mirror of
https://github.com/status-im/status-go.git
synced 2025-01-09 22:26:30 +00:00
40359f9c1b
* Adding wakunode module * Adding wakuv2 fleet files * Add waku fleets to update-fleet-config script * Adding config items for waku v2 * Conditionally start waku v2 node depending on config * Adapting common code to use go-waku * Setting log level to info * update dependencies * update fleet config to use WakuNodes instead of BootNodes * send and receive messages * use hash returned when publishing a message * add waku store protocol * trigger signal after receiving store messages * exclude linting rule SA1019 to check deprecated packages
265 lines
8.0 KiB
Go
265 lines
8.0 KiB
Go
package noise
|
|
|
|
import (
|
|
"context"
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"fmt"
|
|
pool "github.com/libp2p/go-buffer-pool"
|
|
"golang.org/x/crypto/poly1305"
|
|
"time"
|
|
|
|
"github.com/flynn/noise"
|
|
"github.com/gogo/protobuf/proto"
|
|
|
|
"github.com/libp2p/go-libp2p-core/crypto"
|
|
"github.com/libp2p/go-libp2p-core/peer"
|
|
|
|
"github.com/libp2p/go-libp2p-noise/pb"
|
|
)
|
|
|
|
// payloadSigPrefix is prepended to our Noise static key before signing with
|
|
// our libp2p identity key.
|
|
const payloadSigPrefix = "noise-libp2p-static-key:"
|
|
|
|
// All noise session share a fixed cipher suite
|
|
var cipherSuite = noise.NewCipherSuite(noise.DH25519, noise.CipherChaChaPoly, noise.HashSHA256)
|
|
|
|
// runHandshake exchanges handshake messages with the remote peer to establish
|
|
// a noise-libp2p session. It blocks until the handshake completes or fails.
|
|
func (s *secureSession) runHandshake(ctx context.Context) error {
|
|
kp, err := noise.DH25519.GenerateKeypair(rand.Reader)
|
|
if err != nil {
|
|
return fmt.Errorf("error generating static keypair: %w", err)
|
|
}
|
|
|
|
cfg := noise.Config{
|
|
CipherSuite: cipherSuite,
|
|
Pattern: noise.HandshakeXX,
|
|
Initiator: s.initiator,
|
|
StaticKeypair: kp,
|
|
}
|
|
|
|
hs, err := noise.NewHandshakeState(cfg)
|
|
if err != nil {
|
|
return fmt.Errorf("error initializing handshake state: %w", err)
|
|
}
|
|
|
|
payload, err := s.generateHandshakePayload(kp)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// set a deadline to complete the handshake, if one has been supplied.
|
|
// clear it after we're done.
|
|
if deadline, ok := ctx.Deadline(); ok {
|
|
if err := s.SetDeadline(deadline); err == nil {
|
|
// schedule the deadline removal once we're done handshaking.
|
|
defer s.SetDeadline(time.Time{})
|
|
}
|
|
}
|
|
|
|
// We can re-use this buffer for all handshake messages as it's size
|
|
// will be the size of the maximum handshake message for the Noise XX pattern.
|
|
// Also, since we prefix every noise handshake message with it's length, we need to account for
|
|
// it when we fetch the buffer from the pool
|
|
maxMsgSize := 2*noise.DH25519.DHLen() + len(payload) + 2*poly1305.TagSize
|
|
hbuf := pool.Get(maxMsgSize + LengthPrefixLength)
|
|
defer pool.Put(hbuf)
|
|
|
|
if s.initiator {
|
|
// stage 0 //
|
|
// do not send the payload just yet, as it would be plaintext; not secret.
|
|
// Handshake Msg Len = len(DH ephemeral key)
|
|
err = s.sendHandshakeMessage(hs, nil, hbuf)
|
|
if err != nil {
|
|
return fmt.Errorf("error sending handshake message: %w", err)
|
|
}
|
|
|
|
// stage 1 //
|
|
plaintext, err := s.readHandshakeMessage(hs)
|
|
if err != nil {
|
|
return fmt.Errorf("error reading handshake message: %w", err)
|
|
}
|
|
err = s.handleRemoteHandshakePayload(plaintext, hs.PeerStatic())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// stage 2 //
|
|
// Handshake Msg Len = len(DHT static key) + MAC(static key is encrypted) + len(Payload) + MAC(payload is encrypted)
|
|
err = s.sendHandshakeMessage(hs, payload, hbuf)
|
|
if err != nil {
|
|
return fmt.Errorf("error sending handshake message: %w", err)
|
|
}
|
|
} else {
|
|
// stage 0 //
|
|
plaintext, err := s.readHandshakeMessage(hs)
|
|
if err != nil {
|
|
return fmt.Errorf("error reading handshake message: %w", err)
|
|
}
|
|
|
|
// stage 1 //
|
|
// Handshake Msg Len = len(DH ephemeral key) + len(DHT static key) + MAC(static key is encrypted) + len(Payload) +
|
|
//MAC(payload is encrypted)
|
|
err = s.sendHandshakeMessage(hs, payload, hbuf)
|
|
if err != nil {
|
|
return fmt.Errorf("error sending handshake message: %w", err)
|
|
}
|
|
|
|
// stage 2 //
|
|
plaintext, err = s.readHandshakeMessage(hs)
|
|
if err != nil {
|
|
return fmt.Errorf("error reading handshake message: %w", err)
|
|
}
|
|
err = s.handleRemoteHandshakePayload(plaintext, hs.PeerStatic())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// setCipherStates sets the initial cipher states that will be used to protect
|
|
// traffic after the handshake.
|
|
//
|
|
// It is called when the final handshake message is processed by
|
|
// either sendHandshakeMessage or readHandshakeMessage.
|
|
func (s *secureSession) setCipherStates(cs1, cs2 *noise.CipherState) {
|
|
if s.initiator {
|
|
s.enc = cs1
|
|
s.dec = cs2
|
|
} else {
|
|
s.enc = cs2
|
|
s.dec = cs1
|
|
}
|
|
}
|
|
|
|
// sendHandshakeMessage sends the next handshake message in the sequence.
|
|
//
|
|
// If payload is non-empty, it will be included in the handshake message.
|
|
// If this is the final message in the sequence, calls setCipherStates
|
|
// to initialize cipher states.
|
|
func (s *secureSession) sendHandshakeMessage(hs *noise.HandshakeState, payload []byte, hbuf []byte) error {
|
|
// the first two bytes will be the length of the noise handshake message.
|
|
bz, cs1, cs2, err := hs.WriteMessage(hbuf[:LengthPrefixLength], payload)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// bz will also include the length prefix as we passed a slice of LengthPrefixLength length
|
|
// to hs.Write().
|
|
binary.BigEndian.PutUint16(bz, uint16(len(bz)-LengthPrefixLength))
|
|
|
|
_, err = s.writeMsgInsecure(bz)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if cs1 != nil && cs2 != nil {
|
|
s.setCipherStates(cs1, cs2)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// readHandshakeMessage reads a message from the insecure conn and tries to
|
|
// process it as the expected next message in the handshake sequence.
|
|
//
|
|
// If the message contains a payload, it will be decrypted and returned.
|
|
//
|
|
// If this is the final message in the sequence, it calls setCipherStates
|
|
// to initialize cipher states.
|
|
func (s *secureSession) readHandshakeMessage(hs *noise.HandshakeState) ([]byte, error) {
|
|
l, err := s.readNextInsecureMsgLen()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
buf := pool.Get(l)
|
|
defer pool.Put(buf)
|
|
|
|
if err := s.readNextMsgInsecure(buf); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
msg, cs1, cs2, err := hs.ReadMessage(nil, buf)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if cs1 != nil && cs2 != nil {
|
|
s.setCipherStates(cs1, cs2)
|
|
}
|
|
return msg, nil
|
|
}
|
|
|
|
// generateHandshakePayload creates a libp2p handshake payload with a
|
|
// signature of our static noise key.
|
|
func (s *secureSession) generateHandshakePayload(localStatic noise.DHKey) ([]byte, error) {
|
|
// obtain the public key from the handshake session so we can sign it with
|
|
// our libp2p secret key.
|
|
localKeyRaw, err := s.LocalPublicKey().Bytes()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error serializing libp2p identity key: %w", err)
|
|
}
|
|
|
|
// prepare payload to sign; perform signature.
|
|
toSign := append([]byte(payloadSigPrefix), localStatic.Public...)
|
|
signedPayload, err := s.localKey.Sign(toSign)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error sigining handshake payload: %w", err)
|
|
}
|
|
|
|
// create payload
|
|
payload := new(pb.NoiseHandshakePayload)
|
|
payload.IdentityKey = localKeyRaw
|
|
payload.IdentitySig = signedPayload
|
|
payloadEnc, err := proto.Marshal(payload)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error marshaling handshake payload: %w", err)
|
|
}
|
|
return payloadEnc, nil
|
|
}
|
|
|
|
// handleRemoteHandshakePayload unmarshals the handshake payload object sent
|
|
// by the remote peer and validates the signature against the peer's static Noise key.
|
|
func (s *secureSession) handleRemoteHandshakePayload(payload []byte, remoteStatic []byte) error {
|
|
// unmarshal payload
|
|
nhp := new(pb.NoiseHandshakePayload)
|
|
err := proto.Unmarshal(payload, nhp)
|
|
if err != nil {
|
|
return fmt.Errorf("error unmarshaling remote handshake payload: %w", err)
|
|
}
|
|
|
|
// unpack remote peer's public libp2p key
|
|
remotePubKey, err := crypto.UnmarshalPublicKey(nhp.GetIdentityKey())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
id, err := peer.IDFromPublicKey(remotePubKey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// if we know who we're trying to reach, make sure we have the right peer
|
|
if s.initiator && s.remoteID != id {
|
|
// use Pretty() as it produces the full b58-encoded string, rather than abbreviated forms.
|
|
return fmt.Errorf("peer id mismatch: expected %s, but remote key matches %s", s.remoteID.Pretty(), id.Pretty())
|
|
}
|
|
|
|
// verify payload is signed by asserted remote libp2p key.
|
|
sig := nhp.GetIdentitySig()
|
|
msg := append([]byte(payloadSigPrefix), remoteStatic...)
|
|
ok, err := remotePubKey.Verify(msg, sig)
|
|
if err != nil {
|
|
return fmt.Errorf("error verifying signature: %w", err)
|
|
} else if !ok {
|
|
return fmt.Errorf("handshake signature invalid")
|
|
}
|
|
|
|
// set remote peer key and id
|
|
s.remoteID = id
|
|
s.remoteKey = remotePubKey
|
|
return nil
|
|
}
|