2022-04-06 11:48:16 +02:00

604 lines
18 KiB
Go

// Copyright (c) 2018 David Crawshaw <david@zentus.com>
// Copyright (c) 2021 Ross Light <ross@zombiezen.com>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//
// SPDX-License-Identifier: ISC
package sqlite
import (
"errors"
"fmt"
"math"
"math/bits"
"strconv"
"strings"
"sync"
"unsafe"
"modernc.org/libc"
"modernc.org/libc/sys/types"
lib "modernc.org/sqlite/lib"
)
var auxdata struct {
mu sync.RWMutex
m map[uintptr]interface{}
ids idGen
}
// Context is a SQL function execution context.
// It is in no way related to a Go context.Context.
// https://sqlite.org/c3ref/context.html
type Context struct {
tls *libc.TLS
ptr uintptr
}
// Conn returns the database connection that is calling the SQL function.
func (ctx Context) Conn() *Conn {
connPtr := lib.Xsqlite3_context_db_handle(ctx.tls, ctx.ptr)
allConns.mu.RLock()
defer allConns.mu.RUnlock()
return allConns.table[connPtr]
}
// AuxData returns the auxiliary data associated with the given argument, with
// zero being the leftmost argument, or nil if no such data is present.
//
// Auxiliary data may be used by (non-aggregate) SQL functions to associate
// metadata with argument values. If the same value is passed to multiple
// invocations of the same SQL function during query execution, under some
// circumstances the associated metadata may be preserved. An example of where
// this might be useful is in a regular-expression matching function. The
// compiled version of the regular expression can be stored as metadata
// associated with the pattern string. Then as long as the pattern string
// remains the same, the compiled regular expression can be reused on multiple
// invocations of the same function.
//
// For more details, see https://www.sqlite.org/c3ref/get_auxdata.html
func (ctx Context) AuxData(arg int) interface{} {
id := lib.Xsqlite3_get_auxdata(ctx.tls, ctx.ptr, int32(arg))
if id == 0 {
return nil
}
auxdata.mu.RLock()
defer auxdata.mu.RUnlock()
return auxdata.m[id]
}
// SetAuxData sets the auxiliary data associated with the given argument, with
// zero being the leftmost argument. SQLite is free to discard the metadata at
// any time, including during the call to SetAuxData.
//
// Auxiliary data may be used by (non-aggregate) SQL functions to associate
// metadata with argument values. If the same value is passed to multiple
// invocations of the same SQL function during query execution, under some
// circumstances the associated metadata may be preserved. An example of where
// this might be useful is in a regular-expression matching function. The
// compiled version of the regular expression can be stored as metadata
// associated with the pattern string. Then as long as the pattern string
// remains the same, the compiled regular expression can be reused on multiple
// invocations of the same function.
//
// For more details, see https://www.sqlite.org/c3ref/get_auxdata.html
func (ctx Context) SetAuxData(arg int, data interface{}) {
auxdata.mu.Lock()
id := auxdata.ids.next()
if auxdata.m == nil {
auxdata.m = make(map[uintptr]interface{})
}
auxdata.m[id] = data
auxdata.mu.Unlock()
// The following is a conversion from function value to uintptr. It assumes
// the memory representation described in https://golang.org/s/go11func.
//
// It does this by doing the following in order:
// 1) Create a Go struct containing a pointer to a pointer to
// freeAuxData. It is assumed that the pointer to freeAuxData will be
// stored in the read-only data section and thus will not move.
// 2) Convert the pointer to the Go struct to a pointer to uintptr through
// unsafe.Pointer. This is permitted via Rule #1 of unsafe.Pointer.
// 3) Dereference the pointer to uintptr to obtain the function value as a
// uintptr. This is safe as long as function values are passed as pointers.
deleteFn := *(*uintptr)(unsafe.Pointer(&struct {
f func(*libc.TLS, uintptr)
}{freeAuxData}))
lib.Xsqlite3_set_auxdata(ctx.tls, ctx.ptr, int32(arg), id, deleteFn)
}
func freeAuxData(tls *libc.TLS, id uintptr) {
auxdata.mu.Lock()
defer auxdata.mu.Unlock()
delete(auxdata.m, id)
auxdata.ids.reclaim(id)
}
func (ctx Context) result(v Value, err error) {
if err != nil {
ctx.resultError(err)
return
}
if v.tls != nil {
if ctx.tls != v.tls {
ctx.resultError(fmt.Errorf("function result Value from different connection"))
return
}
lib.Xsqlite3_result_value(ctx.tls, ctx.ptr, v.ptrOrType)
return
}
switch ColumnType(v.ptrOrType) {
case 0, TypeNull:
lib.Xsqlite3_result_null(ctx.tls, ctx.ptr)
case TypeInteger:
lib.Xsqlite3_result_int64(ctx.tls, ctx.ptr, v.n)
case TypeFloat:
lib.Xsqlite3_result_double(ctx.tls, ctx.ptr, v.float())
case TypeText:
if len(v.s) == 0 {
lib.Xsqlite3_result_text(ctx.tls, ctx.ptr, emptyCString, 0, sqliteStatic)
} else {
cv, err := libc.CString(v.s)
if err != nil {
ctx.resultError(fmt.Errorf("alloc function result: %w", err))
return
}
lib.Xsqlite3_result_text(ctx.tls, ctx.ptr, cv, int32(len(v.s)), freeFuncPtr)
}
case TypeBlob:
if len(v.s) == 0 {
lib.Xsqlite3_result_blob(ctx.tls, ctx.ptr, emptyCString, 0, sqliteStatic)
} else {
cv, err := malloc(ctx.tls, types.Size_t(len(v.s)))
if err != nil {
ctx.resultError(fmt.Errorf("alloc function result: %w", err))
return
}
copy(libc.GoBytes(cv, len(v.s)), v.s)
lib.Xsqlite3_result_blob(ctx.tls, ctx.ptr, cv, int32(len(v.s)), freeFuncPtr)
}
default:
panic("unknown result Value type")
}
}
func (ctx Context) resultError(err error) {
errstr := err.Error()
cerrstr, err := libc.CString(errstr)
if err != nil {
panic(err)
}
defer libc.Xfree(ctx.tls, cerrstr)
lib.Xsqlite3_result_error(ctx.tls, ctx.ptr, cerrstr, int32(len(errstr)))
lib.Xsqlite3_result_error_code(ctx.tls, ctx.ptr, int32(ErrCode(err)))
}
// Value represents a value that can be stored in a database table. The zero
// value is NULL. The accessor methods on Value may perform automatic
// conversions and thus methods on Value must not be called concurrently.
type Value struct {
tls *libc.TLS
ptrOrType uintptr // pointer to sqlite_value if tls != nil, ColumnType otherwise
s string
n int64
}
// IntegerValue returns a new Value representing the given integer.
func IntegerValue(i int64) Value {
return Value{ptrOrType: uintptr(TypeInteger), n: i}
}
// FloatValue returns a new Value representing the given floating-point number.
func FloatValue(f float64) Value {
return Value{ptrOrType: uintptr(TypeFloat), n: int64(math.Float64bits(f))}
}
// TextValue returns a new Value representing the given string.
func TextValue(s string) Value {
return Value{ptrOrType: uintptr(TypeText), s: s}
}
// BlobValue returns a new blob Value, copying the bytes from the given
// byte slice.
func BlobValue(b []byte) Value {
return Value{ptrOrType: uintptr(TypeBlob), s: string(b)}
}
// Type returns the data type of the value. The result of Type is undefined if
// an automatic type conversion has occurred due to calling one of the other
// accessor methods.
func (v Value) Type() ColumnType {
if v.ptrOrType == 0 {
return TypeNull
}
if v.tls == nil {
return ColumnType(v.ptrOrType)
}
return ColumnType(lib.Xsqlite3_value_type(v.tls, v.ptrOrType))
}
// Conversions follow the table in https://sqlite.org/c3ref/column_blob.html
// Int returns the value as an integer.
func (v Value) Int() int {
return int(v.Int64())
}
// Int64 returns the value as a 64-bit integer.
func (v Value) Int64() int64 {
if v.ptrOrType == 0 {
return 0
}
if v.tls == nil {
switch ColumnType(v.ptrOrType) {
case TypeNull:
return 0
case TypeInteger:
return v.n
case TypeFloat:
return int64(v.float())
case TypeBlob, TypeText:
return castTextToInteger(v.s)
default:
panic("unknown value type")
}
}
return int64(lib.Xsqlite3_value_int64(v.tls, v.ptrOrType))
}
// castTextToInteger emulates the SQLite CAST operator for a TEXT value to
// INTEGER, as documented in https://sqlite.org/lang_expr.html#castexpr
func castTextToInteger(s string) int64 {
const digits = "0123456789"
s = strings.TrimSpace(s)
if len(s) > 0 && (s[0] == '+' || s[0] == '-') {
s = s[:1+len(longestPrefix(s[1:], digits))]
} else {
s = longestPrefix(s, digits)
}
n, _ := strconv.ParseInt(s, 10, 64)
return n
}
func longestPrefix(s string, allowSet string) string {
sloop:
for i := 0; i < len(s); i++ {
for j := 0; j < len(allowSet); j++ {
if s[i] == allowSet[j] {
continue sloop
}
}
return s[:i]
}
return s
}
// Float returns the value as floating-point number
func (v Value) Float() float64 {
if v.ptrOrType == 0 {
return 0
}
if v.tls == nil {
switch ColumnType(v.ptrOrType) {
case TypeNull:
return 0
case TypeInteger:
return float64(v.n)
case TypeFloat:
return v.float()
case TypeBlob, TypeText:
return castTextToReal(v.s)
default:
panic("unknown value type")
}
}
return float64(lib.Xsqlite3_value_double(v.tls, v.ptrOrType))
}
func (v Value) float() float64 { return math.Float64frombits(uint64(v.n)) }
// castTextToReal emulates the SQLite CAST operator for a TEXT value to
// REAL, as documented in https://sqlite.org/lang_expr.html#castexpr
func castTextToReal(s string) float64 {
s = strings.TrimSpace(s)
for ; len(s) > 0; s = s[:len(s)-1] {
n, err := strconv.ParseFloat(s, 64)
if !errors.Is(err, strconv.ErrSyntax) {
return n
}
}
return 0
}
// Text returns the value as a string.
func (v Value) Text() string {
if v.ptrOrType == 0 {
return ""
}
if v.tls == nil {
switch ColumnType(v.ptrOrType) {
case TypeNull:
return ""
case TypeInteger:
return strconv.FormatInt(v.n, 10)
case TypeFloat:
return strconv.FormatFloat(v.float(), 'g', -1, 64)
case TypeText, TypeBlob:
return v.s
default:
panic("unknown value type")
}
}
ptr := lib.Xsqlite3_value_text(v.tls, v.ptrOrType)
return goStringN(ptr, int(lib.Xsqlite3_value_bytes(v.tls, v.ptrOrType)))
}
// Blob returns a copy of the value as a blob.
func (v Value) Blob() []byte {
if v.ptrOrType == 0 {
return nil
}
if v.tls == nil {
switch ColumnType(v.ptrOrType) {
case TypeNull:
return nil
case TypeInteger:
return strconv.AppendInt(nil, v.n, 10)
case TypeFloat:
return strconv.AppendFloat(nil, v.float(), 'g', -1, 64)
case TypeBlob, TypeText:
return []byte(v.s)
default:
panic("unknown value type")
}
}
ptr := lib.Xsqlite3_value_blob(v.tls, v.ptrOrType)
return libc.GoBytes(ptr, int(lib.Xsqlite3_value_bytes(v.tls, v.ptrOrType)))
}
type xfunc struct {
xFunc func(Context, []Value) (Value, error)
xStep func(Context, []Value)
xFinal func(Context) (Value, error)
}
var xfuncs = struct {
mu sync.RWMutex
m map[uintptr]*xfunc
ids idGen
}{
m: make(map[uintptr]*xfunc),
}
// FunctionImpl describes an application-defined SQL function. Either Scalar or
// both AggregateStep and AggregateFinal must be set.
type FunctionImpl struct {
// NArgs is the required number of arguments that the function accepts.
// If NArgs is negative, then the function is variadic.
//
// Multiple function implementations may be registered with the same name
// with different numbers of required arguments.
NArgs int
// Scalar is called when a scalar function is invoked in SQL.
Scalar func(ctx Context, args []Value) (Value, error)
// AggregateStep is called for each row of an aggregate function's
// SQL invocation.
AggregateStep func(ctx Context, rowArgs []Value)
// AggregateFinal is called after all of the aggregate function's input rows
// have been stepped through to construct the result.
//
// Use closure variables to pass information between AggregateStep and
// AggregateFinal. The AggregateFinal function should also reset any shared
// variables to their initial states before returning.
AggregateFinal func(ctx Context) (Value, error)
// If Deterministic is true, the function must always give the same output
// when the input parameters are the same. This enables functions to be used
// in additional contexts like the WHERE clause of partial indexes and enables
// additional optimizations.
//
// See https://sqlite.org/c3ref/c_deterministic.html#sqlitedeterministic for
// more details.
Deterministic bool
// If AllowIndirect is false, then the function may only be invoked from
// top-level SQL. If AllowIndirect is true, then the function can be used in
// VIEWs, TRIGGERs, and schema structures (e.g. CHECK constraints and DEFAULT
// clauses).
//
// This is the inverse of SQLITE_DIRECTONLY. See
// https://sqlite.org/c3ref/c_deterministic.html#sqlitedirectonly for more
// details. This defaults to false for better security by default.
AllowIndirect bool
}
// CreateFunction registers a Go function with SQLite
// for use in SQL queries.
//
// https://sqlite.org/appfunc.html
func (c *Conn) CreateFunction(name string, impl *FunctionImpl) error {
if c == nil {
return fmt.Errorf("sqlite: create function: nil connection")
}
if name == "" {
return fmt.Errorf("sqlite: create function: no name provided")
}
if impl.NArgs > 127 {
return fmt.Errorf("sqlite: create function %s: too many permitted arguments (%d)", name, impl.NArgs)
}
if impl.AggregateStep == nil {
if impl.Scalar == nil {
return fmt.Errorf("sqlite: create function %s: must specify one of Scalar or AggregateStep", name)
}
if impl.AggregateFinal != nil {
return fmt.Errorf("sqlite: create function %s: must not specify AggregateFinal with Scalar", name)
}
} else {
if impl.Scalar != nil {
return fmt.Errorf("sqlite: create function %s: both Scalar and AggregateStep specified", name)
}
if impl.AggregateFinal == nil {
return fmt.Errorf("sqlite: create function %s: AggregateStep specified without AggregateFinal", name)
}
}
cname, err := libc.CString(name)
if err != nil {
return fmt.Errorf("sqlite: create function %s: %w", name, err)
}
defer libc.Xfree(c.tls, cname)
eTextRep := int32(lib.SQLITE_UTF8)
if impl.Deterministic {
eTextRep |= lib.SQLITE_DETERMINISTIC
}
if !impl.AllowIndirect {
eTextRep |= lib.SQLITE_DIRECTONLY
}
x := &xfunc{
xFunc: impl.Scalar,
xStep: impl.AggregateStep,
xFinal: impl.AggregateFinal,
}
xfuncs.mu.Lock()
id := xfuncs.ids.next()
xfuncs.m[id] = x
xfuncs.mu.Unlock()
// The following are conversions from function values to uintptr. It assumes
// the memory representation described in https://golang.org/s/go11func.
//
// It does this by doing the following in order:
// 1) Create a Go struct containing a pointer to a pointer to
// the function. It is assumed that the pointer to the function will be
// stored in the read-only data section and thus will not move.
// 2) Convert the pointer to the Go struct to a pointer to uintptr through
// unsafe.Pointer. This is permitted via Rule #1 of unsafe.Pointer.
// 3) Dereference the pointer to uintptr to obtain the function value as a
// uintptr. This is safe as long as function values are passed as pointers.
var funcfn, stepfn, finalfn uintptr
if impl.Scalar == nil {
stepfn = *(*uintptr)(unsafe.Pointer(&struct {
f func(*libc.TLS, uintptr, int32, uintptr)
}{stepTrampoline}))
finalfn = *(*uintptr)(unsafe.Pointer(&struct {
f func(*libc.TLS, uintptr)
}{finalTrampoline}))
} else {
funcfn = *(*uintptr)(unsafe.Pointer(&struct {
f func(*libc.TLS, uintptr, int32, uintptr)
}{funcTrampoline}))
}
destroyfn := *(*uintptr)(unsafe.Pointer(&struct {
f func(*libc.TLS, uintptr)
}{destroyFuncTrampoline}))
numArgs := impl.NArgs
if numArgs < 0 {
numArgs = -1
}
res := ResultCode(lib.Xsqlite3_create_function_v2(
c.tls,
c.conn,
cname,
int32(numArgs),
eTextRep,
id,
funcfn,
stepfn,
finalfn,
destroyfn,
))
if err := reserr(res); err != nil {
return fmt.Errorf("sqlite: create function %s: %w", name, err)
}
return nil
}
func getxfuncs(tls *libc.TLS, ctx uintptr) *xfunc {
id := lib.Xsqlite3_user_data(tls, ctx)
xfuncs.mu.RLock()
x := xfuncs.m[id]
xfuncs.mu.RUnlock()
return x
}
func funcTrampoline(tls *libc.TLS, ctx uintptr, n int32, valarray uintptr) {
vals := make([]Value, 0, int(n))
for ; len(vals) < cap(vals); valarray += uintptr(ptrSize) {
vals = append(vals, Value{
tls: tls,
ptrOrType: *(*uintptr)(unsafe.Pointer(valarray)),
})
}
goCtx := Context{tls: tls, ptr: ctx}
goCtx.result(getxfuncs(tls, ctx).xFunc(goCtx, vals))
}
func stepTrampoline(tls *libc.TLS, ctx uintptr, n int32, valarray uintptr) {
vals := make([]Value, 0, int(n))
for ; len(vals) < cap(vals); valarray += uintptr(ptrSize) {
vals = append(vals, Value{
tls: tls,
ptrOrType: *(*uintptr)(unsafe.Pointer(valarray)),
})
}
goCtx := Context{tls: tls, ptr: ctx}
getxfuncs(tls, ctx).xStep(goCtx, vals)
}
func finalTrampoline(tls *libc.TLS, ctx uintptr) {
x := getxfuncs(tls, ctx)
goCtx := Context{tls: tls, ptr: ctx}
goCtx.result(x.xFinal(goCtx))
}
func destroyFuncTrampoline(tls *libc.TLS, id uintptr) {
xfuncs.mu.Lock()
defer xfuncs.mu.Unlock()
delete(xfuncs.m, id)
xfuncs.ids.reclaim(id)
}
// idGen is an ID generator. The zero value is ready to use.
type idGen struct {
bitset []uint64
}
func (gen *idGen) next() uintptr {
base := uintptr(1)
for i := 0; i < len(gen.bitset); i, base = i+1, base+64 {
b := gen.bitset[i]
if b != 1<<64-1 {
n := uintptr(bits.TrailingZeros64(^b))
gen.bitset[i] |= 1 << n
return base + n
}
}
gen.bitset = append(gen.bitset, 1)
return base
}
func (gen *idGen) reclaim(id uintptr) {
bit := id - 1
gen.bitset[bit/64] &^= 1 << (bit % 64)
}