Igor Sirotin 679391999f
feat_: LogOnPanic linter (#5969)
* feat_: LogOnPanic linter

* fix_: add missing defer LogOnPanic

* chore_: make vendor

* fix_: tests, address pr comments

* fix_: address pr comments
2024-10-23 21:33:05 +01:00

390 lines
12 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package facts defines a serializable set of analysis.Fact.
//
// It provides a partial implementation of the Fact-related parts of the
// analysis.Pass interface for use in analysis drivers such as "go vet"
// and other build systems.
//
// The serial format is unspecified and may change, so the same version
// of this package must be used for reading and writing serialized facts.
//
// The handling of facts in the analysis system parallels the handling
// of type information in the compiler: during compilation of package P,
// the compiler emits an export data file that describes the type of
// every object (named thing) defined in package P, plus every object
// indirectly reachable from one of those objects. Thus the downstream
// compiler of package Q need only load one export data file per direct
// import of Q, and it will learn everything about the API of package P
// and everything it needs to know about the API of P's dependencies.
//
// Similarly, analysis of package P emits a fact set containing facts
// about all objects exported from P, plus additional facts about only
// those objects of P's dependencies that are reachable from the API of
// package P; the downstream analysis of Q need only load one fact set
// per direct import of Q.
//
// The notion of "exportedness" that matters here is that of the
// compiler. According to the language spec, a method pkg.T.f is
// unexported simply because its name starts with lowercase. But the
// compiler must nonetheless export f so that downstream compilations can
// accurately ascertain whether pkg.T implements an interface pkg.I
// defined as interface{f()}. Exported thus means "described in export
// data".
package facts
import (
"bytes"
"encoding/gob"
"fmt"
"go/types"
"io"
"log"
"reflect"
"sort"
"sync"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/types/objectpath"
)
const debug = false
// A Set is a set of analysis.Facts.
//
// Decode creates a Set of facts by reading from the imports of a given
// package, and Encode writes out the set. Between these operation,
// the Import and Export methods will query and update the set.
//
// All of Set's methods except String are safe to call concurrently.
type Set struct {
pkg *types.Package
mu sync.Mutex
m map[key]analysis.Fact
}
type key struct {
pkg *types.Package
obj types.Object // (object facts only)
t reflect.Type
}
// ImportObjectFact implements analysis.Pass.ImportObjectFact.
func (s *Set) ImportObjectFact(obj types.Object, ptr analysis.Fact) bool {
if obj == nil {
panic("nil object")
}
key := key{pkg: obj.Pkg(), obj: obj, t: reflect.TypeOf(ptr)}
s.mu.Lock()
defer s.mu.Unlock()
if v, ok := s.m[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// ExportObjectFact implements analysis.Pass.ExportObjectFact.
func (s *Set) ExportObjectFact(obj types.Object, fact analysis.Fact) {
if obj.Pkg() != s.pkg {
log.Panicf("in package %s: ExportObjectFact(%s, %T): can't set fact on object belonging another package",
s.pkg, obj, fact)
}
key := key{pkg: obj.Pkg(), obj: obj, t: reflect.TypeOf(fact)}
s.mu.Lock()
s.m[key] = fact // clobber any existing entry
s.mu.Unlock()
}
func (s *Set) AllObjectFacts(filter map[reflect.Type]bool) []analysis.ObjectFact {
var facts []analysis.ObjectFact
s.mu.Lock()
for k, v := range s.m {
if k.obj != nil && filter[k.t] {
facts = append(facts, analysis.ObjectFact{Object: k.obj, Fact: v})
}
}
s.mu.Unlock()
return facts
}
// ImportPackageFact implements analysis.Pass.ImportPackageFact.
func (s *Set) ImportPackageFact(pkg *types.Package, ptr analysis.Fact) bool {
if pkg == nil {
panic("nil package")
}
key := key{pkg: pkg, t: reflect.TypeOf(ptr)}
s.mu.Lock()
defer s.mu.Unlock()
if v, ok := s.m[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// ExportPackageFact implements analysis.Pass.ExportPackageFact.
func (s *Set) ExportPackageFact(fact analysis.Fact) {
key := key{pkg: s.pkg, t: reflect.TypeOf(fact)}
s.mu.Lock()
s.m[key] = fact // clobber any existing entry
s.mu.Unlock()
}
func (s *Set) AllPackageFacts(filter map[reflect.Type]bool) []analysis.PackageFact {
var facts []analysis.PackageFact
s.mu.Lock()
for k, v := range s.m {
if k.obj == nil && filter[k.t] {
facts = append(facts, analysis.PackageFact{Package: k.pkg, Fact: v})
}
}
s.mu.Unlock()
return facts
}
// gobFact is the Gob declaration of a serialized fact.
type gobFact struct {
PkgPath string // path of package
Object objectpath.Path // optional path of object relative to package itself
Fact analysis.Fact // type and value of user-defined Fact
}
// A Decoder decodes the facts from the direct imports of the package
// provided to NewEncoder. A single decoder may be used to decode
// multiple fact sets (e.g. each for a different set of fact types)
// for the same package. Each call to Decode returns an independent
// fact set.
type Decoder struct {
pkg *types.Package
getPackage GetPackageFunc
}
// NewDecoder returns a fact decoder for the specified package.
//
// It uses a brute-force recursive approach to enumerate all objects
// defined by dependencies of pkg, so that it can learn the set of
// package paths that may be mentioned in the fact encoding. This does
// not scale well; use [NewDecoderFunc] where possible.
func NewDecoder(pkg *types.Package) *Decoder {
// Compute the import map for this package.
// See the package doc comment.
m := importMap(pkg.Imports())
getPackageFunc := func(path string) *types.Package { return m[path] }
return NewDecoderFunc(pkg, getPackageFunc)
}
// NewDecoderFunc returns a fact decoder for the specified package.
//
// It calls the getPackage function for the package path string of
// each dependency (perhaps indirect) that it encounters in the
// encoding. If the function returns nil, the fact is discarded.
//
// This function is preferred over [NewDecoder] when the client is
// capable of efficient look-up of packages by package path.
func NewDecoderFunc(pkg *types.Package, getPackage GetPackageFunc) *Decoder {
return &Decoder{
pkg: pkg,
getPackage: getPackage,
}
}
// A GetPackageFunc function returns the package denoted by a package path.
type GetPackageFunc = func(pkgPath string) *types.Package
// Decode decodes all the facts relevant to the analysis of package
// pkgPath. The read function reads serialized fact data from an external
// source for one of pkg's direct imports, identified by package path.
// The empty file is a valid encoding of an empty fact set.
//
// It is the caller's responsibility to call gob.Register on all
// necessary fact types.
//
// Concurrent calls to Decode are safe, so long as the
// [GetPackageFunc] (if any) is also concurrency-safe.
func (d *Decoder) Decode(read func(pkgPath string) ([]byte, error)) (*Set, error) {
// Read facts from imported packages.
// Facts may describe indirectly imported packages, or their objects.
m := make(map[key]analysis.Fact) // one big bucket
for _, imp := range d.pkg.Imports() {
logf := func(format string, args ...interface{}) {
if debug {
prefix := fmt.Sprintf("in %s, importing %s: ",
d.pkg.Path(), imp.Path())
log.Print(prefix, fmt.Sprintf(format, args...))
}
}
// Read the gob-encoded facts.
data, err := read(imp.Path())
if err != nil {
return nil, fmt.Errorf("in %s, can't import facts for package %q: %v",
d.pkg.Path(), imp.Path(), err)
}
if len(data) == 0 {
continue // no facts
}
var gobFacts []gobFact
if err := gob.NewDecoder(bytes.NewReader(data)).Decode(&gobFacts); err != nil {
return nil, fmt.Errorf("decoding facts for %q: %v", imp.Path(), err)
}
logf("decoded %d facts: %v", len(gobFacts), gobFacts)
// Parse each one into a key and a Fact.
for _, f := range gobFacts {
factPkg := d.getPackage(f.PkgPath) // possibly an indirect dependency
if factPkg == nil {
// Fact relates to a dependency that was
// unused in this translation unit. Skip.
logf("no package %q; discarding %v", f.PkgPath, f.Fact)
continue
}
key := key{pkg: factPkg, t: reflect.TypeOf(f.Fact)}
if f.Object != "" {
// object fact
obj, err := objectpath.Object(factPkg, f.Object)
if err != nil {
// (most likely due to unexported object)
// TODO(adonovan): audit for other possibilities.
logf("no object for path: %v; discarding %s", err, f.Fact)
continue
}
key.obj = obj
logf("read %T fact %s for %v", f.Fact, f.Fact, key.obj)
} else {
// package fact
logf("read %T fact %s for %v", f.Fact, f.Fact, factPkg)
}
m[key] = f.Fact
}
}
return &Set{pkg: d.pkg, m: m}, nil
}
// Encode encodes a set of facts to a memory buffer.
//
// It may fail if one of the Facts could not be gob-encoded, but this is
// a sign of a bug in an Analyzer.
func (s *Set) Encode() []byte {
encoder := new(objectpath.Encoder)
// TODO(adonovan): opt: use a more efficient encoding
// that avoids repeating PkgPath for each fact.
// Gather all facts, including those from imported packages.
var gobFacts []gobFact
s.mu.Lock()
for k, fact := range s.m {
if debug {
log.Printf("%v => %s\n", k, fact)
}
// Don't export facts that we imported from another
// package, unless they represent fields or methods,
// or package-level types.
// (Facts about packages, and other package-level
// objects, are only obtained from direct imports so
// they needn't be reexported.)
//
// This is analogous to the pruning done by "deep"
// export data for types, but not as precise because
// we aren't careful about which structs or methods
// we rexport: it should be only those referenced
// from the API of s.pkg.
// TODO(adonovan): opt: be more precise. e.g.
// intersect with the set of objects computed by
// importMap(s.pkg.Imports()).
// TODO(adonovan): opt: implement "shallow" facts.
if k.pkg != s.pkg {
if k.obj == nil {
continue // imported package fact
}
if _, isType := k.obj.(*types.TypeName); !isType &&
k.obj.Parent() == k.obj.Pkg().Scope() {
continue // imported fact about package-level non-type object
}
}
var object objectpath.Path
if k.obj != nil {
path, err := encoder.For(k.obj)
if err != nil {
if debug {
log.Printf("discarding fact %s about %s\n", fact, k.obj)
}
continue // object not accessible from package API; discard fact
}
object = path
}
gobFacts = append(gobFacts, gobFact{
PkgPath: k.pkg.Path(),
Object: object,
Fact: fact,
})
}
s.mu.Unlock()
// Sort facts by (package, object, type) for determinism.
sort.Slice(gobFacts, func(i, j int) bool {
x, y := gobFacts[i], gobFacts[j]
if x.PkgPath != y.PkgPath {
return x.PkgPath < y.PkgPath
}
if x.Object != y.Object {
return x.Object < y.Object
}
tx := reflect.TypeOf(x.Fact)
ty := reflect.TypeOf(y.Fact)
if tx != ty {
return tx.String() < ty.String()
}
return false // equal
})
var buf bytes.Buffer
if len(gobFacts) > 0 {
if err := gob.NewEncoder(&buf).Encode(gobFacts); err != nil {
// Fact encoding should never fail. Identify the culprit.
for _, gf := range gobFacts {
if err := gob.NewEncoder(io.Discard).Encode(gf); err != nil {
fact := gf.Fact
pkgpath := reflect.TypeOf(fact).Elem().PkgPath()
log.Panicf("internal error: gob encoding of analysis fact %s failed: %v; please report a bug against fact %T in package %q",
fact, err, fact, pkgpath)
}
}
}
}
if debug {
log.Printf("package %q: encode %d facts, %d bytes\n",
s.pkg.Path(), len(gobFacts), buf.Len())
}
return buf.Bytes()
}
// String is provided only for debugging, and must not be called
// concurrent with any Import/Export method.
func (s *Set) String() string {
var buf bytes.Buffer
buf.WriteString("{")
for k, f := range s.m {
if buf.Len() > 1 {
buf.WriteString(", ")
}
if k.obj != nil {
buf.WriteString(k.obj.String())
} else {
buf.WriteString(k.pkg.Path())
}
fmt.Fprintf(&buf, ": %v", f)
}
buf.WriteString("}")
return buf.String()
}