status-go/vendor/github.com/ethereum/go-ethereum/crypto/blake2b/blake2b.go

320 lines
8.0 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xb.
//
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
//
// If you aren't sure which function you need, use BLAKE2b (Sum512 or New512).
// If you need a secret-key MAC (message authentication code), use the New512
// function with a non-nil key.
//
// BLAKE2X is a construction to compute hash values larger than 64 bytes. It
// can produce hash values between 0 and 4 GiB.
package blake2b
import (
"encoding/binary"
"errors"
"hash"
)
const (
// The blocksize of BLAKE2b in bytes.
BlockSize = 128
// The hash size of BLAKE2b-512 in bytes.
Size = 64
// The hash size of BLAKE2b-384 in bytes.
Size384 = 48
// The hash size of BLAKE2b-256 in bytes.
Size256 = 32
)
var (
useAVX2 bool
useAVX bool
useSSE4 bool
)
var (
errKeySize = errors.New("blake2b: invalid key size")
errHashSize = errors.New("blake2b: invalid hash size")
)
var iv = [8]uint64{
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
}
// Sum512 returns the BLAKE2b-512 checksum of the data.
func Sum512(data []byte) [Size]byte {
var sum [Size]byte
checkSum(&sum, Size, data)
return sum
}
// Sum384 returns the BLAKE2b-384 checksum of the data.
func Sum384(data []byte) [Size384]byte {
var sum [Size]byte
var sum384 [Size384]byte
checkSum(&sum, Size384, data)
copy(sum384[:], sum[:Size384])
return sum384
}
// Sum256 returns the BLAKE2b-256 checksum of the data.
func Sum256(data []byte) [Size256]byte {
var sum [Size]byte
var sum256 [Size256]byte
checkSum(&sum, Size256, data)
copy(sum256[:], sum[:Size256])
return sum256
}
// New512 returns a new hash.Hash computing the BLAKE2b-512 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New512(key []byte) (hash.Hash, error) { return newDigest(Size, key) }
// New384 returns a new hash.Hash computing the BLAKE2b-384 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New384(key []byte) (hash.Hash, error) { return newDigest(Size384, key) }
// New256 returns a new hash.Hash computing the BLAKE2b-256 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New256(key []byte) (hash.Hash, error) { return newDigest(Size256, key) }
// New returns a new hash.Hash computing the BLAKE2b checksum with a custom length.
// A non-nil key turns the hash into a MAC. The key must be between zero and 64 bytes long.
// The hash size can be a value between 1 and 64 but it is highly recommended to use
// values equal or greater than:
// - 32 if BLAKE2b is used as a hash function (The key is zero bytes long).
// - 16 if BLAKE2b is used as a MAC function (The key is at least 16 bytes long).
// When the key is nil, the returned hash.Hash implements BinaryMarshaler
// and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash.
func New(size int, key []byte) (hash.Hash, error) { return newDigest(size, key) }
// F is a compression function for BLAKE2b. It takes as an argument the state
// vector `h`, message block vector `m`, offset counter `t`, final block indicator
// flag `f`, and number of rounds `rounds`. The state vector provided as the first
// parameter is modified by the function.
func F(h *[8]uint64, m [16]uint64, c [2]uint64, final bool, rounds uint32) {
var flag uint64
if final {
flag = 0xFFFFFFFFFFFFFFFF
}
f(h, &m, c[0], c[1], flag, uint64(rounds))
}
func newDigest(hashSize int, key []byte) (*digest, error) {
if hashSize < 1 || hashSize > Size {
return nil, errHashSize
}
if len(key) > Size {
return nil, errKeySize
}
d := &digest{
size: hashSize,
keyLen: len(key),
}
copy(d.key[:], key)
d.Reset()
return d, nil
}
func checkSum(sum *[Size]byte, hashSize int, data []byte) {
h := iv
h[0] ^= uint64(hashSize) | (1 << 16) | (1 << 24)
var c [2]uint64
if length := len(data); length > BlockSize {
n := length &^ (BlockSize - 1)
if length == n {
n -= BlockSize
}
hashBlocks(&h, &c, 0, data[:n])
data = data[n:]
}
var block [BlockSize]byte
offset := copy(block[:], data)
remaining := uint64(BlockSize - offset)
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
for i, v := range h[:(hashSize+7)/8] {
binary.LittleEndian.PutUint64(sum[8*i:], v)
}
}
func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
var m [16]uint64
c0, c1 := c[0], c[1]
for i := 0; i < len(blocks); {
c0 += BlockSize
if c0 < BlockSize {
c1++
}
for j := range m {
m[j] = binary.LittleEndian.Uint64(blocks[i:])
i += 8
}
f(h, &m, c0, c1, flag, 12)
}
c[0], c[1] = c0, c1
}
type digest struct {
h [8]uint64
c [2]uint64
size int
block [BlockSize]byte
offset int
key [BlockSize]byte
keyLen int
}
const (
magic = "b2b"
marshaledSize = len(magic) + 8*8 + 2*8 + 1 + BlockSize + 1
)
func (d *digest) MarshalBinary() ([]byte, error) {
if d.keyLen != 0 {
return nil, errors.New("crypto/blake2b: cannot marshal MACs")
}
b := make([]byte, 0, marshaledSize)
b = append(b, magic...)
for i := 0; i < 8; i++ {
b = appendUint64(b, d.h[i])
}
b = appendUint64(b, d.c[0])
b = appendUint64(b, d.c[1])
// Maximum value for size is 64
b = append(b, byte(d.size))
b = append(b, d.block[:]...)
b = append(b, byte(d.offset))
return b, nil
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
return errors.New("crypto/blake2b: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/blake2b: invalid hash state size")
}
b = b[len(magic):]
for i := 0; i < 8; i++ {
b, d.h[i] = consumeUint64(b)
}
b, d.c[0] = consumeUint64(b)
b, d.c[1] = consumeUint64(b)
d.size = int(b[0])
b = b[1:]
copy(d.block[:], b[:BlockSize])
b = b[BlockSize:]
d.offset = int(b[0])
return nil
}
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Size() int { return d.size }
func (d *digest) Reset() {
d.h = iv
d.h[0] ^= uint64(d.size) | (uint64(d.keyLen) << 8) | (1 << 16) | (1 << 24)
d.offset, d.c[0], d.c[1] = 0, 0, 0
if d.keyLen > 0 {
d.block = d.key
d.offset = BlockSize
}
}
func (d *digest) Write(p []byte) (n int, err error) {
n = len(p)
if d.offset > 0 {
remaining := BlockSize - d.offset
if n <= remaining {
d.offset += copy(d.block[d.offset:], p)
return
}
copy(d.block[d.offset:], p[:remaining])
hashBlocks(&d.h, &d.c, 0, d.block[:])
d.offset = 0
p = p[remaining:]
}
if length := len(p); length > BlockSize {
nn := length &^ (BlockSize - 1)
if length == nn {
nn -= BlockSize
}
hashBlocks(&d.h, &d.c, 0, p[:nn])
p = p[nn:]
}
if len(p) > 0 {
d.offset += copy(d.block[:], p)
}
return
}
func (d *digest) Sum(sum []byte) []byte {
var hash [Size]byte
d.finalize(&hash)
return append(sum, hash[:d.size]...)
}
func (d *digest) finalize(hash *[Size]byte) {
var block [BlockSize]byte
copy(block[:], d.block[:d.offset])
remaining := uint64(BlockSize - d.offset)
c := d.c
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
h := d.h
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
for i, v := range h {
binary.LittleEndian.PutUint64(hash[8*i:], v)
}
}
func appendUint64(b []byte, x uint64) []byte {
var a [8]byte
binary.BigEndian.PutUint64(a[:], x)
return append(b, a[:]...)
}
func appendUint32(b []byte, x uint32) []byte {
var a [4]byte
binary.BigEndian.PutUint32(a[:], x)
return append(b, a[:]...)
}
func consumeUint64(b []byte) ([]byte, uint64) {
x := binary.BigEndian.Uint64(b)
return b[8:], x
}
func consumeUint32(b []byte) ([]byte, uint32) {
x := binary.BigEndian.Uint32(b)
return b[4:], x
}