status-go/vendor/github.com/mutecomm/go-sqlcipher/v4/fortuna.c

521 lines
13 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
#if defined(_WIN32)
#include <windows.h>
#elif defined(LTC_CLOCK_GETTIME)
#include <time.h> /* struct timespec + clock_gettime */
#else
#include <sys/time.h> /* struct timeval + gettimeofday */
#endif
#endif
/**
@file fortuna.c
Fortuna PRNG, Tom St Denis
*/
/* Implementation of Fortuna by Tom St Denis
We deviate slightly here for reasons of simplicity [and to fit in the API]. First all "sources"
in the AddEntropy function are fixed to 0. Second since no reliable timer is provided
we reseed automatically when len(pool0) >= 64 or every LTC_FORTUNA_WD calls to the read function */
#ifdef LTC_FORTUNA
/* requries LTC_SHA256 and AES */
#if !(defined(LTC_RIJNDAEL) && defined(LTC_SHA256))
#error LTC_FORTUNA requires LTC_SHA256 and LTC_RIJNDAEL (AES)
#endif
#ifndef LTC_FORTUNA_POOLS
#warning LTC_FORTUNA_POOLS was not previously defined (old headers?)
#define LTC_FORTUNA_POOLS 32
#endif
#if LTC_FORTUNA_POOLS < 4 || LTC_FORTUNA_POOLS > 32
#error LTC_FORTUNA_POOLS must be in [4..32]
#endif
const struct ltc_prng_descriptor fortuna_desc = {
"fortuna",
64,
&fortuna_start,
&fortuna_add_entropy,
&fortuna_ready,
&fortuna_read,
&fortuna_done,
&fortuna_export,
&fortuna_import,
&fortuna_test
};
/* update the IV */
static void s_fortuna_update_iv(prng_state *prng)
{
int x;
unsigned char *IV;
/* update IV */
IV = prng->u.fortuna.IV;
for (x = 0; x < 16; x++) {
IV[x] = (IV[x] + 1) & 255;
if (IV[x] != 0) break;
}
}
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
/* get the current time in 100ms steps */
static ulong64 s_fortuna_current_time(void)
{
ulong64 cur_time;
#if defined(_WIN32)
FILETIME CurrentTime;
ULARGE_INTEGER ul;
GetSystemTimeAsFileTime(&CurrentTime);
ul.LowPart = CurrentTime.dwLowDateTime;
ul.HighPart = CurrentTime.dwHighDateTime;
cur_time = ul.QuadPart; /* now we have 100ns intervals since 1 January 1601 */
cur_time -= CONST64(116444736000000000); /* subtract 100ns intervals between 1601-1970 */
cur_time /= 10; /* 100ns intervals > microseconds */
#elif defined(LTC_CLOCK_GETTIME)
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
cur_time = (ulong64)(ts.tv_sec) * 1000000 + (ulong64)(ts.tv_nsec) / 1000; /* get microseconds */
#else
struct timeval tv;
gettimeofday(&tv, NULL);
cur_time = (ulong64)(tv.tv_sec) * 1000000 + (ulong64)(tv.tv_usec); /* get microseconds */
#endif
return cur_time / 100;
}
#endif
/* reseed the PRNG */
static int s_fortuna_reseed(prng_state *prng)
{
unsigned char tmp[MAXBLOCKSIZE];
hash_state md;
ulong64 reset_cnt;
int err, x;
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
ulong64 now = s_fortuna_current_time();
if (now == prng->u.fortuna.wd) {
return CRYPT_OK;
}
#else
if (++prng->u.fortuna.wd < LTC_FORTUNA_WD) {
return CRYPT_OK;
}
#endif
/* new K == LTC_SHA256(K || s) where s == LTC_SHA256(P0) || LTC_SHA256(P1) ... */
sha256_init(&md);
if ((err = sha256_process(&md, prng->u.fortuna.K, 32)) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
reset_cnt = prng->u.fortuna.reset_cnt + 1;
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
if (x == 0 || ((reset_cnt >> (x-1)) & 1) == 0) {
/* terminate this hash */
if ((err = sha256_done(&prng->u.fortuna.pool[x], tmp)) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
/* add it to the string */
if ((err = sha256_process(&md, tmp, 32)) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
/* reset this pool */
if ((err = sha256_init(&prng->u.fortuna.pool[x])) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
} else {
break;
}
}
/* finish key */
if ((err = sha256_done(&md, prng->u.fortuna.K)) != CRYPT_OK) {
return err;
}
if ((err = rijndael_setup(prng->u.fortuna.K, 32, 0, &prng->u.fortuna.skey)) != CRYPT_OK) {
return err;
}
s_fortuna_update_iv(prng);
/* reset/update internals */
prng->u.fortuna.pool0_len = 0;
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
prng->u.fortuna.wd = now;
#else
prng->u.fortuna.wd = 0;
#endif
prng->u.fortuna.reset_cnt = reset_cnt;
#ifdef LTC_CLEAN_STACK
zeromem(&md, sizeof(md));
zeromem(tmp, sizeof(tmp));
#endif
return CRYPT_OK;
}
/**
"Update Seed File"-compliant update of K
@param in The PRNG state
@param inlen Size of the state
@param prng The PRNG to import
@return CRYPT_OK if successful
*/
int fortuna_update_seed(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
unsigned char tmp[MAXBLOCKSIZE];
hash_state md;
LTC_MUTEX_LOCK(&prng->lock);
/* new K = LTC_SHA256(K || in) */
sha256_init(&md);
if ((err = sha256_process(&md, prng->u.fortuna.K, 32)) != CRYPT_OK) {
sha256_done(&md, tmp);
goto LBL_UNLOCK;
}
if ((err = sha256_process(&md, in, inlen)) != CRYPT_OK) {
sha256_done(&md, tmp);
goto LBL_UNLOCK;
}
/* finish key */
if ((err = sha256_done(&md, prng->u.fortuna.K)) != CRYPT_OK) {
goto LBL_UNLOCK;
}
s_fortuna_update_iv(prng);
LBL_UNLOCK:
LTC_MUTEX_UNLOCK(&prng->lock);
#ifdef LTC_CLEAN_STACK
zeromem(&md, sizeof(md));
#endif
return err;
}
/**
Start the PRNG
@param prng [out] The PRNG state to initialize
@return CRYPT_OK if successful
*/
int fortuna_start(prng_state *prng)
{
int err, x, y;
unsigned char tmp[MAXBLOCKSIZE];
LTC_ARGCHK(prng != NULL);
prng->ready = 0;
/* initialize the pools */
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
if ((err = sha256_init(&prng->u.fortuna.pool[x])) != CRYPT_OK) {
for (y = 0; y < x; y++) {
sha256_done(&prng->u.fortuna.pool[y], tmp);
}
return err;
}
}
prng->u.fortuna.pool_idx = prng->u.fortuna.pool0_len = 0;
prng->u.fortuna.reset_cnt = prng->u.fortuna.wd = 0;
/* reset bufs */
zeromem(prng->u.fortuna.K, 32);
if ((err = rijndael_setup(prng->u.fortuna.K, 32, 0, &prng->u.fortuna.skey)) != CRYPT_OK) {
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
sha256_done(&prng->u.fortuna.pool[x], tmp);
}
return err;
}
zeromem(prng->u.fortuna.IV, 16);
LTC_MUTEX_INIT(&prng->lock)
return CRYPT_OK;
}
static int s_fortuna_add(unsigned long source, unsigned long pool, const unsigned char *in, unsigned long inlen, prng_state *prng)
{
unsigned char tmp[2];
int err;
/* ensure inlen <= 32 */
if (inlen > 32) {
inlen = 32;
}
/* add s || length(in) || in to pool[pool_idx] */
tmp[0] = (unsigned char)source;
tmp[1] = (unsigned char)inlen;
if ((err = sha256_process(&prng->u.fortuna.pool[pool], tmp, 2)) != CRYPT_OK) {
return err;
}
if ((err = sha256_process(&prng->u.fortuna.pool[pool], in, inlen)) != CRYPT_OK) {
return err;
}
if (pool == 0) {
prng->u.fortuna.pool0_len += inlen;
}
return CRYPT_OK; /* success */
}
/**
Add random event to the PRNG state as proposed by the original paper.
@param source The source this random event comes from (0 .. 255)
@param pool The pool where to add the data to (0 .. LTC_FORTUNA_POOLS)
@param in The data to add
@param inlen Length of the data to add
@param prng PRNG state to update
@return CRYPT_OK if successful
*/
int fortuna_add_random_event(unsigned long source, unsigned long pool, const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
LTC_ARGCHK(prng != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen > 0);
LTC_ARGCHK(source <= 255);
LTC_ARGCHK(pool < LTC_FORTUNA_POOLS);
LTC_MUTEX_LOCK(&prng->lock);
err = s_fortuna_add(source, pool, in, inlen, prng);
LTC_MUTEX_UNLOCK(&prng->lock);
return err;
}
/**
Add entropy to the PRNG state
@param in The data to add
@param inlen Length of the data to add
@param prng PRNG state to update
@return CRYPT_OK if successful
*/
int fortuna_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
LTC_ARGCHK(prng != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen > 0);
LTC_MUTEX_LOCK(&prng->lock);
err = s_fortuna_add(0, prng->u.fortuna.pool_idx, in, inlen, prng);
if (err == CRYPT_OK) {
++(prng->u.fortuna.pool_idx);
prng->u.fortuna.pool_idx %= LTC_FORTUNA_POOLS;
}
LTC_MUTEX_UNLOCK(&prng->lock);
return err;
}
/**
Make the PRNG ready to read from
@param prng The PRNG to make active
@return CRYPT_OK if successful
*/
int fortuna_ready(prng_state *prng)
{
int err;
LTC_ARGCHK(prng != NULL);
LTC_MUTEX_LOCK(&prng->lock);
/* make sure the reseed doesn't fail because
* of the chosen rate limit */
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
prng->u.fortuna.wd = s_fortuna_current_time() - 1;
#else
prng->u.fortuna.wd = LTC_FORTUNA_WD;
#endif
err = s_fortuna_reseed(prng);
prng->ready = (err == CRYPT_OK) ? 1 : 0;
LTC_MUTEX_UNLOCK(&prng->lock);
return err;
}
/**
Read from the PRNG
@param out Destination
@param outlen Length of output
@param prng The active PRNG to read from
@return Number of octets read
*/
unsigned long fortuna_read(unsigned char *out, unsigned long outlen, prng_state *prng)
{
unsigned char tmp[16];
unsigned long tlen = 0;
if (outlen == 0 || prng == NULL || out == NULL) return 0;
LTC_MUTEX_LOCK(&prng->lock);
if (!prng->ready) {
goto LBL_UNLOCK;
}
/* do we have to reseed? */
if (prng->u.fortuna.pool0_len >= 64) {
if (s_fortuna_reseed(prng) != CRYPT_OK) {
goto LBL_UNLOCK;
}
}
/* ensure that one reseed happened before allowing to read */
if (prng->u.fortuna.reset_cnt == 0) {
goto LBL_UNLOCK;
}
/* now generate the blocks required */
tlen = outlen;
/* handle whole blocks without the extra XMEMCPY */
while (outlen >= 16) {
/* encrypt the IV and store it */
rijndael_ecb_encrypt(prng->u.fortuna.IV, out, &prng->u.fortuna.skey);
out += 16;
outlen -= 16;
s_fortuna_update_iv(prng);
}
/* left over bytes? */
if (outlen > 0) {
rijndael_ecb_encrypt(prng->u.fortuna.IV, tmp, &prng->u.fortuna.skey);
XMEMCPY(out, tmp, outlen);
s_fortuna_update_iv(prng);
}
/* generate new key */
rijndael_ecb_encrypt(prng->u.fortuna.IV, prng->u.fortuna.K , &prng->u.fortuna.skey);
s_fortuna_update_iv(prng);
rijndael_ecb_encrypt(prng->u.fortuna.IV, prng->u.fortuna.K+16, &prng->u.fortuna.skey);
s_fortuna_update_iv(prng);
if (rijndael_setup(prng->u.fortuna.K, 32, 0, &prng->u.fortuna.skey) != CRYPT_OK) {
tlen = 0;
}
LBL_UNLOCK:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
LTC_MUTEX_UNLOCK(&prng->lock);
return tlen;
}
/**
Terminate the PRNG
@param prng The PRNG to terminate
@return CRYPT_OK if successful
*/
int fortuna_done(prng_state *prng)
{
int err, x;
unsigned char tmp[32];
LTC_ARGCHK(prng != NULL);
LTC_MUTEX_LOCK(&prng->lock);
prng->ready = 0;
/* terminate all the hashes */
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
if ((err = sha256_done(&(prng->u.fortuna.pool[x]), tmp)) != CRYPT_OK) {
goto LBL_UNLOCK;
}
}
/* call cipher done when we invent one ;-) */
err = CRYPT_OK; /* success */
LBL_UNLOCK:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
LTC_MUTEX_UNLOCK(&prng->lock);
LTC_MUTEX_DESTROY(&prng->lock);
return err;
}
/**
Export the PRNG state
@param out [out] Destination
@param outlen [in/out] Max size and resulting size of the state
@param prng The PRNG to export
@return CRYPT_OK if successful
*/
LTC_PRNG_EXPORT(fortuna)
/**
Import a PRNG state
@param in The PRNG state
@param inlen Size of the state
@param prng The PRNG to import
@return CRYPT_OK if successful
*/
int fortuna_import(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(prng != NULL);
if (inlen < (unsigned long)fortuna_desc.export_size) {
return CRYPT_INVALID_ARG;
}
if ((err = fortuna_start(prng)) != CRYPT_OK) {
return err;
}
if ((err = fortuna_update_seed(in, inlen, prng)) != CRYPT_OK) {
return err;
}
return err;
}
/**
PRNG self-test
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int fortuna_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
if ((err = sha256_test()) != CRYPT_OK) {
return err;
}
return rijndael_test();
#endif
}
#endif