mirror of
https://github.com/status-im/status-go.git
synced 2025-01-25 05:58:59 +00:00
848 lines
20 KiB
Go
848 lines
20 KiB
Go
package roaring
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/RoaringBitmap/roaring"
|
|
"math/bits"
|
|
"runtime"
|
|
"sync"
|
|
"sync/atomic"
|
|
)
|
|
|
|
const (
|
|
// Min64BitSigned - Minimum 64 bit value
|
|
Min64BitSigned = -9223372036854775808
|
|
// Max64BitSigned - Maximum 64 bit value
|
|
Max64BitSigned = 9223372036854775807
|
|
)
|
|
|
|
// BSI is at its simplest is an array of bitmaps that represent an encoded
|
|
// binary value. The advantage of a BSI is that comparisons can be made
|
|
// across ranges of values whereas a bitmap can only represent the existence
|
|
// of a single value for a given column ID. Another usage scenario involves
|
|
// storage of high cardinality values.
|
|
//
|
|
// It depends upon the bitmap libraries. It is not thread safe, so
|
|
// upstream concurrency guards must be provided.
|
|
type BSI struct {
|
|
bA []*roaring.Bitmap
|
|
eBM *roaring.Bitmap // Existence BitMap
|
|
MaxValue int64
|
|
MinValue int64
|
|
runOptimized bool
|
|
}
|
|
|
|
// NewBSI constructs a new BSI. Min/Max values are optional. If set to 0
|
|
// then the underlying BSI will be automatically sized.
|
|
func NewBSI(maxValue int64, minValue int64) *BSI {
|
|
|
|
bitsz := bits.Len64(uint64(minValue))
|
|
if bits.Len64(uint64(maxValue)) > bitsz {
|
|
bitsz = bits.Len64(uint64(maxValue))
|
|
}
|
|
ba := make([]*roaring.Bitmap, bitsz)
|
|
for i := 0; i < len(ba); i++ {
|
|
ba[i] = roaring.NewBitmap()
|
|
}
|
|
return &BSI{bA: ba, eBM: roaring.NewBitmap(), MaxValue: maxValue, MinValue: minValue}
|
|
}
|
|
|
|
// NewDefaultBSI constructs an auto-sized BSI
|
|
func NewDefaultBSI() *BSI {
|
|
return NewBSI(int64(0), int64(0))
|
|
}
|
|
|
|
// RunOptimize attempts to further compress the runs of consecutive values found in the bitmap
|
|
func (b *BSI) RunOptimize() {
|
|
b.eBM.RunOptimize()
|
|
for i := 0; i < len(b.bA); i++ {
|
|
b.bA[i].RunOptimize()
|
|
}
|
|
b.runOptimized = true
|
|
}
|
|
|
|
// HasRunCompression returns true if the bitmap benefits from run compression
|
|
func (b *BSI) HasRunCompression() bool {
|
|
return b.runOptimized
|
|
}
|
|
|
|
// GetExistenceBitmap returns a pointer to the underlying existence bitmap of the BSI
|
|
func (b *BSI) GetExistenceBitmap() *roaring.Bitmap {
|
|
return b.eBM
|
|
}
|
|
|
|
// ValueExists tests whether the value exists.
|
|
func (b *BSI) ValueExists(columnID uint64) bool {
|
|
|
|
return b.eBM.Contains(uint32(columnID))
|
|
}
|
|
|
|
// GetCardinality returns a count of unique column IDs for which a value has been set.
|
|
func (b *BSI) GetCardinality() uint64 {
|
|
return b.eBM.GetCardinality()
|
|
}
|
|
|
|
// BitCount returns the number of bits needed to represent values.
|
|
func (b *BSI) BitCount() int {
|
|
|
|
return len(b.bA)
|
|
}
|
|
|
|
// SetValue sets a value for a given columnID.
|
|
func (b *BSI) SetValue(columnID uint64, value int64) {
|
|
|
|
// If max/min values are set to zero then automatically determine bit array size
|
|
if b.MaxValue == 0 && b.MinValue == 0 {
|
|
ba := make([]*roaring.Bitmap, bits.Len64(uint64(value)))
|
|
for i := len(ba) - b.BitCount(); i > 0; i-- {
|
|
b.bA = append(b.bA, roaring.NewBitmap())
|
|
if b.runOptimized {
|
|
b.bA[i].RunOptimize()
|
|
}
|
|
}
|
|
}
|
|
|
|
var wg sync.WaitGroup
|
|
|
|
for i := 0; i < b.BitCount(); i++ {
|
|
wg.Add(1)
|
|
go func(j int) {
|
|
defer wg.Done()
|
|
if uint64(value)&(1<<uint64(j)) > 0 {
|
|
b.bA[j].Add(uint32(columnID))
|
|
} else {
|
|
b.bA[j].Remove(uint32(columnID))
|
|
}
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
b.eBM.Add(uint32(columnID))
|
|
}
|
|
|
|
// GetValue gets the value at the column ID. Second param will be false for non-existant values.
|
|
func (b *BSI) GetValue(columnID uint64) (int64, bool) {
|
|
value := int64(0)
|
|
exists := b.eBM.Contains(uint32(columnID))
|
|
if !exists {
|
|
return value, exists
|
|
}
|
|
for i := 0; i < b.BitCount(); i++ {
|
|
if b.bA[i].Contains(uint32(columnID)) {
|
|
value |= (1 << uint64(i))
|
|
}
|
|
}
|
|
return int64(value), exists
|
|
}
|
|
|
|
type action func(t *task, batch []uint32, resultsChan chan *roaring.Bitmap, wg *sync.WaitGroup)
|
|
|
|
func parallelExecutor(parallelism int, t *task, e action,
|
|
foundSet *roaring.Bitmap) *roaring.Bitmap {
|
|
|
|
var n int = parallelism
|
|
if n == 0 {
|
|
n = runtime.NumCPU()
|
|
}
|
|
|
|
resultsChan := make(chan *roaring.Bitmap, n)
|
|
|
|
card := foundSet.GetCardinality()
|
|
x := card / uint64(n)
|
|
|
|
remainder := card - (x * uint64(n))
|
|
var batch []uint32
|
|
var wg sync.WaitGroup
|
|
iter := foundSet.ManyIterator()
|
|
for i := 0; i < n; i++ {
|
|
if i == n-1 {
|
|
batch = make([]uint32, x+remainder)
|
|
} else {
|
|
batch = make([]uint32, x)
|
|
}
|
|
iter.NextMany(batch)
|
|
wg.Add(1)
|
|
go e(t, batch, resultsChan, &wg)
|
|
}
|
|
|
|
wg.Wait()
|
|
|
|
close(resultsChan)
|
|
|
|
ba := make([]*roaring.Bitmap, 0)
|
|
for bm := range resultsChan {
|
|
ba = append(ba, bm)
|
|
}
|
|
|
|
return roaring.ParOr(0, ba...)
|
|
|
|
}
|
|
|
|
type bsiAction func(input *BSI, batch []uint32, resultsChan chan *BSI, wg *sync.WaitGroup)
|
|
|
|
func parallelExecutorBSIResults(parallelism int, input *BSI, e bsiAction, foundSet *roaring.Bitmap, sumResults bool) *BSI {
|
|
|
|
var n int = parallelism
|
|
if n == 0 {
|
|
n = runtime.NumCPU()
|
|
}
|
|
|
|
resultsChan := make(chan *BSI, n)
|
|
|
|
card := foundSet.GetCardinality()
|
|
x := card / uint64(n)
|
|
|
|
remainder := card - (x * uint64(n))
|
|
var batch []uint32
|
|
var wg sync.WaitGroup
|
|
iter := foundSet.ManyIterator()
|
|
for i := 0; i < n; i++ {
|
|
if i == n-1 {
|
|
batch = make([]uint32, x+remainder)
|
|
} else {
|
|
batch = make([]uint32, x)
|
|
}
|
|
iter.NextMany(batch)
|
|
wg.Add(1)
|
|
go e(input, batch, resultsChan, &wg)
|
|
}
|
|
|
|
wg.Wait()
|
|
|
|
close(resultsChan)
|
|
|
|
ba := make([]*BSI, 0)
|
|
for bm := range resultsChan {
|
|
ba = append(ba, bm)
|
|
}
|
|
|
|
results := NewDefaultBSI()
|
|
if sumResults {
|
|
for _, v := range ba {
|
|
results.Add(v)
|
|
}
|
|
} else {
|
|
results.ParOr(0, ba...)
|
|
}
|
|
return results
|
|
|
|
}
|
|
|
|
// Operation identifier
|
|
type Operation int
|
|
|
|
const (
|
|
// LT less than
|
|
LT Operation = 1 + iota
|
|
// LE less than or equal
|
|
LE
|
|
// EQ equal
|
|
EQ
|
|
// GE greater than or equal
|
|
GE
|
|
// GT greater than
|
|
GT
|
|
// RANGE range
|
|
RANGE
|
|
// MIN find minimum
|
|
MIN
|
|
// MAX find maximum
|
|
MAX
|
|
)
|
|
|
|
type task struct {
|
|
bsi *BSI
|
|
op Operation
|
|
valueOrStart int64
|
|
end int64
|
|
values map[int64]struct{}
|
|
bits *roaring.Bitmap
|
|
}
|
|
|
|
// CompareValue compares value.
|
|
// For all operations with the exception of RANGE, the value to be compared is specified by valueOrStart.
|
|
// For the RANGE parameter the comparison criteria is >= valueOrStart and <= end.
|
|
// The parallelism parameter indicates the number of CPU threads to be applied for processing. A value
|
|
// of zero indicates that all available CPU resources will be potentially utilized.
|
|
//
|
|
func (b *BSI) CompareValue(parallelism int, op Operation, valueOrStart, end int64,
|
|
foundSet *roaring.Bitmap) *roaring.Bitmap {
|
|
|
|
comp := &task{bsi: b, op: op, valueOrStart: valueOrStart, end: end}
|
|
if foundSet == nil {
|
|
return parallelExecutor(parallelism, comp, compareValue, b.eBM)
|
|
}
|
|
return parallelExecutor(parallelism, comp, compareValue, foundSet)
|
|
}
|
|
|
|
func compareValue(e *task, batch []uint32, resultsChan chan *roaring.Bitmap, wg *sync.WaitGroup) {
|
|
|
|
defer wg.Done()
|
|
|
|
results := roaring.NewBitmap()
|
|
if e.bsi.runOptimized {
|
|
results.RunOptimize()
|
|
}
|
|
|
|
x := e.bsi.BitCount()
|
|
startIsNegative := x == 64 && uint64(e.valueOrStart)&(1<<uint64(x-1)) > 0
|
|
endIsNegative := x == 64 && uint64(e.end)&(1<<uint64(x-1)) > 0
|
|
|
|
for i := 0; i < len(batch); i++ {
|
|
cID := batch[i]
|
|
eq1, eq2 := true, true
|
|
lt1, lt2, gt1 := false, false, false
|
|
j := e.bsi.BitCount() - 1
|
|
isNegative := false
|
|
if x == 64 {
|
|
isNegative = e.bsi.bA[j].Contains(cID)
|
|
j--
|
|
}
|
|
compStartValue := e.valueOrStart
|
|
compEndValue := e.end
|
|
if isNegative != startIsNegative {
|
|
compStartValue = ^e.valueOrStart + 1
|
|
}
|
|
if isNegative != endIsNegative {
|
|
compEndValue = ^e.end + 1
|
|
}
|
|
for ; j >= 0; j-- {
|
|
sliceContainsBit := e.bsi.bA[j].Contains(cID)
|
|
|
|
if uint64(compStartValue)&(1<<uint64(j)) > 0 {
|
|
// BIT in value is SET
|
|
if !sliceContainsBit {
|
|
if eq1 {
|
|
if (e.op == GT || e.op == GE || e.op == RANGE) && startIsNegative && !isNegative {
|
|
gt1 = true
|
|
}
|
|
if e.op == LT || e.op == LE {
|
|
if !startIsNegative || (startIsNegative == isNegative) {
|
|
lt1 = true
|
|
}
|
|
}
|
|
eq1 = false
|
|
break
|
|
}
|
|
}
|
|
} else {
|
|
// BIT in value is CLEAR
|
|
if sliceContainsBit {
|
|
if eq1 {
|
|
if (e.op == LT || e.op == LE) && isNegative && !startIsNegative {
|
|
lt1 = true
|
|
}
|
|
if e.op == GT || e.op == GE || e.op == RANGE {
|
|
if startIsNegative || (startIsNegative == isNegative) {
|
|
gt1 = true
|
|
}
|
|
}
|
|
eq1 = false
|
|
if e.op != RANGE {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if e.op == RANGE && uint64(compEndValue)&(1<<uint64(j)) > 0 {
|
|
// BIT in value is SET
|
|
if !sliceContainsBit {
|
|
if eq2 {
|
|
if !endIsNegative || (endIsNegative == isNegative) {
|
|
lt2 = true
|
|
}
|
|
eq2 = false
|
|
if startIsNegative && !endIsNegative {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
} else if e.op == RANGE {
|
|
// BIT in value is CLEAR
|
|
if sliceContainsBit {
|
|
if eq2 {
|
|
if isNegative && !endIsNegative {
|
|
lt2 = true
|
|
}
|
|
eq2 = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
switch e.op {
|
|
case LT:
|
|
if lt1 {
|
|
results.Add(cID)
|
|
}
|
|
case LE:
|
|
if lt1 || (eq1 && (!startIsNegative || (startIsNegative && isNegative))) {
|
|
results.Add(cID)
|
|
}
|
|
case EQ:
|
|
if eq1 {
|
|
results.Add(cID)
|
|
}
|
|
case GE:
|
|
if gt1 || (eq1 && (startIsNegative || (!startIsNegative && !isNegative))) {
|
|
results.Add(cID)
|
|
}
|
|
case GT:
|
|
if gt1 {
|
|
results.Add(cID)
|
|
}
|
|
case RANGE:
|
|
if (eq1 || gt1) && (eq2 || lt2) {
|
|
results.Add(cID)
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("Unknown operation [%v]", e.op))
|
|
}
|
|
}
|
|
|
|
resultsChan <- results
|
|
}
|
|
|
|
// MinMax - Find minimum or maximum value.
|
|
func (b *BSI) MinMax(parallelism int, op Operation, foundSet *roaring.Bitmap) int64 {
|
|
|
|
var n int = parallelism
|
|
if n == 0 {
|
|
n = runtime.NumCPU()
|
|
}
|
|
|
|
resultsChan := make(chan int64, n)
|
|
|
|
card := foundSet.GetCardinality()
|
|
x := card / uint64(n)
|
|
|
|
remainder := card - (x * uint64(n))
|
|
var batch []uint32
|
|
var wg sync.WaitGroup
|
|
iter := foundSet.ManyIterator()
|
|
for i := 0; i < n; i++ {
|
|
if i == n-1 {
|
|
batch = make([]uint32, x+remainder)
|
|
} else {
|
|
batch = make([]uint32, x)
|
|
}
|
|
iter.NextMany(batch)
|
|
wg.Add(1)
|
|
go b.minOrMax(op, batch, resultsChan, &wg)
|
|
}
|
|
|
|
wg.Wait()
|
|
|
|
close(resultsChan)
|
|
var minMax int64
|
|
if op == MAX {
|
|
minMax = Min64BitSigned
|
|
} else {
|
|
minMax = Max64BitSigned
|
|
}
|
|
|
|
for val := range resultsChan {
|
|
if (op == MAX && val > minMax) || (op == MIN && val < minMax) {
|
|
minMax = val
|
|
}
|
|
}
|
|
return minMax
|
|
}
|
|
|
|
func (b *BSI) minOrMax(op Operation, batch []uint32, resultsChan chan int64, wg *sync.WaitGroup) {
|
|
|
|
defer wg.Done()
|
|
|
|
x := b.BitCount()
|
|
var value int64 = Max64BitSigned
|
|
if op == MAX {
|
|
value = Min64BitSigned
|
|
}
|
|
|
|
for i := 0; i < len(batch); i++ {
|
|
cID := batch[i]
|
|
eq := true
|
|
lt, gt := false, false
|
|
j := b.BitCount() - 1
|
|
var cVal int64
|
|
valueIsNegative := uint64(value)&(1<<uint64(x-1)) > 0 && bits.Len64(uint64(value)) == 64
|
|
isNegative := false
|
|
if x == 64 {
|
|
isNegative = b.bA[j].Contains(cID)
|
|
if isNegative {
|
|
cVal |= 1 << uint64(j)
|
|
}
|
|
j--
|
|
}
|
|
compValue := value
|
|
if isNegative != valueIsNegative {
|
|
compValue = ^value + 1
|
|
}
|
|
for ; j >= 0; j-- {
|
|
sliceContainsBit := b.bA[j].Contains(cID)
|
|
if sliceContainsBit {
|
|
cVal |= 1 << uint64(j)
|
|
}
|
|
if uint64(compValue)&(1<<uint64(j)) > 0 {
|
|
// BIT in value is SET
|
|
if !sliceContainsBit {
|
|
if eq {
|
|
eq = false
|
|
if op == MAX && valueIsNegative && !isNegative {
|
|
gt = true
|
|
break
|
|
}
|
|
if op == MIN && (!valueIsNegative || (valueIsNegative == isNegative)) {
|
|
lt = true
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// BIT in value is CLEAR
|
|
if sliceContainsBit {
|
|
if eq {
|
|
eq = false
|
|
if op == MIN && isNegative && !valueIsNegative {
|
|
lt = true
|
|
}
|
|
if op == MAX && (valueIsNegative || (valueIsNegative == isNegative)) {
|
|
gt = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if lt || gt {
|
|
value = cVal
|
|
}
|
|
}
|
|
|
|
resultsChan <- value
|
|
}
|
|
|
|
// Sum all values contained within the foundSet. As a convenience, the cardinality of the foundSet
|
|
// is also returned (for calculating the average).
|
|
//
|
|
func (b *BSI) Sum(foundSet *roaring.Bitmap) (sum int64, count uint64) {
|
|
|
|
count = foundSet.GetCardinality()
|
|
var wg sync.WaitGroup
|
|
for i := 0; i < b.BitCount(); i++ {
|
|
wg.Add(1)
|
|
go func(j int) {
|
|
defer wg.Done()
|
|
atomic.AddInt64(&sum, int64(foundSet.AndCardinality(b.bA[j])<<uint(j)))
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
return
|
|
}
|
|
|
|
// Transpose calls b.IntersectAndTranspose(0, b.eBM)
|
|
func (b *BSI) Transpose() *roaring.Bitmap {
|
|
return b.IntersectAndTranspose(0, b.eBM)
|
|
}
|
|
|
|
// IntersectAndTranspose is a matrix transpose function. Return a bitmap such that the values are represented as column IDs
|
|
// in the returned bitmap. This is accomplished by iterating over the foundSet and only including
|
|
// the column IDs in the source (foundSet) as compared with this BSI. This can be useful for
|
|
// vectoring one set of integers to another.
|
|
func (b *BSI) IntersectAndTranspose(parallelism int, foundSet *roaring.Bitmap) *roaring.Bitmap {
|
|
|
|
trans := &task{bsi: b}
|
|
return parallelExecutor(parallelism, trans, transpose, foundSet)
|
|
}
|
|
|
|
func transpose(e *task, batch []uint32, resultsChan chan *roaring.Bitmap, wg *sync.WaitGroup) {
|
|
|
|
defer wg.Done()
|
|
|
|
results := roaring.NewBitmap()
|
|
if e.bsi.runOptimized {
|
|
results.RunOptimize()
|
|
}
|
|
for _, cID := range batch {
|
|
if value, ok := e.bsi.GetValue(uint64(cID)); ok {
|
|
results.Add(uint32(value))
|
|
}
|
|
}
|
|
resultsChan <- results
|
|
}
|
|
|
|
// ParOr is intended primarily to be a concatenation function to be used during bulk load operations.
|
|
// Care should be taken to make sure that columnIDs do not overlap (unless overlapping values are
|
|
// identical).
|
|
func (b *BSI) ParOr(parallelism int, bsis ...*BSI) {
|
|
|
|
// Consolidate sets
|
|
bits := len(b.bA)
|
|
for i := 0; i < len(bsis); i++ {
|
|
if len(bsis[i].bA) > bits {
|
|
bits = bsis[i].BitCount()
|
|
}
|
|
}
|
|
|
|
// Make sure we have enough bit slices
|
|
for bits > b.BitCount() {
|
|
newBm := roaring.NewBitmap()
|
|
if b.runOptimized {
|
|
newBm.RunOptimize()
|
|
}
|
|
b.bA = append(b.bA, newBm)
|
|
}
|
|
|
|
a := make([][]*roaring.Bitmap, bits)
|
|
for i := range a {
|
|
a[i] = make([]*roaring.Bitmap, 0)
|
|
for _, x := range bsis {
|
|
if len(x.bA) > i {
|
|
a[i] = append(a[i], x.bA[i])
|
|
} else {
|
|
a[i] = []*roaring.Bitmap{roaring.NewBitmap()}
|
|
if b.runOptimized {
|
|
a[i][0].RunOptimize()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consolidate existence bit maps
|
|
ebms := make([]*roaring.Bitmap, len(bsis))
|
|
for i := range ebms {
|
|
ebms[i] = bsis[i].eBM
|
|
}
|
|
|
|
// First merge all the bit slices from all bsi maps that exist in target
|
|
var wg sync.WaitGroup
|
|
for i := 0; i < bits; i++ {
|
|
wg.Add(1)
|
|
go func(j int) {
|
|
defer wg.Done()
|
|
x := []*roaring.Bitmap{b.bA[j]}
|
|
x = append(x, a[j]...)
|
|
b.bA[j] = roaring.ParOr(parallelism, x...)
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
|
|
// merge all the EBM maps
|
|
x := []*roaring.Bitmap{b.eBM}
|
|
x = append(x, ebms...)
|
|
b.eBM = roaring.ParOr(parallelism, x...)
|
|
}
|
|
|
|
// UnmarshalBinary de-serialize a BSI. The value at bitData[0] is the EBM. Other indices are in least to most
|
|
// significance order starting at bitData[1] (bit position 0).
|
|
func (b *BSI) UnmarshalBinary(bitData [][]byte) error {
|
|
|
|
for i := 1; i < len(bitData); i++ {
|
|
if bitData == nil || len(bitData[i]) == 0 {
|
|
continue
|
|
}
|
|
if b.BitCount() < i {
|
|
newBm := roaring.NewBitmap()
|
|
if b.runOptimized {
|
|
newBm.RunOptimize()
|
|
}
|
|
b.bA = append(b.bA, newBm)
|
|
}
|
|
if err := b.bA[i-1].UnmarshalBinary(bitData[i]); err != nil {
|
|
return err
|
|
}
|
|
if b.runOptimized {
|
|
b.bA[i-1].RunOptimize()
|
|
}
|
|
|
|
}
|
|
// First element of bitData is the EBM
|
|
if bitData[0] == nil {
|
|
b.eBM = roaring.NewBitmap()
|
|
if b.runOptimized {
|
|
b.eBM.RunOptimize()
|
|
}
|
|
return nil
|
|
}
|
|
if err := b.eBM.UnmarshalBinary(bitData[0]); err != nil {
|
|
return err
|
|
}
|
|
if b.runOptimized {
|
|
b.eBM.RunOptimize()
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MarshalBinary serializes a BSI
|
|
func (b *BSI) MarshalBinary() ([][]byte, error) {
|
|
|
|
var err error
|
|
data := make([][]byte, b.BitCount()+1)
|
|
// Add extra element for EBM (BitCount() + 1)
|
|
for i := 1; i < b.BitCount()+1; i++ {
|
|
data[i], err = b.bA[i-1].MarshalBinary()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
// Marshal EBM
|
|
data[0], err = b.eBM.MarshalBinary()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return data, nil
|
|
}
|
|
|
|
// BatchEqual returns a bitmap containing the column IDs where the values are contained within the list of values provided.
|
|
func (b *BSI) BatchEqual(parallelism int, values []int64) *roaring.Bitmap {
|
|
|
|
valMap := make(map[int64]struct{}, len(values))
|
|
for i := 0; i < len(values); i++ {
|
|
valMap[values[i]] = struct{}{}
|
|
}
|
|
comp := &task{bsi: b, values: valMap}
|
|
return parallelExecutor(parallelism, comp, batchEqual, b.eBM)
|
|
}
|
|
|
|
func batchEqual(e *task, batch []uint32, resultsChan chan *roaring.Bitmap,
|
|
wg *sync.WaitGroup) {
|
|
|
|
defer wg.Done()
|
|
|
|
results := roaring.NewBitmap()
|
|
if e.bsi.runOptimized {
|
|
results.RunOptimize()
|
|
}
|
|
|
|
for i := 0; i < len(batch); i++ {
|
|
cID := batch[i]
|
|
if value, ok := e.bsi.GetValue(uint64(cID)); ok {
|
|
if _, yes := e.values[int64(value)]; yes {
|
|
results.Add(cID)
|
|
}
|
|
}
|
|
}
|
|
resultsChan <- results
|
|
}
|
|
|
|
// ClearBits cleared the bits that exist in the target if they are also in the found set.
|
|
func ClearBits(foundSet, target *roaring.Bitmap) {
|
|
iter := foundSet.Iterator()
|
|
for iter.HasNext() {
|
|
cID := iter.Next()
|
|
target.Remove(cID)
|
|
}
|
|
}
|
|
|
|
// ClearValues removes the values found in foundSet
|
|
func (b *BSI) ClearValues(foundSet *roaring.Bitmap) {
|
|
|
|
var wg sync.WaitGroup
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
ClearBits(foundSet, b.eBM)
|
|
}()
|
|
for i := 0; i < b.BitCount(); i++ {
|
|
wg.Add(1)
|
|
go func(j int) {
|
|
defer wg.Done()
|
|
ClearBits(foundSet, b.bA[j])
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
}
|
|
|
|
// NewBSIRetainSet - Construct a new BSI from a clone of existing BSI, retain only values contained in foundSet
|
|
func (b *BSI) NewBSIRetainSet(foundSet *roaring.Bitmap) *BSI {
|
|
|
|
newBSI := NewBSI(b.MaxValue, b.MinValue)
|
|
newBSI.bA = make([]*roaring.Bitmap, b.BitCount())
|
|
var wg sync.WaitGroup
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
newBSI.eBM = b.eBM.Clone()
|
|
newBSI.eBM.And(foundSet)
|
|
}()
|
|
for i := 0; i < b.BitCount(); i++ {
|
|
wg.Add(1)
|
|
go func(j int) {
|
|
defer wg.Done()
|
|
newBSI.bA[j] = b.bA[j].Clone()
|
|
newBSI.bA[j].And(foundSet)
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
return newBSI
|
|
}
|
|
|
|
// Clone performs a deep copy of BSI contents.
|
|
func (b *BSI) Clone() *BSI {
|
|
return b.NewBSIRetainSet(b.eBM)
|
|
}
|
|
|
|
// Add - In-place sum the contents of another BSI with this BSI, column wise.
|
|
func (b *BSI) Add(other *BSI) {
|
|
|
|
b.eBM.Or(other.eBM)
|
|
for i := 0; i < len(other.bA); i++ {
|
|
b.addDigit(other.bA[i], i)
|
|
}
|
|
}
|
|
|
|
func (b *BSI) addDigit(foundSet *roaring.Bitmap, i int) {
|
|
|
|
if i >= len(b.bA) {
|
|
b.bA = append(b.bA, roaring.NewBitmap())
|
|
}
|
|
carry := roaring.And(b.bA[i], foundSet)
|
|
b.bA[i].Xor(foundSet)
|
|
if !carry.IsEmpty() {
|
|
if i+1 >= len(b.bA) {
|
|
b.bA = append(b.bA, roaring.NewBitmap())
|
|
}
|
|
b.addDigit(carry, i+1)
|
|
}
|
|
}
|
|
|
|
// TransposeWithCounts is a matrix transpose function that returns a BSI that has a columnID system defined by the values
|
|
// contained within the input BSI. Given that for BSIs, different columnIDs can have the same value. TransposeWithCounts
|
|
// is useful for situations where there is a one-to-many relationship between the vectored integer sets. The resulting BSI
|
|
// contains the number of times a particular value appeared in the input BSI as an integer count.
|
|
//
|
|
func (b *BSI) TransposeWithCounts(parallelism int, foundSet *roaring.Bitmap) *BSI {
|
|
|
|
return parallelExecutorBSIResults(parallelism, b, transposeWithCounts, foundSet, true)
|
|
}
|
|
|
|
func transposeWithCounts(input *BSI, batch []uint32, resultsChan chan *BSI, wg *sync.WaitGroup) {
|
|
|
|
defer wg.Done()
|
|
|
|
results := NewDefaultBSI()
|
|
if input.runOptimized {
|
|
results.RunOptimize()
|
|
}
|
|
for _, cID := range batch {
|
|
if value, ok := input.GetValue(uint64(cID)); ok {
|
|
if val, ok2 := results.GetValue(uint64(value)); !ok2 {
|
|
results.SetValue(uint64(value), 1)
|
|
} else {
|
|
val++
|
|
results.SetValue(uint64(value), val)
|
|
}
|
|
}
|
|
}
|
|
resultsChan <- results
|
|
}
|
|
|
|
// Increment - In-place increment of values in a BSI. Found set select columns for incrementing.
|
|
func (b *BSI) Increment(foundSet *roaring.Bitmap) {
|
|
b.addDigit(foundSet, 0)
|
|
}
|
|
|
|
// IncrementAll - In-place increment of all values in a BSI.
|
|
func (b *BSI) IncrementAll() {
|
|
b.Increment(b.GetExistenceBitmap())
|
|
}
|