// and stores the result in the provided result param. That is to say result =
|
||
// p1 + p2. It performs faster addition than the generic add routine since
|
||
// less arithmetic is needed due to the ability to avoid multiplications by the
|
||
// second point's z value.
|
||
//
|
||
// NOTE: The points must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func addZ2EqualsOne(p1, p2, result *JacobianPoint) {
|
||
// To compute the point addition efficiently, this implementation splits
|
||
// the equation into intermediate elements which are used to minimize
|
||
// the number of field multiplications using the method shown at:
|
||
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
|
||
//
|
||
// In particular it performs the calculations using the following:
|
||
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
|
||
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
|
||
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
|
||
//
|
||
// This results in a cost of 7 field multiplications, 4 field squarings,
|
||
// 9 field additions, and 4 integer multiplications.
|
||
x1, y1, z1 := &p1.X, &p1.Y, &p1.Z
|
||
x2, y2 := &p2.X, &p2.Y
|
||
x3, y3, z3 := &result.X, &result.Y, &result.Z
|
||
|
||
// When the x coordinates are the same for two points on the curve, the
|
||
// y coordinates either must be the same, in which case it is point
|
||
// doubling, or they are opposite and the result is the point at
|
||
// infinity per the group law for elliptic curve cryptography. Since
|
||
// any number of Jacobian coordinates can represent the same affine
|
||
// point, the x and y values need to be converted to like terms. Due to
|
||
// the assumption made for this function that the second point has a z
|
||
// value of 1 (z2=1), the first point is already "converted".
|
||
var z1z1, u2, s2 FieldVal
|
||
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
||
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
||
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
||
if x1.Equals(&u2) {
|
||
if y1.Equals(&s2) {
|
||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||
// done, otherwise the addition would end up dividing
|
||
// by zero.
|
||
DoubleNonConst(p1, result)
|
||
return
|
||
}
|
||
|
||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||
// infinity per the group law.
|
||
x3.SetInt(0)
|
||
y3.SetInt(0)
|
||
z3.SetInt(0)
|
||
return
|
||
}
|
||
|
||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||
// breakdown above.
|
||
var h, hh, i, j, r, rr, v FieldVal
|
||
var negX1, negY1, negX3 FieldVal
|
||
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
||
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
|
||
hh.SquareVal(&h) // HH = H^2 (mag: 1)
|
||
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
|
||
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
||
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
||
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
|
||
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
||
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
||
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
||
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
||
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
||
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
|
||
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
||
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
|
||
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
|
||
|
||
// Normalize the resulting field values as needed.
|
||
x3.Normalize()
|
||
y3.Normalize()
|
||
z3.Normalize()
|
||
}
|
||
|
||
// addGeneric adds two Jacobian points without any assumptions about the z
|
||
// values of the two points and stores the result in the provided result param.
|
||
// That is to say result = p1 + p2. It is the slowest of the add routines due
|
||
// to requiring the most arithmetic.
|
||
//
|
||
// NOTE: The points must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func addGeneric(p1, p2, result *JacobianPoint) {
|
||
// To compute the point addition efficiently, this implementation splits
|
||
// the equation into intermediate elements which are used to minimize
|
||
// the number of field multiplications using the method shown at:
|
||
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
||
//
|
||
// In particular it performs the calculations using the following:
|
||
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
|
||
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
|
||
// V = U1*I
|
||
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
|
||
//
|
||
// This results in a cost of 11 field multiplications, 5 field squarings,
|
||
// 9 field additions, and 4 integer multiplications.
|
||
x1, y1, z1 := &p1.X, &p1.Y, &p1.Z
|
||
x2, y2, z2 := &p2.X, &p2.Y, &p2.Z
|
||
x3, y3, z3 := &result.X, &result.Y, &result.Z
|
||
|
||
// When the x coordinates are the same for two points on the curve, the
|
||
// y coordinates either must be the same, in which case it is point
|
||
// doubling, or they are opposite and the result is the point at
|
||
// infinity. Since any number of Jacobian coordinates can represent the
|
||
// same affine point, the x and y values need to be converted to like
|
||
// terms.
|
||
var z1z1, z2z2, u1, u2, s1, s2 FieldVal
|
||
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
||
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
|
||
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
|
||
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
||
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
|
||
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
||
if u1.Equals(&u2) {
|
||
if s1.Equals(&s2) {
|
||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||
// done, otherwise the addition would end up dividing
|
||
// by zero.
|
||
DoubleNonConst(p1, result)
|
||
return
|
||
}
|
||
|
||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||
// infinity per the group law.
|
||
x3.SetInt(0)
|
||
y3.SetInt(0)
|
||
z3.SetInt(0)
|
||
return
|
||
}
|
||
|
||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||
// breakdown above.
|
||
var h, i, j, r, rr, v FieldVal
|
||
var negU1, negS1, negX3 FieldVal
|
||
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
|
||
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
|
||
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 1)
|
||
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
||
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
|
||
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
|
||
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
||
v.Mul2(&u1, &i) // V = U1*I (mag: 1)
|
||
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
||
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
||
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
||
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
|
||
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
||
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
|
||
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
|
||
z3.Mul(&h) // Z3 = Z3*H (mag: 1)
|
||
|
||
// Normalize the resulting field values as needed.
|
||
x3.Normalize()
|
||
y3.Normalize()
|
||
z3.Normalize()
|
||
}
|
||
|
||
// AddNonConst adds the passed Jacobian points together and stores the result in
|
||
// the provided result param in *non-constant* time.
|
||
//
|
||
// NOTE: The points must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func AddNonConst(p1, p2, result *JacobianPoint) {
|
||
// The point at infinity is the identity according to the group law for
|
||
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
||
if (p1.X.IsZero() && p1.Y.IsZero()) || p1.Z.IsZero() {
|
||
result.Set(p2)
|
||
return
|
||
}
|
||
if (p2.X.IsZero() && p2.Y.IsZero()) || p2.Z.IsZero() {
|
||
result.Set(p1)
|
||
return
|
||
}
|
||
|
||
// Faster point addition can be achieved when certain assumptions are
|
||
// met. For example, when both points have the same z value, arithmetic
|
||
// on the z values can be avoided. This section thus checks for these
|
||
// conditions and calls an appropriate add function which is accelerated
|
||
// by using those assumptions.
|
||
isZ1One := p1.Z.IsOne()
|
||
isZ2One := p2.Z.IsOne()
|
||
switch {
|
||
case isZ1One && isZ2One:
|
||
addZ1AndZ2EqualsOne(p1, p2, result)
|
||
return
|
||
case p1.Z.Equals(&p2.Z):
|
||
addZ1EqualsZ2(p1, p2, result)
|
||
return
|
||
case isZ2One:
|
||
addZ2EqualsOne(p1, p2, result)
|
||
return
|
||
}
|
||
|
||
// None of the above assumptions are true, so fall back to generic
|
||
// point addition.
|
||
addGeneric(p1, p2, result)
|
||
}
|
||
|
||
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point when
|
||
// the point is already known to have a z value of 1 and stores the result in
|
||
// the provided result param. That is to say result = 2*p. It performs faster
|
||
// point doubling than the generic routine since less arithmetic is needed due
|
||
// to the ability to avoid multiplication by the z value.
|
||
//
|
||
// NOTE: The resulting point will be normalized.
|
||
func doubleZ1EqualsOne(p, result *JacobianPoint) {
|
||
// This function uses the assumptions that z1 is 1, thus the point
|
||
// doubling formulas reduce to:
|
||
//
|
||
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
||
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
||
// Z3 = 2*Y1
|
||
//
|
||
// To compute the above efficiently, this implementation splits the
|
||
// equation into intermediate elements which are used to minimize the
|
||
// number of field multiplications in favor of field squarings which
|
||
// are roughly 35% faster than field multiplications with the current
|
||
// implementation at the time this was written.
|
||
//
|
||
// This uses a slightly modified version of the method shown at:
|
||
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
|
||
//
|
||
// In particular it performs the calculations using the following:
|
||
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
||
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
||
// Z3 = 2*Y1
|
||
//
|
||
// This results in a cost of 1 field multiplication, 5 field squarings,
|
||
// 6 field additions, and 5 integer multiplications.
|
||
x1, y1 := &p.X, &p.Y
|
||
x3, y3, z3 := &result.X, &result.Y, &result.Z
|
||
var a, b, c, d, e, f FieldVal
|
||
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
|
||
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
||
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
||
c.SquareVal(&b) // C = B^2 (mag: 1)
|
||
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
||
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
||
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
||
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
||
f.SquareVal(&e) // F = E^2 (mag: 1)
|
||
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
||
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
||
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
||
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
||
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
||
|
||
// Normalize the resulting field values as needed.
|
||
x3.Normalize()
|
||
y3.Normalize()
|
||
z3.Normalize()
|
||
}
|
||
|
||
// doubleGeneric performs point doubling on the passed Jacobian point without
|
||
// any assumptions about the z value and stores the result in the provided
|
||
// result param. That is to say result = 2*p. It is the slowest of the point
|
||
// doubling routines due to requiring the most arithmetic.
|
||
//
|
||
// NOTE: The resulting point will be normalized.
|
||
func doubleGeneric(p, result *JacobianPoint) {
|
||
// Point doubling formula for Jacobian coordinates for the secp256k1
|
||
// curve:
|
||
//
|
||
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
||
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
||
// Z3 = 2*Y1*Z1
|
||
//
|
||
// To compute the above efficiently, this implementation splits the
|
||
// equation into intermediate elements which are used to minimize the
|
||
// number of field multiplications in favor of field squarings which
|
||
// are roughly 35% faster than field multiplications with the current
|
||
// implementation at the time this was written.
|
||
//
|
||
// This uses a slightly modified version of the method shown at:
|
||
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
||
//
|
||
// In particular it performs the calculations using the following:
|
||
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
||
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
||
// Z3 = 2*Y1*Z1
|
||
//
|
||
// This results in a cost of 1 field multiplication, 5 field squarings,
|
||
// 6 field additions, and 5 integer multiplications.
|
||
x1, y1, z1 := &p.X, &p.Y, &p.Z
|
||
x3, y3, z3 := &result.X, &result.Y, &result.Z
|
||
var a, b, c, d, e, f FieldVal
|
||
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
|
||
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
||
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
||
c.SquareVal(&b) // C = B^2 (mag: 1)
|
||
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
||
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
||
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
||
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
||
f.SquareVal(&e) // F = E^2 (mag: 1)
|
||
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
||
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
||
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
||
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
||
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
||
|
||
// Normalize the resulting field values as needed.
|
||
x3.Normalize()
|
||
y3.Normalize()
|
||
z3.Normalize()
|
||
}
|
||
|
||
// DoubleNonConst doubles the passed Jacobian point and stores the result in the
|
||
// provided result parameter in *non-constant* time.
|
||
//
|
||
// NOTE: The point must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func DoubleNonConst(p, result *JacobianPoint) {
|
||
// Doubling the point at infinity is still infinity.
|
||
if p.Y.IsZero() || p.Z.IsZero() {
|
||
result.X.SetInt(0)
|
||
result.Y.SetInt(0)
|
||
result.Z.SetInt(0)
|
||
return
|
||
}
|
||
|
||
// Slightly faster point doubling can be achieved when the z value is 1
|
||
// by avoiding the multiplication on the z value. This section calls
|
||
// a point doubling function which is accelerated by using that
|
||
// assumption when possible.
|
||
if p.Z.IsOne() {
|
||
doubleZ1EqualsOne(p, result)
|
||
return
|
||
}
|
||
|
||
// Fall back to generic point doubling which works with arbitrary z
|
||
// values.
|
||
doubleGeneric(p, result)
|
||
}
|
||
|
||
// mulAdd64 multiplies the two passed base 2^64 digits together, adds the given
|
||
// value to the result, and returns the 128-bit result via a (hi, lo) tuple
|
||
// where the upper half of the bits are returned in hi and the lower half in lo.
|
||
func mulAdd64(digit1, digit2, m uint64) (hi, lo uint64) {
|
||
// Note the carry on the final add is safe to discard because the maximum
|
||
// possible value is:
|
||
// (2^64 - 1)(2^64 - 1) + (2^64 - 1) = 2^128 - 2^64
|
||
// and:
|
||
// 2^128 - 2^64 < 2^128.
|
||
var c uint64
|
||
hi, lo = bits.Mul64(digit1, digit2)
|
||
lo, c = bits.Add64(lo, m, 0)
|
||
hi, _ = bits.Add64(hi, 0, c)
|
||
return hi, lo
|
||
}
|
||
|
||
// mulAdd64Carry multiplies the two passed base 2^64 digits together, adds both
|
||
// the given value and carry to the result, and returns the 128-bit result via a
|
||
// (hi, lo) tuple where the upper half of the bits are returned in hi and the
|
||
// lower half in lo.
|
||
func mulAdd64Carry(digit1, digit2, m, c uint64) (hi, lo uint64) {
|
||
// Note the carry on the high order add is safe to discard because the
|
||
// maximum possible value is:
|
||
// (2^64 - 1)(2^64 - 1) + 2*(2^64 - 1) = 2^128 - 1
|
||
// and:
|
||
// 2^128 - 1 < 2^128.
|
||
var c2 uint64
|
||
hi, lo = mulAdd64(digit1, digit2, m)
|
||
lo, c2 = bits.Add64(lo, c, 0)
|
||
hi, _ = bits.Add64(hi, 0, c2)
|
||
return hi, lo
|
||
}
|
||
|
||
// mul512Rsh320Round computes the full 512-bit product of the two given scalars,
|
||
// right shifts the result by 320 bits, rounds to the nearest integer, and
|
||
// returns the result in constant time.
|
||
//
|
||
// Note that despite the inputs and output being mod n scalars, the 512-bit
|
||
// product is NOT reduced mod N prior to the right shift. This is intentional
|
||
// because it is used for replacing division with multiplication and thus the
|
||
// intermediate results must be done via a field extension to a larger field.
|
||
func mul512Rsh320Round(n1, n2 *ModNScalar) ModNScalar {
|
||
// Convert n1 and n2 to base 2^64 digits.
|
||
n1Digit0 := uint64(n1.n[0]) | uint64(n1.n[1])<<32
|
||
n1Digit1 := uint64(n1.n[2]) | uint64(n1.n[3])<<32
|
||
n1Digit2 := uint64(n1.n[4]) | uint64(n1.n[5])<<32
|
||
n1Digit3 := uint64(n1.n[6]) | uint64(n1.n[7])<<32
|
||
n2Digit0 := uint64(n2.n[0]) | uint64(n2.n[1])<<32
|
||
n2Digit1 := uint64(n2.n[2]) | uint64(n2.n[3])<<32
|
||
n2Digit2 := uint64(n2.n[4]) | uint64(n2.n[5])<<32
|
||
n2Digit3 := uint64(n2.n[6]) | uint64(n2.n[7])<<32
|
||
|
||
// Compute the full 512-bit product n1*n2.
|
||
var r0, r1, r2, r3, r4, r5, r6, r7, c uint64
|
||
|
||
// Terms resulting from the product of the first digit of the second number
|
||
// by all digits of the first number.
|
||
//
|
||
// Note that r0 is ignored because it is not needed to compute the higher
|
||
// terms and it is shifted out below anyway.
|
||
c, _ = bits.Mul64(n2Digit0, n1Digit0)
|
||
c, r1 = mulAdd64(n2Digit0, n1Digit1, c)
|
||
c, r2 = mulAdd64(n2Digit0, n1Digit2, c)
|
||
r4, r3 = mulAdd64(n2Digit0, n1Digit3, c)
|
||
|
||
// Terms resulting from the product of the second digit of the second number
|
||
// by all digits of the first number.
|
||
//
|
||
// Note that r1 is ignored because it is no longer needed to compute the
|
||
// higher terms and it is shifted out below anyway.
|
||
c, _ = mulAdd64(n2Digit1, n1Digit0, r1)
|
||
c, r2 = mulAdd64Carry(n2Digit1, n1Digit1, r2, c)
|
||
c, r3 = mulAdd64Carry(n2Digit1, n1Digit2, r3, c)
|
||
r5, r4 = mulAdd64Carry(n2Digit1, n1Digit3, r4, c)
|
||
|
||
// Terms resulting from the product of the third digit of the second number
|
||
// by all digits of the first number.
|
||
//
|
||
// Note that r2 is ignored because it is no longer needed to compute the
|
||
// higher terms and it is shifted out below anyway.
|
||
c, _ = mulAdd64(n2Digit2, n1Digit0, r2)
|
||
c, r3 = mulAdd64Carry(n2Digit2, n1Digit1, r3, c)
|
||
c, r4 = mulAdd64Carry(n2Digit2, n1Digit2, r4, c)
|
||
r6, r5 = mulAdd64Carry(n2Digit2, n1Digit3, r5, c)
|
||
|
||
// Terms resulting from the product of the fourth digit of the second number
|
||
// by all digits of the first number.
|
||
//
|
||
// Note that r3 is ignored because it is no longer needed to compute the
|
||
// higher terms and it is shifted out below anyway.
|
||
c, _ = mulAdd64(n2Digit3, n1Digit0, r3)
|
||
c, r4 = mulAdd64Carry(n2Digit3, n1Digit1, r4, c)
|
||
c, r5 = mulAdd64Carry(n2Digit3, n1Digit2, r5, c)
|
||
r7, r6 = mulAdd64Carry(n2Digit3, n1Digit3, r6, c)
|
||
|
||
// At this point the upper 256 bits of the full 512-bit product n1*n2 are in
|
||
// r4..r7 (recall the low order results were discarded as noted above).
|
||
//
|
||
// Right shift the result 320 bits. Note that the MSB of r4 determines
|
||
// whether or not to round because it is the final bit that is shifted out.
|
||
//
|
||
// Also, notice that r3..r7 would also ordinarily be set to 0 as well for
|
||
// the full shift, but that is skipped since they are no longer used as
|
||
// their values are known to be zero.
|
||
roundBit := r4 >> 63
|
||
r2, r1, r0 = r7, r6, r5
|
||
|
||
// Conditionally add 1 depending on the round bit in constant time.
|
||
r0, c = bits.Add64(r0, roundBit, 0)
|
||
r1, c = bits.Add64(r1, 0, c)
|
||
r2, r3 = bits.Add64(r2, 0, c)
|
||
|
||
// Finally, convert the result to a mod n scalar.
|
||
//
|
||
// No modular reduction is needed because the result is guaranteed to be
|
||
// less than the group order given the group order is > 2^255 and the
|
||
// maximum possible value of the result is 2^192.
|
||
var result ModNScalar
|
||
result.n[0] = uint32(r0)
|
||
result.n[1] = uint32(r0 >> 32)
|
||
result.n[2] = uint32(r1)
|
||
result.n[3] = uint32(r1 >> 32)
|
||
result.n[4] = uint32(r2)
|
||
result.n[5] = uint32(r2 >> 32)
|
||
result.n[6] = uint32(r3)
|
||
result.n[7] = uint32(r3 >> 32)
|
||
return result
|
||
}
|
||
|
||
// splitK returns two scalars (k1 and k2) that are a balanced length-two
|
||
// representation of the provided scalar such that k ≡ k1 + k2*λ (mod N), where
|
||
// N is the secp256k1 group order.
|
||
func splitK(k *ModNScalar) (ModNScalar, ModNScalar) {
|
||
// The ultimate goal is to decompose k into two scalars that are around
|
||
// half the bit length of k such that the following equation is satisfied:
|
||
//
|
||
// k1 + k2*λ ≡ k (mod n)
|
||
//
|
||
// The strategy used here is based on algorithm 3.74 from [GECC] with a few
|
||
// modifications to make use of the more efficient mod n scalar type, avoid
|
||
// some costly long divisions, and minimize the number of calculations.
|
||
//
|
||
// Start by defining a function that takes a vector v = <a,b> ∈ ℤ⨯ℤ:
|
||
//
|
||
// f(v) = a + bλ (mod n)
|
||
//
|
||
// Then, find two vectors, v1 = <a1,b1>, and v2 = <a2,b2> in ℤ⨯ℤ such that:
|
||
// 1) v1 and v2 are linearly independent
|
||
// 2) f(v1) = f(v2) = 0
|
||
// 3) v1 and v2 have small Euclidean norm
|
||
//
|
||
// The vectors that satisfy these properties are found via the Euclidean
|
||
// algorithm and are precomputed since both n and λ are fixed values for the
|
||
// secp256k1 curve. See genprecomps.go for derivation details.
|
||
//
|
||
// Next, consider k as a vector <k, 0> in ℚ⨯ℚ and by linear algebra write:
|
||
//
|
||
// <k, 0> = g1*v1 + g2*v2, where g1, g2 ∈ ℚ
|
||
//
|
||
// Note that, per above, the components of vector v1 are a1 and b1 while the
|
||
// components of vector v2 are a2 and b2. Given the vectors v1 and v2 were
|
||
// generated such that a1*b2 - a2*b1 = n, solving the equation for g1 and g2
|
||
// yields:
|
||
//
|
||
// g1 = b2*k / n
|
||
// g2 = -b1*k / n
|
||
//
|
||
// Observe:
|
||
// <k, 0> = g1*v1 + g2*v2
|
||
// = (b2*k/n)*<a1,b1> + (-b1*k/n)*<a2,b2> | substitute
|
||
// = <a1*b2*k/n, b1*b2*k/n> + <-a2*b1*k/n, -b2*b1*k/n> | scalar mul
|
||
// = <a1*b2*k/n - a2*b1*k/n, b1*b2*k/n - b2*b1*k/n> | vector add
|
||
// = <[a1*b2*k - a2*b1*k]/n, 0> | simplify
|
||
// = <k*[a1*b2 - a2*b1]/n, 0> | factor out k
|
||
// = <k*n/n, 0> | substitute
|
||
// = <k, 0> | simplify
|
||
//
|
||
// Now, consider an integer-valued vector v:
|
||
//
|
||
// v = c1*v1 + c2*v2, where c1, c2 ∈ ℤ (mod n)
|
||
//
|
||
// Since vectors v1 and v2 are linearly independent and were generated such
|
||
// that f(v1) = f(v2) = 0, all possible scalars c1 and c2 also produce a
|
||
// vector v such that f(v) = 0.
|
||
//
|
||
// In other words, c1 and c2 can be any integers and the resulting
|
||
// decomposition will still satisfy the required equation. However, since
|
||
// the goal is to produce a balanced decomposition that provides a
|
||
// performance advantage by minimizing max(k1, k2), c1 and c2 need to be
|
||
// integers close to g1 and g2, respectively, so the resulting vector v is
|
||
// an integer-valued vector that is close to <k, 0>.
|
||
//
|
||
// Finally, consider the vector u:
|
||
//
|
||
// u = <k, 0> - v
|
||
//
|
||
// It follows that f(u) = k and thus the two components of vector u satisfy
|
||
// the required equation:
|
||
//
|
||
// k1 + k2*λ ≡ k (mod n)
|
||
//
|
||
// Choosing c1 and c2:
|
||
// -------------------
|
||
//
|
||
// As mentioned above, c1 and c2 need to be integers close to g1 and g2,
|
||
// respectively. The algorithm in [GECC] chooses the following values:
|
||
//
|
||
// c1 = round(g1) = round(b2*k / n)
|
||
// c2 = round(g2) = round(-b1*k / n)
|
||
//
|
||
// However, as section 3.4.2 of [STWS] notes, the aforementioned approach
|
||
// requires costly long divisions that can be avoided by precomputing
|
||
// rounded estimates as follows:
|
||
//
|
||
// t = bitlen(n) + 1
|
||
// z1 = round(2^t * b2 / n)
|
||
// z2 = round(2^t * -b1 / n)
|
||
//
|
||
// Then, use those precomputed estimates to perform a multiplication by k
|
||
// along with a floored division by 2^t, which is a simple right shift by t:
|
||
//
|
||
// c1 = floor(k * z1 / 2^t) = (k * z1) >> t
|
||
// c2 = floor(k * z2 / 2^t) = (k * z2) >> t
|
||
//
|
||
// Finally, round up if last bit discarded in the right shift by t is set by
|
||
// adding 1.
|
||
//
|
||
// As a further optimization, rather than setting t = bitlen(n) + 1 = 257 as
|
||
// stated by [STWS], this implementation uses a higher precision estimate of
|
||
// t = bitlen(n) + 64 = 320 because it allows simplification of the shifts
|
||
// in the internal calculations that are done via uint64s and also allows
|
||
// the use of floor in the precomputations.
|
||
//
|
||
// Thus, the calculations this implementation uses are:
|
||
//
|
||
// z1 = floor(b2<<320 / n) | precomputed
|
||
// z2 = floor((-b1)<<320) / n) | precomputed
|
||
// c1 = ((k * z1) >> 320) + (((k * z1) >> 319) & 1)
|
||
// c2 = ((k * z2) >> 320) + (((k * z2) >> 319) & 1)
|
||
//
|
||
// Putting it all together:
|
||
// ------------------------
|
||
//
|
||
// Calculate the following vectors using the values discussed above:
|
||
//
|
||
// v = c1*v1 + c2*v2
|
||
// u = <k, 0> - v
|
||
//
|
||
// The two components of the resulting vector v are:
|
||
// va = c1*a1 + c2*a2
|
||
// vb = c1*b1 + c2*b2
|
||
//
|
||
// Thus, the two components of the resulting vector u are:
|
||
// k1 = k - va
|
||
// k2 = 0 - vb = -vb
|
||
//
|
||
// As some final optimizations:
|
||
//
|
||
// 1) Note that k1 + k2*λ ≡ k (mod n) means that k1 ≡ k - k2*λ (mod n).
|
||
// Therefore, the computation of va can be avoided to save two
|
||
// field multiplications and a field addition.
|
||
//
|
||
// 2) Since k1 = k - k2*λ = k + k2*(-λ), an additional field negation is
|
||
// saved by storing and using the negative version of λ.
|
||
//
|
||
// 3) Since k2 = -vb = -(c1*b1 + c2*b2) = c1*(-b1) + c2*(-b2), one more
|
||
// field negation is saved by storing and using the negative versions of
|
||
// b1 and b2.
|
||
//
|
||
// k2 = c1*(-b1) + c2*(-b2)
|
||
// k1 = k + k2*(-λ)
|
||
var k1, k2 ModNScalar
|
||
c1 := mul512Rsh320Round(k, endoZ1)
|
||
c2 := mul512Rsh320Round(k, endoZ2)
|
||
k2.Add2(c1.Mul(endoNegB1), c2.Mul(endoNegB2))
|
||
k1.Mul2(&k2, endoNegLambda).Add(k)
|
||
return k1, k2
|
||
}
|
||
|
||
// nafScalar represents a positive integer up to a maximum value of 2^256 - 1
|
||
// encoded in non-adjacent form.
|
||
//
|
||
// NAF is a signed-digit representation where each digit can be +1, 0, or -1.
|
||
//
|
||
// In order to efficiently encode that information, this type uses two arrays, a
|
||
// "positive" array where set bits represent the +1 signed digits and a
|
||
// "negative" array where set bits represent the -1 signed digits. 0 is
|
||
// represented by neither array having a bit set in that position.
|
||
//
|
||
// The Pos and Neg methods return the aforementioned positive and negative
|
||
// arrays, respectively.
|
||
type nafScalar struct {
|
||
// pos houses the positive portion of the representation. An additional
|
||
// byte is required for the positive portion because the NAF encoding can be
|
||
// up to 1 bit longer than the normal binary encoding of the value.
|
||
//
|
||
// neg houses the negative portion of the representation. Even though the
|
||
// additional byte is not required for the negative portion, since it can
|
||
// never exceed the length of the normal binary encoding of the value,
|
||
// keeping the same length for positive and negative portions simplifies
|
||
// working with the representation and allows extra conditional branches to
|
||
// be avoided.
|
||
//
|
||
// start and end specify the starting and ending index to use within the pos
|
||
// and neg arrays, respectively. This allows fixed size arrays to be used
|
||
// versus needing to dynamically allocate space on the heap.
|
||
//
|
||
// NOTE: The fields are defined in the order that they are to minimize the
|
||
// padding on 32-bit and 64-bit platforms.
|
||
pos [33]byte
|
||
start, end uint8
|
||
neg [33]byte
|
||
}
|
||
|
||
// Pos returns the bytes of the encoded value with bits set in the positions
|
||
// that represent a signed digit of +1.
|
||
func (s *nafScalar) Pos() []byte {
|
||
return s.pos[s.start:s.end]
|
||
}
|
||
|
||
// Neg returns the bytes of the encoded value with bits set in the positions
|
||
// that represent a signed digit of -1.
|
||
func (s *nafScalar) Neg() []byte {
|
||
return s.neg[s.start:s.end]
|
||
}
|
||
|
||
// naf takes a positive integer up to a maximum value of 2^256 - 1 and returns
|
||
// its non-adjacent form (NAF), which is a unique signed-digit representation
|
||
// such that no two consecutive digits are nonzero. See the documentation for
|
||
// the returned type for details on how the representation is encoded
|
||
// efficiently and how to interpret it
|
||
//
|
||
// NAF is useful in that it has the fewest nonzero digits of any signed digit
|
||
// representation, only 1/3rd of its digits are nonzero on average, and at least
|
||
// half of the digits will be 0.
|
||
//
|
||
// The aforementioned properties are particularly beneficial for optimizing
|
||
// elliptic curve point multiplication because they effectively minimize the
|
||
// number of required point additions in exchange for needing to perform a mix
|
||
// of fewer point additions and subtractions and possibly one additional point
|
||
// doubling. This is an excellent tradeoff because subtraction of points has
|
||
// the same computational complexity as addition of points and point doubling is
|
||
// faster than both.
|
||
func naf(k []byte) nafScalar {
|
||
// Strip leading zero bytes.
|
||
for len(k) > 0 && k[0] == 0x00 {
|
||
k = k[1:]
|
||
}
|
||
|
||
// The non-adjacent form (NAF) of a positive integer k is an expression
|
||
// k = ∑_(i=0, l-1) k_i * 2^i where k_i ∈ {0,±1}, k_(l-1) != 0, and no two
|
||
// consecutive digits k_i are nonzero.
|
||
//
|
||
// The traditional method of computing the NAF of a positive integer is
|
||
// given by algorithm 3.30 in [GECC]. It consists of repeatedly dividing k
|
||
// by 2 and choosing the remainder so that the quotient (k−r)/2 is even
|
||
// which ensures the next NAF digit is 0. This requires log_2(k) steps.
|
||
//
|
||
// However, in [BRID], Prodinger notes that a closed form expression for the
|
||
// NAF representation is the bitwise difference 3k/2 - k/2. This is more
|
||
// efficient as it can be computed in O(1) versus the O(log(n)) of the
|
||
// traditional approach.
|
||
//
|
||
// The following code makes use of that formula to compute the NAF more
|
||
// efficiently.
|
||
//
|
||
// To understand the logic here, observe that the only way the NAF has a
|
||
// nonzero digit at a given bit is when either 3k/2 or k/2 has a bit set in
|
||
// that position, but not both. In other words, the result of a bitwise
|
||
// xor. This can be seen simply by considering that when the bits are the
|
||
// same, the subtraction is either 0-0 or 1-1, both of which are 0.
|
||
//
|
||
// Further, observe that the "+1" digits in the result are contributed by
|
||
// 3k/2 while the "-1" digits are from k/2. So, they can be determined by
|
||
// taking the bitwise and of each respective value with the result of the
|
||
// xor which identifies which bits are nonzero.
|
||
//
|
||
// Using that information, this loops backwards from the least significant
|
||
// byte to the most significant byte while performing the aforementioned
|
||
// calculations by propagating the potential carry and high order bit from
|
||
// the next word during the right shift.
|
||
kLen := len(k)
|
||
var result nafScalar
|
||
var carry uint8
|
||
for byteNum := kLen - 1; byteNum >= 0; byteNum-- {
|
||
// Calculate k/2. Notice the carry from the previous word is added and
|
||
// the low order bit from the next word is shifted in accordingly.
|
||
kc := uint16(k[byteNum]) + uint16(carry)
|
||
var nextWord uint8
|
||
if byteNum > 0 {
|
||
nextWord = k[byteNum-1]
|
||
}
|
||
halfK := kc>>1 | uint16(nextWord<<7)
|
||
|
||
// Calculate 3k/2 and determine the non-zero digits in the result.
|
||
threeHalfK := kc + halfK
|
||
nonZeroResultDigits := threeHalfK ^ halfK
|
||
|
||
// Determine the signed digits {0, ±1}.
|
||
result.pos[byteNum+1] = uint8(threeHalfK & nonZeroResultDigits)
|
||
result.neg[byteNum+1] = uint8(halfK & nonZeroResultDigits)
|
||
|
||
// Propagate the potential carry from the 3k/2 calculation.
|
||
carry = uint8(threeHalfK >> 8)
|
||
}
|
||
result.pos[0] = carry
|
||
|
||
// Set the starting and ending positions within the fixed size arrays to
|
||
// identify the bytes that are actually used. This is important since the
|
||
// encoding is big endian and thus trailing zero bytes changes its value.
|
||
result.start = 1 - carry
|
||
result.end = uint8(kLen + 1)
|
||
return result
|
||
}
|
||
|
||
// ScalarMultNonConst multiplies k*P where k is a scalar modulo the curve order
|
||
// and P is a point in Jacobian projective coordinates and stores the result in
|
||
// the provided Jacobian point.
|
||
//
|
||
// NOTE: The point must be normalized for this function to return the correct
|
||
// result. The resulting point will be normalized.
|
||
func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) {
|
||
// -------------------------------------------------------------------------
|
||
// This makes use of the following efficiently-computable endomorphism to
|
||
// accelerate the computation:
|
||
//
|
||
// φ(P) ⟼ λ*P = (β*P.x mod p, P.y)
|
||
//
|
||
// In other words, there is a special scalar λ that every point on the
|
||
// elliptic curve can be multiplied by that will result in the same point as
|
||
// performing a single field multiplication of the point's X coordinate by
|
||
// the special value β.
|
||
//
|
||
// This is useful because scalar point multiplication is significantly more
|
||
// expensive than a single field multiplication given the former involves a
|
||
// series of point doublings and additions which themselves consist of a
|
||
// combination of several field multiplications, squarings, and additions.
|
||
//
|
||
// So, the idea behind making use of the endomorphism is thus to decompose
|
||
// the scalar into two scalars that are each about half the bit length of
|
||
// the original scalar such that:
|
||
//
|
||
// k ≡ k1 + k2*λ (mod n)
|
||
//
|
||
// This in turn allows the scalar point multiplication to be performed as a
|
||
// sum of two smaller half-length multiplications as follows:
|
||
//
|
||
// k*P = (k1 + k2*λ)*P
|
||
// = k1*P + k2*λ*P
|
||
// = k1*P + k2*φ(P)
|
||
//
|
||
// Thus, a speedup is achieved so long as it's faster to decompose the
|
||
// scalar, compute φ(P), and perform a simultaneous multiply of the
|
||
// half-length point multiplications than it is to compute a full width
|
||
// point multiplication.
|
||
//
|
||
// In practice, benchmarks show the current implementation provides a
|
||
// speedup of around 30-35% versus not using the endomorphism.
|
||
//
|
||
// See section 3.5 in [GECC] for a more rigorous treatment.
|
||
// -------------------------------------------------------------------------
|
||
|
||
// Per above, the main equation here to remember is:
|
||
// k*P = k1*P + k2*φ(P)
|
||
//
|
||
// p1 below is P in the equation while p2 is φ(P) in the equation.
|
||
//
|
||
// NOTE: φ(x,y) = (β*x,y). The Jacobian z coordinates are the same, so this
|
||
// math goes through.
|
||
//
|
||
// Also, calculate -p1 and -p2 for use in the NAF optimization.
|
||
p1, p1Neg := new(JacobianPoint), new(JacobianPoint)
|
||
p1.Set(point)
|
||
p1Neg.Set(p1)
|
||
p1Neg.Y.Negate(1).Normalize()
|
||
p2, p2Neg := new(JacobianPoint), new(JacobianPoint)
|
||
p2.Set(p1)
|
||
p2.X.Mul(endoBeta).Normalize()
|
||
p2Neg.Set(p2)
|
||
p2Neg.Y.Negate(1).Normalize()
|
||
|
||
// Decompose k into k1 and k2 such that k = k1 + k2*λ (mod n) where k1 and
|
||
// k2 are around half the bit length of k in order to halve the number of EC
|
||
// operations.
|
||
//
|
||
// Notice that this also flips the sign of the scalars and points as needed
|
||
// to minimize the bit lengths of the scalars k1 and k2.
|
||
//
|
||
// This is done because the scalars are operating modulo the group order
|
||
// which means that when they would otherwise be a small negative magnitude
|
||
// they will instead be a large positive magnitude. Since the goal is for
|
||
// the scalars to have a small magnitude to achieve a performance boost, use
|
||
// their negation when they are greater than the half order of the group and
|
||
// flip the positive and negative values of the corresponding point that
|
||
// will be multiplied by to compensate.
|
||
//
|
||
// In other words, transform the calc when k1 is over the half order to:
|
||
// k1*P = -k1*-P
|
||
//
|
||
// Similarly, transform the calc when k2 is over the half order to:
|
||
// k2*φ(P) = -k2*-φ(P)
|
||
k1, k2 := splitK(k)
|
||
if k1.IsOverHalfOrder() {
|
||
k1.Negate()
|
||
p1, p1Neg = p1Neg, p1
|
||
}
|
||
if k2.IsOverHalfOrder() {
|
||
k2.Negate()
|
||
p2, p2Neg = p2Neg, p2
|
||
}
|
||
|
||
// Convert k1 and k2 into their NAF representations since NAF has a lot more
|
||
// zeros overall on average which minimizes the number of required point
|
||
// additions in exchange for a mix of fewer point additions and subtractions
|
||
// at the cost of one additional point doubling.
|
||
//
|
||
// This is an excellent tradeoff because subtraction of points has the same
|
||
// computational complexity as addition of points and point doubling is
|
||
// faster than both.
|
||
//
|
||
// Concretely, on average, 1/2 of all bits will be non-zero with the normal
|
||
// binary representation whereas only 1/3rd of the bits will be non-zero
|
||
// with NAF.
|
||
//
|
||
// The Pos version of the bytes contain the +1s and the Neg versions contain
|
||
// the -1s.
|
||
k1Bytes, k2Bytes := k1.Bytes(), k2.Bytes()
|
||
k1NAF, k2NAF := naf(k1Bytes[:]), naf(k2Bytes[:])
|
||
k1PosNAF, k1NegNAF := k1NAF.Pos(), k1NAF.Neg()
|
||
k2PosNAF, k2NegNAF := k2NAF.Pos(), k2NAF.Neg()
|
||
k1Len, k2Len := len(k1PosNAF), len(k2PosNAF)
|
||
|
||
// Add left-to-right using the NAF optimization. See algorithm 3.77 from
|
||
// [GECC].
|
||
//
|
||
// Point Q = ∞ (point at infinity).
|
||
var q JacobianPoint
|
||
m := k1Len
|
||
if m < k2Len {
|
||
m = k2Len
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
// Since k1 and k2 are potentially different lengths and the calculation
|
||
// is being done left to right, pad the front of the shorter one with
|
||
// 0s.
|
||
var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
|
||
if i >= m-k1Len {
|
||
k1BytePos, k1ByteNeg = k1PosNAF[i-(m-k1Len)], k1NegNAF[i-(m-k1Len)]
|
||
}
|
||
if i >= m-k2Len {
|
||
k2BytePos, k2ByteNeg = k2PosNAF[i-(m-k2Len)], k2NegNAF[i-(m-k2Len)]
|
||
}
|
||
|
||
for mask := uint8(1 << 7); mask > 0; mask >>= 1 {
|
||
// Q = 2 * Q
|
||
DoubleNonConst(&q, &q)
|
||
|
||
// Add or subtract the first point based on the signed digit of the
|
||
// NAF representation of k1 at this bit position.
|
||
//
|
||
// +1: Q = Q + p1
|
||
// -1: Q = Q - p1
|
||
// 0: Q = Q (no change)
|
||
if k1BytePos&mask == mask {
|
||
AddNonConst(&q, p1, &q)
|
||
} else if k1ByteNeg&mask == mask {
|
||
AddNonConst(&q, p1Neg, &q)
|
||
}
|
||
|
||
// Add or subtract the second point based on the signed digit of the
|
||
// NAF representation of k2 at this bit position.
|
||
//
|
||
// +1: Q = Q + p2
|
||
// -1: Q = Q - p2
|
||
// 0: Q = Q (no change)
|
||
if k2BytePos&mask == mask {
|
||
AddNonConst(&q, p2, &q)
|
||
} else if k2ByteNeg&mask == mask {
|
||
AddNonConst(&q, p2Neg, &q)
|
||
}
|
||
}
|
||
}
|
||
|
||
result.Set(&q)
|
||
}
|
||
|
||
// ScalarBaseMultNonConst multiplies k*G where k is a scalar modulo the curve
|
||
// order and G is the base point of the group and stores the result in the
|
||
// provided Jacobian point.
|
||
//
|
||
// NOTE: The resulting point will be normalized.
|
||
func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) {
|
||
bytePoints := s256BytePoints()
|
||
|
||
// Start with the point at infinity.
|
||
result.X.Zero()
|
||
result.Y.Zero()
|
||
result.Z.Zero()
|
||
|
||
// bytePoints has all 256 byte points for each 8-bit window. The strategy
|
||
// is to add up the byte points. This is best understood by expressing k in
|
||
// base-256 which it already sort of is. Each "digit" in the 8-bit window
|
||
// can be looked up using bytePoints and added together.
|
||
kb := k.Bytes()
|
||
for i := 0; i < len(kb); i++ {
|
||
pt := &bytePoints[i][kb[i]]
|
||
AddNonConst(result, pt, result)
|
||
}
|
||
}
|
||
|
||
// isOnCurve returns whether or not the affine point (x,y) is on the curve.
|
||
func isOnCurve(fx, fy *FieldVal) bool {
|
||
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
||
y2 := new(FieldVal).SquareVal(fy).Normalize()
|
||
result := new(FieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
|
||
return y2.Equals(result)
|
||
}
|
||
|
||
// DecompressY attempts to calculate the Y coordinate for the given X coordinate
|
||
// such that the result pair is a point on the secp256k1 curve. It adjusts Y
|
||
// based on the desired oddness and returns whether or not it was successful
|
||
// since not all X coordinates are valid.
|
||
//
|
||
// The magnitude of the provided X coordinate field val must be a max of 8 for a
|
||
// correct result. The resulting Y field val will have a max magnitude of 2.
|
||
func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool {
|
||
// The curve equation for secp256k1 is: y^2 = x^3 + 7. Thus
|
||
// y = +-sqrt(x^3 + 7).
|
||
//
|
||
// The x coordinate must be invalid if there is no square root for the
|
||
// calculated rhs because it means the X coordinate is not for a point on
|
||
// the curve.
|
||
x3PlusB := new(FieldVal).SquareVal(x).Mul(x).AddInt(7)
|
||
if hasSqrt := resultY.SquareRootVal(x3PlusB); !hasSqrt {
|
||
return false
|
||
}
|
||
if resultY.Normalize().IsOdd() != odd {
|
||
resultY.Negate(1)
|
||
}
|
||
return true
|
||
}
|