Siddarth Kumar 926f6a3c72 Revert "test: bump go-libp2p"
This reverts commit d0ca4447c6c5642830354740d045f453eb3e77e8.
2024-01-18 20:29:33 +00:00

589 lines
16 KiB
Go

package stun
import (
"crypto/rand"
"encoding/base64"
"errors"
"fmt"
"io"
)
const (
// magicCookie is fixed value that aids in distinguishing STUN packets
// from packets of other protocols when STUN is multiplexed with those
// other protocols on the same Port.
//
// The magic cookie field MUST contain the fixed value 0x2112A442 in
// network byte order.
//
// Defined in "STUN Message Structure", section 6.
magicCookie = 0x2112A442
attributeHeaderSize = 4
messageHeaderSize = 20
// TransactionIDSize is length of transaction id array (in bytes).
TransactionIDSize = 12 // 96 bit
)
// NewTransactionID returns new random transaction ID using crypto/rand
// as source.
func NewTransactionID() (b [TransactionIDSize]byte) {
readFullOrPanic(rand.Reader, b[:])
return b
}
// IsMessage returns true if b looks like STUN message.
// Useful for multiplexing. IsMessage does not guarantee
// that decoding will be successful.
func IsMessage(b []byte) bool {
return len(b) >= messageHeaderSize && bin.Uint32(b[4:8]) == magicCookie
}
// New returns *Message with pre-allocated Raw.
func New() *Message {
const defaultRawCapacity = 120
return &Message{
Raw: make([]byte, messageHeaderSize, defaultRawCapacity),
}
}
// ErrDecodeToNil occurs on Decode(data, nil) call.
var ErrDecodeToNil = errors.New("attempt to decode to nil message")
// Decode decodes Message from data to m, returning error if any.
func Decode(data []byte, m *Message) error {
if m == nil {
return ErrDecodeToNil
}
m.Raw = append(m.Raw[:0], data...)
return m.Decode()
}
// Message represents a single STUN packet. It uses aggressive internal
// buffering to enable zero-allocation encoding and decoding,
// so there are some usage constraints:
//
// Message, its fields, results of m.Get or any attribute a.GetFrom
// are valid only until Message.Raw is not modified.
type Message struct {
Type MessageType
Length uint32 // len(Raw) not including header
TransactionID [TransactionIDSize]byte
Attributes Attributes
Raw []byte
}
// AddTo sets b.TransactionID to m.TransactionID.
//
// Implements Setter to aid in crafting responses.
func (m *Message) AddTo(b *Message) error {
b.TransactionID = m.TransactionID
b.WriteTransactionID()
return nil
}
// NewTransactionID sets m.TransactionID to random value from crypto/rand
// and returns error if any.
func (m *Message) NewTransactionID() error {
_, err := io.ReadFull(rand.Reader, m.TransactionID[:])
if err == nil {
m.WriteTransactionID()
}
return err
}
func (m *Message) String() string {
tID := base64.StdEncoding.EncodeToString(m.TransactionID[:])
return fmt.Sprintf("%s l=%d attrs=%d id=%s", m.Type, m.Length, len(m.Attributes), tID)
}
// Reset resets Message, attributes and underlying buffer length.
func (m *Message) Reset() {
m.Raw = m.Raw[:0]
m.Length = 0
m.Attributes = m.Attributes[:0]
}
// grow ensures that internal buffer has n length.
func (m *Message) grow(n int) {
if len(m.Raw) >= n {
return
}
if cap(m.Raw) >= n {
m.Raw = m.Raw[:n]
return
}
m.Raw = append(m.Raw, make([]byte, n-len(m.Raw))...)
}
// Add appends new attribute to message. Not goroutine-safe.
//
// Value of attribute is copied to internal buffer so
// it is safe to reuse v.
func (m *Message) Add(t AttrType, v []byte) {
// Allocating buffer for TLV (type-length-value).
// T = t, L = len(v), V = v.
// m.Raw will look like:
// [0:20] <- message header
// [20:20+m.Length] <- existing message attributes
// [20+m.Length:20+m.Length+len(v) + 4] <- allocated buffer for new TLV
// [first:last] <- same as previous
// [0 1|2 3|4 4 + len(v)] <- mapping for allocated buffer
// T L V
allocSize := attributeHeaderSize + len(v) // ~ len(TLV) = len(TL) + len(V)
first := messageHeaderSize + int(m.Length) // first byte number
last := first + allocSize // last byte number
m.grow(last) // growing cap(Raw) to fit TLV
m.Raw = m.Raw[:last] // now len(Raw) = last
m.Length += uint32(allocSize) // rendering length change
// Sub-slicing internal buffer to simplify encoding.
buf := m.Raw[first:last] // slice for TLV
value := buf[attributeHeaderSize:] // slice for V
attr := RawAttribute{
Type: t, // T
Length: uint16(len(v)), // L
Value: value, // V
}
// Encoding attribute TLV to allocated buffer.
bin.PutUint16(buf[0:2], attr.Type.Value()) // T
bin.PutUint16(buf[2:4], attr.Length) // L
copy(value, v) // V
// Checking that attribute value needs padding.
if attr.Length%padding != 0 {
// Performing padding.
bytesToAdd := nearestPaddedValueLength(len(v)) - len(v)
last += bytesToAdd
m.grow(last)
// setting all padding bytes to zero
// to prevent data leak from previous
// data in next bytesToAdd bytes
buf = m.Raw[last-bytesToAdd : last]
for i := range buf {
buf[i] = 0
}
m.Raw = m.Raw[:last] // increasing buffer length
m.Length += uint32(bytesToAdd) // rendering length change
}
m.Attributes = append(m.Attributes, attr)
m.WriteLength()
}
func attrSliceEqual(a, b Attributes) bool {
for _, attr := range a {
found := false
for _, attrB := range b {
if attrB.Type != attr.Type {
continue
}
if attrB.Equal(attr) {
found = true
break
}
}
if !found {
return false
}
}
return true
}
func attrEqual(a, b Attributes) bool {
if a == nil && b == nil {
return true
}
if a == nil || b == nil {
return false
}
if len(a) != len(b) {
return false
}
if !attrSliceEqual(a, b) {
return false
}
if !attrSliceEqual(b, a) {
return false
}
return true
}
// Equal returns true if Message b equals to m.
// Ignores m.Raw.
func (m *Message) Equal(b *Message) bool {
if m == nil && b == nil {
return true
}
if m == nil || b == nil {
return false
}
if m.Type != b.Type {
return false
}
if m.TransactionID != b.TransactionID {
return false
}
if m.Length != b.Length {
return false
}
if !attrEqual(m.Attributes, b.Attributes) {
return false
}
return true
}
// WriteLength writes m.Length to m.Raw.
func (m *Message) WriteLength() {
m.grow(4)
bin.PutUint16(m.Raw[2:4], uint16(m.Length))
}
// WriteHeader writes header to underlying buffer. Not goroutine-safe.
func (m *Message) WriteHeader() {
m.grow(messageHeaderSize)
_ = m.Raw[:messageHeaderSize] // early bounds check to guarantee safety of writes below
m.WriteType()
m.WriteLength()
bin.PutUint32(m.Raw[4:8], magicCookie) // magic cookie
copy(m.Raw[8:messageHeaderSize], m.TransactionID[:]) // transaction ID
}
// WriteTransactionID writes m.TransactionID to m.Raw.
func (m *Message) WriteTransactionID() {
copy(m.Raw[8:messageHeaderSize], m.TransactionID[:]) // transaction ID
}
// WriteAttributes encodes all m.Attributes to m.
func (m *Message) WriteAttributes() {
attributes := m.Attributes
m.Attributes = attributes[:0]
for _, a := range attributes {
m.Add(a.Type, a.Value)
}
m.Attributes = attributes
}
// WriteType writes m.Type to m.Raw.
func (m *Message) WriteType() {
m.grow(2)
bin.PutUint16(m.Raw[0:2], m.Type.Value()) // message type
}
// SetType sets m.Type and writes it to m.Raw.
func (m *Message) SetType(t MessageType) {
m.Type = t
m.WriteType()
}
// Encode re-encodes message into m.Raw.
func (m *Message) Encode() {
m.Raw = m.Raw[:0]
m.WriteHeader()
m.Length = 0
m.WriteAttributes()
}
// WriteTo implements WriterTo via calling Write(m.Raw) on w and returning
// call result.
func (m *Message) WriteTo(w io.Writer) (int64, error) {
n, err := w.Write(m.Raw)
return int64(n), err
}
// ReadFrom implements ReaderFrom. Reads message from r into m.Raw,
// Decodes it and return error if any. If m.Raw is too small, will return
// ErrUnexpectedEOF, ErrUnexpectedHeaderEOF or *DecodeErr.
//
// Can return *DecodeErr while decoding too.
func (m *Message) ReadFrom(r io.Reader) (int64, error) {
tBuf := m.Raw[:cap(m.Raw)]
var (
n int
err error
)
if n, err = r.Read(tBuf); err != nil {
return int64(n), err
}
m.Raw = tBuf[:n]
return int64(n), m.Decode()
}
// ErrUnexpectedHeaderEOF means that there were not enough bytes in
// m.Raw to read header.
var ErrUnexpectedHeaderEOF = errors.New("unexpected EOF: not enough bytes to read header")
// Decode decodes m.Raw into m.
func (m *Message) Decode() error {
// decoding message header
buf := m.Raw
if len(buf) < messageHeaderSize {
return ErrUnexpectedHeaderEOF
}
var (
t = bin.Uint16(buf[0:2]) // first 2 bytes
size = int(bin.Uint16(buf[2:4])) // second 2 bytes
cookie = bin.Uint32(buf[4:8]) // last 4 bytes
fullSize = messageHeaderSize + size // len(m.Raw)
)
if cookie != magicCookie {
msg := fmt.Sprintf("%x is invalid magic cookie (should be %x)", cookie, magicCookie)
return newDecodeErr("message", "cookie", msg)
}
if len(buf) < fullSize {
msg := fmt.Sprintf("buffer length %d is less than %d (expected message size)", len(buf), fullSize)
return newAttrDecodeErr("message", msg)
}
// saving header data
m.Type.ReadValue(t)
m.Length = uint32(size)
copy(m.TransactionID[:], buf[8:messageHeaderSize])
m.Attributes = m.Attributes[:0]
var (
offset = 0
b = buf[messageHeaderSize:fullSize]
)
for offset < size {
// checking that we have enough bytes to read header
if len(b) < attributeHeaderSize {
msg := fmt.Sprintf("buffer length %d is less than %d (expected header size)", len(b), attributeHeaderSize)
return newAttrDecodeErr("header", msg)
}
var (
a = RawAttribute{
Type: compatAttrType(bin.Uint16(b[0:2])), // first 2 bytes
Length: bin.Uint16(b[2:4]), // second 2 bytes
}
aL = int(a.Length) // attribute length
aBuffL = nearestPaddedValueLength(aL) // expected buffer length (with padding)
)
b = b[attributeHeaderSize:] // slicing again to simplify value read
offset += attributeHeaderSize
if len(b) < aBuffL { // checking size
msg := fmt.Sprintf("buffer length %d is less than %d (expected value size for %s)", len(b), aBuffL, a.Type)
return newAttrDecodeErr("value", msg)
}
a.Value = b[:aL]
offset += aBuffL
b = b[aBuffL:]
m.Attributes = append(m.Attributes, a)
}
return nil
}
// Write decodes message and return error if any.
//
// Any error is unrecoverable, but message could be partially decoded.
func (m *Message) Write(tBuf []byte) (int, error) {
m.Raw = append(m.Raw[:0], tBuf...)
return len(tBuf), m.Decode()
}
// CloneTo clones m to b securing any further m mutations.
func (m *Message) CloneTo(b *Message) error {
// TODO(ar): implement low-level copy.
b.Raw = append(b.Raw[:0], m.Raw...)
return b.Decode()
}
// MessageClass is 8-bit representation of 2-bit class of STUN Message Class.
type MessageClass byte
// Possible values for message class in STUN Message Type.
const (
ClassRequest MessageClass = 0x00 // 0b00
ClassIndication MessageClass = 0x01 // 0b01
ClassSuccessResponse MessageClass = 0x02 // 0b10
ClassErrorResponse MessageClass = 0x03 // 0b11
)
// Common STUN message types.
var (
// Binding request message type.
BindingRequest = NewType(MethodBinding, ClassRequest)
// Binding success response message type
BindingSuccess = NewType(MethodBinding, ClassSuccessResponse)
// Binding error response message type.
BindingError = NewType(MethodBinding, ClassErrorResponse)
)
func (c MessageClass) String() string {
switch c {
case ClassRequest:
return "request"
case ClassIndication:
return "indication"
case ClassSuccessResponse:
return "success response"
case ClassErrorResponse:
return "error response"
default:
panic("unknown message class") // nolint: never happens unless wrongly casted
}
}
// Method is uint16 representation of 12-bit STUN method.
type Method uint16
// Possible methods for STUN Message.
const (
MethodBinding Method = 0x001
MethodAllocate Method = 0x003
MethodRefresh Method = 0x004
MethodSend Method = 0x006
MethodData Method = 0x007
MethodCreatePermission Method = 0x008
MethodChannelBind Method = 0x009
)
// Methods from RFC 6062.
const (
MethodConnect Method = 0x000a
MethodConnectionBind Method = 0x000b
MethodConnectionAttempt Method = 0x000c
)
var methodName = map[Method]string{
MethodBinding: "Binding",
MethodAllocate: "Allocate",
MethodRefresh: "Refresh",
MethodSend: "Send",
MethodData: "Data",
MethodCreatePermission: "CreatePermission",
MethodChannelBind: "ChannelBind",
// RFC 6062.
MethodConnect: "Connect",
MethodConnectionBind: "ConnectionBind",
MethodConnectionAttempt: "ConnectionAttempt",
}
func (m Method) String() string {
s, ok := methodName[m]
if !ok {
// Falling back to hex representation.
s = fmt.Sprintf("0x%x", uint16(m))
}
return s
}
// MessageType is STUN Message Type Field.
type MessageType struct {
Method Method // e.g. binding
Class MessageClass // e.g. request
}
// AddTo sets m type to t.
func (t MessageType) AddTo(m *Message) error {
m.SetType(t)
return nil
}
// NewType returns new message type with provided method and class.
func NewType(method Method, class MessageClass) MessageType {
return MessageType{
Method: method,
Class: class,
}
}
const (
methodABits = 0xf // 0b0000000000001111
methodBBits = 0x70 // 0b0000000001110000
methodDBits = 0xf80 // 0b0000111110000000
methodBShift = 1
methodDShift = 2
firstBit = 0x1
secondBit = 0x2
c0Bit = firstBit
c1Bit = secondBit
classC0Shift = 4
classC1Shift = 7
)
// Value returns bit representation of messageType.
func (t MessageType) Value() uint16 {
// 0 1
// 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +--+--+-+-+-+-+-+-+-+-+-+-+-+-+
// |M |M |M|M|M|C|M|M|M|C|M|M|M|M|
// |11|10|9|8|7|1|6|5|4|0|3|2|1|0|
// +--+--+-+-+-+-+-+-+-+-+-+-+-+-+
// Figure 3: Format of STUN Message Type Field
// Warning: Abandon all hope ye who enter here.
// Splitting M into A(M0-M3), B(M4-M6), D(M7-M11).
m := uint16(t.Method)
a := m & methodABits // A = M * 0b0000000000001111 (right 4 bits)
b := m & methodBBits // B = M * 0b0000000001110000 (3 bits after A)
d := m & methodDBits // D = M * 0b0000111110000000 (5 bits after B)
// Shifting to add "holes" for C0 (at 4 bit) and C1 (8 bit).
m = a + (b << methodBShift) + (d << methodDShift)
// C0 is zero bit of C, C1 is first bit.
// C0 = C * 0b01, C1 = (C * 0b10) >> 1
// Ct = C0 << 4 + C1 << 8.
// Optimizations: "((C * 0b10) >> 1) << 8" as "(C * 0b10) << 7"
// We need C0 shifted by 4, and C1 by 8 to fit "11" and "7" positions
// (see figure 3).
c := uint16(t.Class)
c0 := (c & c0Bit) << classC0Shift
c1 := (c & c1Bit) << classC1Shift
class := c0 + c1
return m + class
}
// ReadValue decodes uint16 into MessageType.
func (t *MessageType) ReadValue(v uint16) {
// Decoding class.
// We are taking first bit from v >> 4 and second from v >> 7.
c0 := (v >> classC0Shift) & c0Bit
c1 := (v >> classC1Shift) & c1Bit
class := c0 + c1
t.Class = MessageClass(class)
// Decoding method.
a := v & methodABits // A(M0-M3)
b := (v >> methodBShift) & methodBBits // B(M4-M6)
d := (v >> methodDShift) & methodDBits // D(M7-M11)
m := a + b + d
t.Method = Method(m)
}
func (t MessageType) String() string {
return fmt.Sprintf("%s %s", t.Method, t.Class)
}
// Contains return true if message contain t attribute.
func (m *Message) Contains(t AttrType) bool {
for _, a := range m.Attributes {
if a.Type == t {
return true
}
}
return false
}
type transactionIDValueSetter [TransactionIDSize]byte
// NewTransactionIDSetter returns new Setter that sets message transaction id
// to provided value.
func NewTransactionIDSetter(value [TransactionIDSize]byte) Setter {
return transactionIDValueSetter(value)
}
func (t transactionIDValueSetter) AddTo(m *Message) error {
m.TransactionID = t
m.WriteTransactionID()
return nil
}