Dmitry eeca435064 Add rendezvous implementation for discovery interface
Update vendor

Integrate rendezvous into status node

Add a test with failover using rendezvous

Use multiple servers in client

Use discovery V5 by default and test that node can be started with rendezvous discovet

Fix linter

Update rendezvous client to one with instrumented stream

Address feedback

Fix test with updated topic limits

Apply several suggestions

Change log to debug for request errors because we continue execution

Remove web3js after rebase

Update rendezvous package
2018-07-25 15:10:57 +03:00

341 lines
11 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package extra25519
import (
"crypto/sha512"
"github.com/agl/ed25519/edwards25519"
)
// PrivateKeyToCurve25519 converts an ed25519 private key into a corresponding
// curve25519 private key such that the resulting curve25519 public key will
// equal the result from PublicKeyToCurve25519.
func PrivateKeyToCurve25519(curve25519Private *[32]byte, privateKey *[64]byte) {
h := sha512.New()
h.Write(privateKey[:32])
digest := h.Sum(nil)
digest[0] &= 248
digest[31] &= 127
digest[31] |= 64
copy(curve25519Private[:], digest)
}
func edwardsToMontgomeryX(outX, y *edwards25519.FieldElement) {
// We only need the x-coordinate of the curve25519 point, which I'll
// call u. The isomorphism is u=(y+1)/(1-y), since y=Y/Z, this gives
// u=(Y+Z)/(Z-Y). We know that Z=1, thus u=(Y+1)/(1-Y).
var oneMinusY edwards25519.FieldElement
edwards25519.FeOne(&oneMinusY)
edwards25519.FeSub(&oneMinusY, &oneMinusY, y)
edwards25519.FeInvert(&oneMinusY, &oneMinusY)
edwards25519.FeOne(outX)
edwards25519.FeAdd(outX, outX, y)
edwards25519.FeMul(outX, outX, &oneMinusY)
}
// PublicKeyToCurve25519 converts an Ed25519 public key into the curve25519
// public key that would be generated from the same private key.
func PublicKeyToCurve25519(curve25519Public *[32]byte, publicKey *[32]byte) bool {
var A edwards25519.ExtendedGroupElement
if !A.FromBytes(publicKey) {
return false
}
// A.Z = 1 as a postcondition of FromBytes.
var x edwards25519.FieldElement
edwardsToMontgomeryX(&x, &A.Y)
edwards25519.FeToBytes(curve25519Public, &x)
return true
}
// sqrtMinusAPlus2 is sqrt(-(486662+2))
var sqrtMinusAPlus2 = edwards25519.FieldElement{
-12222970, -8312128, -11511410, 9067497, -15300785, -241793, 25456130, 14121551, -12187136, 3972024,
}
// sqrtMinusHalf is sqrt(-1/2)
var sqrtMinusHalf = edwards25519.FieldElement{
-17256545, 3971863, 28865457, -1750208, 27359696, -16640980, 12573105, 1002827, -163343, 11073975,
}
// halfQMinus1Bytes is (2^255-20)/2 expressed in little endian form.
var halfQMinus1Bytes = [32]byte{
0xf6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f,
}
// feBytesLess returns one if a <= b and zero otherwise.
func feBytesLE(a, b *[32]byte) int32 {
equalSoFar := int32(-1)
greater := int32(0)
for i := uint(31); i < 32; i-- {
x := int32(a[i])
y := int32(b[i])
greater = (^equalSoFar & greater) | (equalSoFar & ((x - y) >> 31))
equalSoFar = equalSoFar & (((x ^ y) - 1) >> 31)
}
return int32(^equalSoFar & 1 & greater)
}
// ScalarBaseMult computes a curve25519 public key from a private key and also
// a uniform representative for that public key. Note that this function will
// fail and return false for about half of private keys.
// See http://elligator.cr.yp.to/elligator-20130828.pdf.
func ScalarBaseMult(publicKey, representative, privateKey *[32]byte) bool {
var maskedPrivateKey [32]byte
copy(maskedPrivateKey[:], privateKey[:])
maskedPrivateKey[0] &= 248
maskedPrivateKey[31] &= 127
maskedPrivateKey[31] |= 64
var A edwards25519.ExtendedGroupElement
edwards25519.GeScalarMultBase(&A, &maskedPrivateKey)
var inv1 edwards25519.FieldElement
edwards25519.FeSub(&inv1, &A.Z, &A.Y)
edwards25519.FeMul(&inv1, &inv1, &A.X)
edwards25519.FeInvert(&inv1, &inv1)
var t0, u edwards25519.FieldElement
edwards25519.FeMul(&u, &inv1, &A.X)
edwards25519.FeAdd(&t0, &A.Y, &A.Z)
edwards25519.FeMul(&u, &u, &t0)
var v edwards25519.FieldElement
edwards25519.FeMul(&v, &t0, &inv1)
edwards25519.FeMul(&v, &v, &A.Z)
edwards25519.FeMul(&v, &v, &sqrtMinusAPlus2)
var b edwards25519.FieldElement
edwards25519.FeAdd(&b, &u, &edwards25519.A)
var c, b3, b7, b8 edwards25519.FieldElement
edwards25519.FeSquare(&b3, &b) // 2
edwards25519.FeMul(&b3, &b3, &b) // 3
edwards25519.FeSquare(&c, &b3) // 6
edwards25519.FeMul(&b7, &c, &b) // 7
edwards25519.FeMul(&b8, &b7, &b) // 8
edwards25519.FeMul(&c, &b7, &u)
q58(&c, &c)
var chi edwards25519.FieldElement
edwards25519.FeSquare(&chi, &c)
edwards25519.FeSquare(&chi, &chi)
edwards25519.FeSquare(&t0, &u)
edwards25519.FeMul(&chi, &chi, &t0)
edwards25519.FeSquare(&t0, &b7) // 14
edwards25519.FeMul(&chi, &chi, &t0)
edwards25519.FeNeg(&chi, &chi)
var chiBytes [32]byte
edwards25519.FeToBytes(&chiBytes, &chi)
// chi[1] is either 0 or 0xff
if chiBytes[1] == 0xff {
return false
}
// Calculate r1 = sqrt(-u/(2*(u+A)))
var r1 edwards25519.FieldElement
edwards25519.FeMul(&r1, &c, &u)
edwards25519.FeMul(&r1, &r1, &b3)
edwards25519.FeMul(&r1, &r1, &sqrtMinusHalf)
var maybeSqrtM1 edwards25519.FieldElement
edwards25519.FeSquare(&t0, &r1)
edwards25519.FeMul(&t0, &t0, &b)
edwards25519.FeAdd(&t0, &t0, &t0)
edwards25519.FeAdd(&t0, &t0, &u)
edwards25519.FeOne(&maybeSqrtM1)
edwards25519.FeCMove(&maybeSqrtM1, &edwards25519.SqrtM1, edwards25519.FeIsNonZero(&t0))
edwards25519.FeMul(&r1, &r1, &maybeSqrtM1)
// Calculate r = sqrt(-(u+A)/(2u))
var r edwards25519.FieldElement
edwards25519.FeSquare(&t0, &c) // 2
edwards25519.FeMul(&t0, &t0, &c) // 3
edwards25519.FeSquare(&t0, &t0) // 6
edwards25519.FeMul(&r, &t0, &c) // 7
edwards25519.FeSquare(&t0, &u) // 2
edwards25519.FeMul(&t0, &t0, &u) // 3
edwards25519.FeMul(&r, &r, &t0)
edwards25519.FeSquare(&t0, &b8) // 16
edwards25519.FeMul(&t0, &t0, &b8) // 24
edwards25519.FeMul(&t0, &t0, &b) // 25
edwards25519.FeMul(&r, &r, &t0)
edwards25519.FeMul(&r, &r, &sqrtMinusHalf)
edwards25519.FeSquare(&t0, &r)
edwards25519.FeMul(&t0, &t0, &u)
edwards25519.FeAdd(&t0, &t0, &t0)
edwards25519.FeAdd(&t0, &t0, &b)
edwards25519.FeOne(&maybeSqrtM1)
edwards25519.FeCMove(&maybeSqrtM1, &edwards25519.SqrtM1, edwards25519.FeIsNonZero(&t0))
edwards25519.FeMul(&r, &r, &maybeSqrtM1)
var vBytes [32]byte
edwards25519.FeToBytes(&vBytes, &v)
vInSquareRootImage := feBytesLE(&vBytes, &halfQMinus1Bytes)
edwards25519.FeCMove(&r, &r1, vInSquareRootImage)
edwards25519.FeToBytes(publicKey, &u)
edwards25519.FeToBytes(representative, &r)
return true
}
// q58 calculates out = z^((p-5)/8).
func q58(out, z *edwards25519.FieldElement) {
var t1, t2, t3 edwards25519.FieldElement
var i int
edwards25519.FeSquare(&t1, z) // 2^1
edwards25519.FeMul(&t1, &t1, z) // 2^1 + 2^0
edwards25519.FeSquare(&t1, &t1) // 2^2 + 2^1
edwards25519.FeSquare(&t2, &t1) // 2^3 + 2^2
edwards25519.FeSquare(&t2, &t2) // 2^4 + 2^3
edwards25519.FeMul(&t2, &t2, &t1) // 4,3,2,1
edwards25519.FeMul(&t1, &t2, z) // 4..0
edwards25519.FeSquare(&t2, &t1) // 5..1
for i = 1; i < 5; i++ { // 9,8,7,6,5
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t1, &t2, &t1) // 9,8,7,6,5,4,3,2,1,0
edwards25519.FeSquare(&t2, &t1) // 10..1
for i = 1; i < 10; i++ { // 19..10
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t2, &t2, &t1) // 19..0
edwards25519.FeSquare(&t3, &t2) // 20..1
for i = 1; i < 20; i++ { // 39..20
edwards25519.FeSquare(&t3, &t3)
}
edwards25519.FeMul(&t2, &t3, &t2) // 39..0
edwards25519.FeSquare(&t2, &t2) // 40..1
for i = 1; i < 10; i++ { // 49..10
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t1, &t2, &t1) // 49..0
edwards25519.FeSquare(&t2, &t1) // 50..1
for i = 1; i < 50; i++ { // 99..50
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t2, &t2, &t1) // 99..0
edwards25519.FeSquare(&t3, &t2) // 100..1
for i = 1; i < 100; i++ { // 199..100
edwards25519.FeSquare(&t3, &t3)
}
edwards25519.FeMul(&t2, &t3, &t2) // 199..0
edwards25519.FeSquare(&t2, &t2) // 200..1
for i = 1; i < 50; i++ { // 249..50
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t1, &t2, &t1) // 249..0
edwards25519.FeSquare(&t1, &t1) // 250..1
edwards25519.FeSquare(&t1, &t1) // 251..2
edwards25519.FeMul(out, &t1, z) // 251..2,0
}
// chi calculates out = z^((p-1)/2). The result is either 1, 0, or -1 depending
// on whether z is a non-zero square, zero, or a non-square.
func chi(out, z *edwards25519.FieldElement) {
var t0, t1, t2, t3 edwards25519.FieldElement
var i int
edwards25519.FeSquare(&t0, z) // 2^1
edwards25519.FeMul(&t1, &t0, z) // 2^1 + 2^0
edwards25519.FeSquare(&t0, &t1) // 2^2 + 2^1
edwards25519.FeSquare(&t2, &t0) // 2^3 + 2^2
edwards25519.FeSquare(&t2, &t2) // 4,3
edwards25519.FeMul(&t2, &t2, &t0) // 4,3,2,1
edwards25519.FeMul(&t1, &t2, z) // 4..0
edwards25519.FeSquare(&t2, &t1) // 5..1
for i = 1; i < 5; i++ { // 9,8,7,6,5
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t1, &t2, &t1) // 9,8,7,6,5,4,3,2,1,0
edwards25519.FeSquare(&t2, &t1) // 10..1
for i = 1; i < 10; i++ { // 19..10
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t2, &t2, &t1) // 19..0
edwards25519.FeSquare(&t3, &t2) // 20..1
for i = 1; i < 20; i++ { // 39..20
edwards25519.FeSquare(&t3, &t3)
}
edwards25519.FeMul(&t2, &t3, &t2) // 39..0
edwards25519.FeSquare(&t2, &t2) // 40..1
for i = 1; i < 10; i++ { // 49..10
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t1, &t2, &t1) // 49..0
edwards25519.FeSquare(&t2, &t1) // 50..1
for i = 1; i < 50; i++ { // 99..50
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t2, &t2, &t1) // 99..0
edwards25519.FeSquare(&t3, &t2) // 100..1
for i = 1; i < 100; i++ { // 199..100
edwards25519.FeSquare(&t3, &t3)
}
edwards25519.FeMul(&t2, &t3, &t2) // 199..0
edwards25519.FeSquare(&t2, &t2) // 200..1
for i = 1; i < 50; i++ { // 249..50
edwards25519.FeSquare(&t2, &t2)
}
edwards25519.FeMul(&t1, &t2, &t1) // 249..0
edwards25519.FeSquare(&t1, &t1) // 250..1
for i = 1; i < 4; i++ { // 253..4
edwards25519.FeSquare(&t1, &t1)
}
edwards25519.FeMul(out, &t1, &t0) // 253..4,2,1
}
// RepresentativeToPublicKey converts a uniform representative value for a
// curve25519 public key, as produced by ScalarBaseMult, to a curve25519 public
// key.
func RepresentativeToPublicKey(publicKey, representative *[32]byte) {
var rr2, v, e edwards25519.FieldElement
edwards25519.FeFromBytes(&rr2, representative)
edwards25519.FeSquare2(&rr2, &rr2)
rr2[0]++
edwards25519.FeInvert(&rr2, &rr2)
edwards25519.FeMul(&v, &edwards25519.A, &rr2)
edwards25519.FeNeg(&v, &v)
var v2, v3 edwards25519.FieldElement
edwards25519.FeSquare(&v2, &v)
edwards25519.FeMul(&v3, &v, &v2)
edwards25519.FeAdd(&e, &v3, &v)
edwards25519.FeMul(&v2, &v2, &edwards25519.A)
edwards25519.FeAdd(&e, &v2, &e)
chi(&e, &e)
var eBytes [32]byte
edwards25519.FeToBytes(&eBytes, &e)
// eBytes[1] is either 0 (for e = 1) or 0xff (for e = -1)
eIsMinus1 := int32(eBytes[1]) & 1
var negV edwards25519.FieldElement
edwards25519.FeNeg(&negV, &v)
edwards25519.FeCMove(&v, &negV, eIsMinus1)
edwards25519.FeZero(&v2)
edwards25519.FeCMove(&v2, &edwards25519.A, eIsMinus1)
edwards25519.FeSub(&v, &v, &v2)
edwards25519.FeToBytes(publicKey, &v)
}