status-go/vendor/github.com/bits-and-blooms/bloom/v3/bloom.go

454 lines
13 KiB
Go

/*
Package bloom provides data structures and methods for creating Bloom filters.
A Bloom filter is a representation of a set of _n_ items, where the main
requirement is to make membership queries; _i.e._, whether an item is a
member of a set.
A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large
multiple of the cardinality of the set to represent) and _k_, the number of hashing
functions on elements of the set. (The actual hashing functions are important, too,
but this is not a parameter for this implementation). A Bloom filter is backed by
a BitSet; a key is represented in the filter by setting the bits at each value of the
hashing functions (modulo _m_). Set membership is done by _testing_ whether the
bits at each value of the hashing functions (again, modulo _m_) are set. If so,
the item is in the set. If the item is actually in the set, a Bloom filter will
never fail (the true positive rate is 1.0); but it is susceptible to false
positives. The art is to choose _k_ and _m_ correctly.
In this implementation, the hashing functions used is murmurhash,
a non-cryptographic hashing function.
This implementation accepts keys for setting as testing as []byte. Thus, to
add a string item, "Love":
uint n = 1000
filter := bloom.New(20*n, 5) // load of 20, 5 keys
filter.Add([]byte("Love"))
Similarly, to test if "Love" is in bloom:
if filter.Test([]byte("Love"))
For numeric data, I recommend that you look into the binary/encoding library. But,
for example, to add a uint32 to the filter:
i := uint32(100)
n1 := make([]byte,4)
binary.BigEndian.PutUint32(n1,i)
f.Add(n1)
Finally, there is a method to estimate the false positive rate of a
Bloom filter with _m_ bits and _k_ hashing functions for a set of size _n_:
if bloom.EstimateFalsePositiveRate(20*n, 5, n) > 0.001 ...
You can use it to validate the computed m, k parameters:
m, k := bloom.EstimateParameters(n, fp)
ActualfpRate := bloom.EstimateFalsePositiveRate(m, k, n)
or
f := bloom.NewWithEstimates(n, fp)
ActualfpRate := bloom.EstimateFalsePositiveRate(f.m, f.k, n)
You would expect ActualfpRate to be close to the desired fp in these cases.
The EstimateFalsePositiveRate function creates a temporary Bloom filter. It is
also relatively expensive and only meant for validation.
*/
package bloom
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"math"
"github.com/bits-and-blooms/bitset"
)
// A BloomFilter is a representation of a set of _n_ items, where the main
// requirement is to make membership queries; _i.e._, whether an item is a
// member of a set.
type BloomFilter struct {
m uint
k uint
b *bitset.BitSet
}
func max(x, y uint) uint {
if x > y {
return x
}
return y
}
// New creates a new Bloom filter with _m_ bits and _k_ hashing functions
// We force _m_ and _k_ to be at least one to avoid panics.
func New(m uint, k uint) *BloomFilter {
return &BloomFilter{max(1, m), max(1, k), bitset.New(m)}
}
// From creates a new Bloom filter with len(_data_) * 64 bits and _k_ hashing
// functions. The data slice is not going to be reset.
func From(data []uint64, k uint) *BloomFilter {
m := uint(len(data) * 64)
return FromWithM(data, m, k)
}
// FromWithM creates a new Bloom filter with _m_ length, _k_ hashing functions.
// The data slice is not going to be reset.
func FromWithM(data []uint64, m, k uint) *BloomFilter {
return &BloomFilter{m, k, bitset.From(data)}
}
// baseHashes returns the four hash values of data that are used to create k
// hashes
func baseHashes(data []byte) [4]uint64 {
var d digest128 // murmur hashing
hash1, hash2, hash3, hash4 := d.sum256(data)
return [4]uint64{
hash1, hash2, hash3, hash4,
}
}
// location returns the ith hashed location using the four base hash values
func location(h [4]uint64, i uint) uint64 {
ii := uint64(i)
return h[ii%2] + ii*h[2+(((ii+(ii%2))%4)/2)]
}
// location returns the ith hashed location using the four base hash values
func (f *BloomFilter) location(h [4]uint64, i uint) uint {
return uint(location(h, i) % uint64(f.m))
}
// EstimateParameters estimates requirements for m and k.
// Based on https://bitbucket.org/ww/bloom/src/829aa19d01d9/bloom.go
// used with permission.
func EstimateParameters(n uint, p float64) (m uint, k uint) {
m = uint(math.Ceil(-1 * float64(n) * math.Log(p) / math.Pow(math.Log(2), 2)))
k = uint(math.Ceil(math.Log(2) * float64(m) / float64(n)))
return
}
// NewWithEstimates creates a new Bloom filter for about n items with fp
// false positive rate
func NewWithEstimates(n uint, fp float64) *BloomFilter {
m, k := EstimateParameters(n, fp)
return New(m, k)
}
// Cap returns the capacity, _m_, of a Bloom filter
func (f *BloomFilter) Cap() uint {
return f.m
}
// K returns the number of hash functions used in the BloomFilter
func (f *BloomFilter) K() uint {
return f.k
}
// BitSet returns the underlying bitset for this filter.
func (f *BloomFilter) BitSet() *bitset.BitSet {
return f.b
}
// Add data to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) Add(data []byte) *BloomFilter {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
f.b.Set(f.location(h, i))
}
return f
}
// Merge the data from two Bloom Filters.
func (f *BloomFilter) Merge(g *BloomFilter) error {
// Make sure the m's and k's are the same, otherwise merging has no real use.
if f.m != g.m {
return fmt.Errorf("m's don't match: %d != %d", f.m, g.m)
}
if f.k != g.k {
return fmt.Errorf("k's don't match: %d != %d", f.m, g.m)
}
f.b.InPlaceUnion(g.b)
return nil
}
// Copy creates a copy of a Bloom filter.
func (f *BloomFilter) Copy() *BloomFilter {
fc := New(f.m, f.k)
fc.Merge(f) // #nosec
return fc
}
// AddString to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) AddString(data string) *BloomFilter {
return f.Add([]byte(data))
}
// Test returns true if the data is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) Test(data []byte) bool {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
if !f.b.Test(f.location(h, i)) {
return false
}
}
return true
}
// TestString returns true if the string is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) TestString(data string) bool {
return f.Test([]byte(data))
}
// TestLocations returns true if all locations are set in the BloomFilter, false
// otherwise.
func (f *BloomFilter) TestLocations(locs []uint64) bool {
for i := 0; i < len(locs); i++ {
if !f.b.Test(uint(locs[i] % uint64(f.m))) {
return false
}
}
return true
}
// TestAndAdd is equivalent to calling Test(data) then Add(data).
// The filter is written to unconditionnally: even if the element is present,
// the corresponding bits are still set. See also TestOrAdd.
// Returns the result of Test.
func (f *BloomFilter) TestAndAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
}
f.b.Set(l)
}
return present
}
// TestAndAddString is the equivalent to calling Test(string) then Add(string).
// The filter is written to unconditionnally: even if the string is present,
// the corresponding bits are still set. See also TestOrAdd.
// Returns the result of Test.
func (f *BloomFilter) TestAndAddString(data string) bool {
return f.TestAndAdd([]byte(data))
}
// TestOrAdd is equivalent to calling Test(data) then if not present Add(data).
// If the element is already in the filter, then the filter is unchanged.
// Returns the result of Test.
func (f *BloomFilter) TestOrAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
f.b.Set(l)
}
}
return present
}
// TestOrAddString is the equivalent to calling Test(string) then if not present Add(string).
// If the string is already in the filter, then the filter is unchanged.
// Returns the result of Test.
func (f *BloomFilter) TestOrAddString(data string) bool {
return f.TestOrAdd([]byte(data))
}
// ClearAll clears all the data in a Bloom filter, removing all keys
func (f *BloomFilter) ClearAll() *BloomFilter {
f.b.ClearAll()
return f
}
// EstimateFalsePositiveRate returns, for a BloomFilter of m bits
// and k hash functions, an estimation of the false positive rate when
//
// storing n entries. This is an empirical, relatively slow
//
// test using integers as keys.
// This function is useful to validate the implementation.
func EstimateFalsePositiveRate(m, k, n uint) (fpRate float64) {
rounds := uint32(100000)
// We construct a new filter.
f := New(m, k)
n1 := make([]byte, 4)
// We populate the filter with n values.
for i := uint32(0); i < uint32(n); i++ {
binary.BigEndian.PutUint32(n1, i)
f.Add(n1)
}
fp := 0
// test for number of rounds
for i := uint32(0); i < rounds; i++ {
binary.BigEndian.PutUint32(n1, i+uint32(n)+1)
if f.Test(n1) {
fp++
}
}
fpRate = float64(fp) / (float64(rounds))
return
}
// Approximating the number of items
// https://en.wikipedia.org/wiki/Bloom_filter#Approximating_the_number_of_items_in_a_Bloom_filter
func (f *BloomFilter) ApproximatedSize() uint32 {
x := float64(f.b.Count())
m := float64(f.Cap())
k := float64(f.K())
size := -1 * m / k * math.Log(1-x/m) / math.Log(math.E)
return uint32(math.Floor(size + 0.5)) // round
}
// bloomFilterJSON is an unexported type for marshaling/unmarshaling BloomFilter struct.
type bloomFilterJSON struct {
M uint `json:"m"`
K uint `json:"k"`
B *bitset.BitSet `json:"b"`
}
// MarshalJSON implements json.Marshaler interface.
func (f BloomFilter) MarshalJSON() ([]byte, error) {
return json.Marshal(bloomFilterJSON{f.m, f.k, f.b})
}
// UnmarshalJSON implements json.Unmarshaler interface.
func (f *BloomFilter) UnmarshalJSON(data []byte) error {
var j bloomFilterJSON
err := json.Unmarshal(data, &j)
if err != nil {
return err
}
f.m = j.M
f.k = j.K
f.b = j.B
return nil
}
// WriteTo writes a binary representation of the BloomFilter to an i/o stream.
// It returns the number of bytes written.
//
// Performance: if this function is used to write to a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Writer.
// E.g.,
//
// f, err := os.Create("myfile")
// w := bufio.NewWriter(f)
func (f *BloomFilter) WriteTo(stream io.Writer) (int64, error) {
err := binary.Write(stream, binary.BigEndian, uint64(f.m))
if err != nil {
return 0, err
}
err = binary.Write(stream, binary.BigEndian, uint64(f.k))
if err != nil {
return 0, err
}
numBytes, err := f.b.WriteTo(stream)
return numBytes + int64(2*binary.Size(uint64(0))), err
}
// ReadFrom reads a binary representation of the BloomFilter (such as might
// have been written by WriteTo()) from an i/o stream. It returns the number
// of bytes read.
//
// Performance: if this function is used to read from a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Reader.
// E.g.,
//
// f, err := os.Open("myfile")
// r := bufio.NewReader(f)
func (f *BloomFilter) ReadFrom(stream io.Reader) (int64, error) {
var m, k uint64
err := binary.Read(stream, binary.BigEndian, &m)
if err != nil {
return 0, err
}
err = binary.Read(stream, binary.BigEndian, &k)
if err != nil {
return 0, err
}
b := &bitset.BitSet{}
numBytes, err := b.ReadFrom(stream)
if err != nil {
return 0, err
}
f.m = uint(m)
f.k = uint(k)
f.b = b
return numBytes + int64(2*binary.Size(uint64(0))), nil
}
// GobEncode implements gob.GobEncoder interface.
func (f *BloomFilter) GobEncode() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// GobDecode implements gob.GobDecoder interface.
func (f *BloomFilter) GobDecode(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// MarshalBinary implements binary.BinaryMarshaler interface.
func (f *BloomFilter) MarshalBinary() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// UnmarshalBinary implements binary.BinaryUnmarshaler interface.
func (f *BloomFilter) UnmarshalBinary(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// Equal tests for the equality of two Bloom filters
func (f *BloomFilter) Equal(g *BloomFilter) bool {
return f.m == g.m && f.k == g.k && f.b.Equal(g.b)
}
// Locations returns a list of hash locations representing a data item.
func Locations(data []byte, k uint) []uint64 {
locs := make([]uint64, k)
// calculate locations
h := baseHashes(data)
for i := uint(0); i < k; i++ {
locs[i] = location(h, i)
}
return locs
}