status-go/vendor/github.com/libp2p/go-openssl/key.go

523 lines
14 KiB
Go

// Copyright (C) 2017. See AUTHORS.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package openssl
// #include "shim.h"
import "C"
import (
"errors"
"io/ioutil"
"runtime"
"unsafe"
)
var ( // some (effectively) constants for tests to refer to
ed25519_support = C.X_ED25519_SUPPORT != 0
)
type Method *C.EVP_MD
var (
SHA1_Method Method = C.X_EVP_sha1()
SHA256_Method Method = C.X_EVP_sha256()
SHA512_Method Method = C.X_EVP_sha512()
)
// Constants for the various key types.
// Mapping of name -> NID taken from openssl/evp.h
const (
KeyTypeNone = NID_undef
KeyTypeRSA = NID_rsaEncryption
KeyTypeRSA2 = NID_rsa
KeyTypeDSA = NID_dsa
KeyTypeDSA1 = NID_dsa_2
KeyTypeDSA2 = NID_dsaWithSHA
KeyTypeDSA3 = NID_dsaWithSHA1
KeyTypeDSA4 = NID_dsaWithSHA1_2
KeyTypeDH = NID_dhKeyAgreement
KeyTypeDHX = NID_dhpublicnumber
KeyTypeEC = NID_X9_62_id_ecPublicKey
KeyTypeHMAC = NID_hmac
KeyTypeCMAC = NID_cmac
KeyTypeTLS1PRF = NID_tls1_prf
KeyTypeHKDF = NID_hkdf
KeyTypeX25519 = NID_X25519
KeyTypeX448 = NID_X448
KeyTypeED25519 = NID_ED25519
KeyTypeED448 = NID_ED448
)
type PublicKey interface {
// Verifies the data signature using PKCS1.15
VerifyPKCS1v15(method Method, data, sig []byte) error
// MarshalPKIXPublicKeyPEM converts the public key to PEM-encoded PKIX
// format
MarshalPKIXPublicKeyPEM() (pem_block []byte, err error)
// MarshalPKIXPublicKeyDER converts the public key to DER-encoded PKIX
// format
MarshalPKIXPublicKeyDER() (der_block []byte, err error)
// KeyType returns an identifier for what kind of key is represented by this
// object.
KeyType() NID
// BaseType returns an identifier for what kind of key is represented
// by this object.
// Keys that share same algorithm but use different legacy formats
// will have the same BaseType.
//
// For example, a key with a `KeyType() == KeyTypeRSA` and a key with a
// `KeyType() == KeyTypeRSA2` would both have `BaseType() == KeyTypeRSA`.
BaseType() NID
// Equal compares the key with the passed in key.
Equal(key PublicKey) bool
// Size returns the size (in bytes) of signatures created with this key.
Size() int
evpPKey() *C.EVP_PKEY
}
type PrivateKey interface {
PublicKey
// Signs the data using PKCS1.15
SignPKCS1v15(Method, []byte) ([]byte, error)
// MarshalPKCS1PrivateKeyPEM converts the private key to PEM-encoded PKCS1
// format
MarshalPKCS1PrivateKeyPEM() (pem_block []byte, err error)
// MarshalPKCS1PrivateKeyDER converts the private key to DER-encoded PKCS1
// format
MarshalPKCS1PrivateKeyDER() (der_block []byte, err error)
}
type pKey struct {
key *C.EVP_PKEY
}
func (key *pKey) evpPKey() *C.EVP_PKEY { return key.key }
func (key *pKey) Equal(other PublicKey) bool {
return C.EVP_PKEY_cmp(key.key, other.evpPKey()) == 1
}
func (key *pKey) KeyType() NID {
return NID(C.EVP_PKEY_id(key.key))
}
func (key *pKey) Size() int {
return int(C.EVP_PKEY_size(key.key))
}
func (key *pKey) BaseType() NID {
return NID(C.EVP_PKEY_base_id(key.key))
}
func (key *pKey) SignPKCS1v15(method Method, data []byte) ([]byte, error) {
ctx := C.X_EVP_MD_CTX_new()
defer C.X_EVP_MD_CTX_free(ctx)
if key.KeyType() == KeyTypeED25519 {
// do ED specific one-shot sign
if method != nil || len(data) == 0 {
return nil, errors.New("signpkcs1v15: 0-length data or non-null digest")
}
if 1 != C.X_EVP_DigestSignInit(ctx, nil, nil, nil, key.key) {
return nil, errors.New("signpkcs1v15: failed to init signature")
}
// evp signatures are 64 bytes
sig := make([]byte, 64, 64)
var sigblen C.size_t = 64
if 1 != C.X_EVP_DigestSign(ctx,
((*C.uchar)(unsafe.Pointer(&sig[0]))),
&sigblen,
(*C.uchar)(unsafe.Pointer(&data[0])),
C.size_t(len(data))) {
return nil, errors.New("signpkcs1v15: failed to do one-shot signature")
}
return sig[:sigblen], nil
} else {
if 1 != C.X_EVP_SignInit(ctx, method) {
return nil, errors.New("signpkcs1v15: failed to init signature")
}
if len(data) > 0 {
if 1 != C.X_EVP_SignUpdate(
ctx, unsafe.Pointer(&data[0]), C.uint(len(data))) {
return nil, errors.New("signpkcs1v15: failed to update signature")
}
}
sig := make([]byte, C.X_EVP_PKEY_size(key.key))
var sigblen C.uint
if 1 != C.X_EVP_SignFinal(ctx,
((*C.uchar)(unsafe.Pointer(&sig[0]))), &sigblen, key.key) {
return nil, errors.New("signpkcs1v15: failed to finalize signature")
}
return sig[:sigblen], nil
}
}
func (key *pKey) VerifyPKCS1v15(method Method, data, sig []byte) error {
ctx := C.X_EVP_MD_CTX_new()
defer C.X_EVP_MD_CTX_free(ctx)
if len(sig) == 0 {
return errors.New("verifypkcs1v15: 0-length sig")
}
if key.KeyType() == KeyTypeED25519 {
// do ED specific one-shot sign
if method != nil || len(data) == 0 {
return errors.New("verifypkcs1v15: 0-length data or non-null digest")
}
if 1 != C.X_EVP_DigestVerifyInit(ctx, nil, nil, nil, key.key) {
return errors.New("verifypkcs1v15: failed to init verify")
}
if 1 != C.X_EVP_DigestVerify(ctx,
((*C.uchar)(unsafe.Pointer(&sig[0]))),
C.size_t(len(sig)),
(*C.uchar)(unsafe.Pointer(&data[0])),
C.size_t(len(data))) {
return errors.New("verifypkcs1v15: failed to do one-shot verify")
}
return nil
} else {
if 1 != C.X_EVP_VerifyInit(ctx, method) {
return errors.New("verifypkcs1v15: failed to init verify")
}
if len(data) > 0 {
if 1 != C.X_EVP_VerifyUpdate(
ctx, unsafe.Pointer(&data[0]), C.uint(len(data))) {
return errors.New("verifypkcs1v15: failed to update verify")
}
}
if 1 != C.X_EVP_VerifyFinal(ctx,
((*C.uchar)(unsafe.Pointer(&sig[0]))), C.uint(len(sig)), key.key) {
return errors.New("verifypkcs1v15: failed to finalize verify")
}
return nil
}
}
func (key *pKey) MarshalPKCS1PrivateKeyPEM() (pem_block []byte,
err error) {
bio := C.BIO_new(C.BIO_s_mem())
if bio == nil {
return nil, errors.New("failed to allocate memory BIO")
}
defer C.BIO_free(bio)
// PEM_write_bio_PrivateKey_traditional will use the key-specific PKCS1
// format if one is available for that key type, otherwise it will encode
// to a PKCS8 key.
if int(C.X_PEM_write_bio_PrivateKey_traditional(bio, key.key, nil, nil,
C.int(0), nil, nil)) != 1 {
return nil, errors.New("failed dumping private key")
}
return ioutil.ReadAll(asAnyBio(bio))
}
func (key *pKey) MarshalPKCS1PrivateKeyDER() (der_block []byte,
err error) {
bio := C.BIO_new(C.BIO_s_mem())
if bio == nil {
return nil, errors.New("failed to allocate memory BIO")
}
defer C.BIO_free(bio)
if int(C.i2d_PrivateKey_bio(bio, key.key)) != 1 {
return nil, errors.New("failed dumping private key der")
}
return ioutil.ReadAll(asAnyBio(bio))
}
func (key *pKey) MarshalPKIXPublicKeyPEM() (pem_block []byte,
err error) {
bio := C.BIO_new(C.BIO_s_mem())
if bio == nil {
return nil, errors.New("failed to allocate memory BIO")
}
defer C.BIO_free(bio)
if int(C.PEM_write_bio_PUBKEY(bio, key.key)) != 1 {
return nil, errors.New("failed dumping public key pem")
}
return ioutil.ReadAll(asAnyBio(bio))
}
func (key *pKey) MarshalPKIXPublicKeyDER() (der_block []byte,
err error) {
bio := C.BIO_new(C.BIO_s_mem())
if bio == nil {
return nil, errors.New("failed to allocate memory BIO")
}
defer C.BIO_free(bio)
if int(C.i2d_PUBKEY_bio(bio, key.key)) != 1 {
return nil, errors.New("failed dumping public key der")
}
return ioutil.ReadAll(asAnyBio(bio))
}
// LoadPrivateKeyFromPEM loads a private key from a PEM-encoded block.
func LoadPrivateKeyFromPEM(pem_block []byte) (PrivateKey, error) {
if len(pem_block) == 0 {
return nil, errors.New("empty pem block")
}
bio := C.BIO_new_mem_buf(unsafe.Pointer(&pem_block[0]),
C.int(len(pem_block)))
if bio == nil {
return nil, errors.New("failed creating bio")
}
defer C.BIO_free(bio)
key := C.PEM_read_bio_PrivateKey(bio, nil, nil, nil)
if key == nil {
return nil, errors.New("failed reading private key")
}
p := &pKey{key: key}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// LoadPrivateKeyFromPEMWithPassword loads a private key from a PEM-encoded block.
func LoadPrivateKeyFromPEMWithPassword(pem_block []byte, password string) (
PrivateKey, error) {
if len(pem_block) == 0 {
return nil, errors.New("empty pem block")
}
bio := C.BIO_new_mem_buf(unsafe.Pointer(&pem_block[0]),
C.int(len(pem_block)))
if bio == nil {
return nil, errors.New("failed creating bio")
}
defer C.BIO_free(bio)
cs := C.CString(password)
defer C.free(unsafe.Pointer(cs))
key := C.PEM_read_bio_PrivateKey(bio, nil, nil, unsafe.Pointer(cs))
if key == nil {
return nil, errors.New("failed reading private key")
}
p := &pKey{key: key}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// LoadPrivateKeyFromDER loads a private key from a DER-encoded block.
func LoadPrivateKeyFromDER(der_block []byte) (PrivateKey, error) {
if len(der_block) == 0 {
return nil, errors.New("empty der block")
}
bio := C.BIO_new_mem_buf(unsafe.Pointer(&der_block[0]),
C.int(len(der_block)))
if bio == nil {
return nil, errors.New("failed creating bio")
}
defer C.BIO_free(bio)
key := C.d2i_PrivateKey_bio(bio, nil)
if key == nil {
return nil, errors.New("failed reading private key der")
}
p := &pKey{key: key}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// LoadPrivateKeyFromPEMWidthPassword loads a private key from a PEM-encoded block.
// Backwards-compatible with typo
func LoadPrivateKeyFromPEMWidthPassword(pem_block []byte, password string) (
PrivateKey, error) {
return LoadPrivateKeyFromPEMWithPassword(pem_block, password)
}
// LoadPublicKeyFromPEM loads a public key from a PEM-encoded block.
func LoadPublicKeyFromPEM(pem_block []byte) (PublicKey, error) {
if len(pem_block) == 0 {
return nil, errors.New("empty pem block")
}
bio := C.BIO_new_mem_buf(unsafe.Pointer(&pem_block[0]),
C.int(len(pem_block)))
if bio == nil {
return nil, errors.New("failed creating bio")
}
defer C.BIO_free(bio)
key := C.PEM_read_bio_PUBKEY(bio, nil, nil, nil)
if key == nil {
return nil, errors.New("failed reading public key der")
}
p := &pKey{key: key}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// LoadPublicKeyFromDER loads a public key from a DER-encoded block.
func LoadPublicKeyFromDER(der_block []byte) (PublicKey, error) {
if len(der_block) == 0 {
return nil, errors.New("empty der block")
}
bio := C.BIO_new_mem_buf(unsafe.Pointer(&der_block[0]),
C.int(len(der_block)))
if bio == nil {
return nil, errors.New("failed creating bio")
}
defer C.BIO_free(bio)
key := C.d2i_PUBKEY_bio(bio, nil)
if key == nil {
return nil, errors.New("failed reading public key der")
}
p := &pKey{key: key}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// GenerateRSAKey generates a new RSA private key with an exponent of 3.
func GenerateRSAKey(bits int) (PrivateKey, error) {
return GenerateRSAKeyWithExponent(bits, 3)
}
// GenerateRSAKeyWithExponent generates a new RSA private key.
func GenerateRSAKeyWithExponent(bits int, exponent int) (PrivateKey, error) {
rsa := C.RSA_generate_key(C.int(bits), C.ulong(exponent), nil, nil)
if rsa == nil {
return nil, errors.New("failed to generate RSA key")
}
key := C.X_EVP_PKEY_new()
if key == nil {
return nil, errors.New("failed to allocate EVP_PKEY")
}
if C.X_EVP_PKEY_assign_charp(key, C.EVP_PKEY_RSA, (*C.char)(unsafe.Pointer(rsa))) != 1 {
C.X_EVP_PKEY_free(key)
return nil, errors.New("failed to assign RSA key")
}
p := &pKey{key: key}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// GenerateECKey generates a new elliptic curve private key on the speicified
// curve.
func GenerateECKey(curve EllipticCurve) (PrivateKey, error) {
// Create context for parameter generation
paramCtx := C.EVP_PKEY_CTX_new_id(C.EVP_PKEY_EC, nil)
if paramCtx == nil {
return nil, errors.New("failed creating EC parameter generation context")
}
defer C.EVP_PKEY_CTX_free(paramCtx)
// Intialize the parameter generation
if int(C.EVP_PKEY_paramgen_init(paramCtx)) != 1 {
return nil, errors.New("failed initializing EC parameter generation context")
}
// Set curve in EC parameter generation context
if int(C.X_EVP_PKEY_CTX_set_ec_paramgen_curve_nid(paramCtx, C.int(curve))) != 1 {
return nil, errors.New("failed setting curve in EC parameter generation context")
}
// Create parameter object
var params *C.EVP_PKEY
if int(C.EVP_PKEY_paramgen(paramCtx, &params)) != 1 {
return nil, errors.New("failed creating EC key generation parameters")
}
defer C.EVP_PKEY_free(params)
// Create context for the key generation
keyCtx := C.EVP_PKEY_CTX_new(params, nil)
if keyCtx == nil {
return nil, errors.New("failed creating EC key generation context")
}
defer C.EVP_PKEY_CTX_free(keyCtx)
// Generate the key
var privKey *C.EVP_PKEY
if int(C.EVP_PKEY_keygen_init(keyCtx)) != 1 {
return nil, errors.New("failed initializing EC key generation context")
}
if int(C.EVP_PKEY_keygen(keyCtx, &privKey)) != 1 {
return nil, errors.New("failed generating EC private key")
}
p := &pKey{key: privKey}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}
// GenerateED25519Key generates a Ed25519 key
func GenerateED25519Key() (PrivateKey, error) {
// Key context
keyCtx := C.EVP_PKEY_CTX_new_id(C.X_EVP_PKEY_ED25519, nil)
if keyCtx == nil {
return nil, errors.New("failed creating EC parameter generation context")
}
defer C.EVP_PKEY_CTX_free(keyCtx)
// Generate the key
var privKey *C.EVP_PKEY
if int(C.EVP_PKEY_keygen_init(keyCtx)) != 1 {
return nil, errors.New("failed initializing ED25519 key generation context")
}
if int(C.EVP_PKEY_keygen(keyCtx, &privKey)) != 1 {
return nil, errors.New("failed generating ED25519 private key")
}
p := &pKey{key: privKey}
runtime.SetFinalizer(p, func(p *pKey) {
C.X_EVP_PKEY_free(p.key)
})
return p, nil
}