2021-10-19 09:43:41 -04:00

332 lines
13 KiB
Go

// Copyright 2016 Mikio Hara. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tcpinfo
import (
"errors"
"strings"
"time"
"unsafe"
"github.com/mikioh/tcpopt"
)
var options = [soMax]option{
soInfo: {ianaProtocolTCP, sysTCP_INFO, parseInfo},
soCCInfo: {ianaProtocolTCP, sysTCP_CC_INFO, parseCCInfo},
soCCAlgo: {ianaProtocolTCP, sysTCP_CONGESTION, parseCCAlgorithm},
}
// Marshal implements the Marshal method of tcpopt.Option interface.
func (i *Info) Marshal() ([]byte, error) { return (*[sizeofTCPInfo]byte)(unsafe.Pointer(i))[:], nil }
// A CAState represents a state of congestion avoidance.
type CAState int
var caStates = map[CAState]string{
CAOpen: "open",
CADisorder: "disorder",
CACWR: "congestion window reduced",
CARecovery: "recovery",
CALoss: "loss",
}
func (st CAState) String() string {
s, ok := caStates[st]
if !ok {
return "<nil>"
}
return s
}
// A SysInfo represents platform-specific information.
type SysInfo struct {
PathMTU uint `json:"path_mtu"` // path maximum transmission unit
AdvertisedMSS MaxSegSize `json:"adv_mss"` // advertised maximum segment size
CAState CAState `json:"ca_state"` // state of congestion avoidance
Retransmissions uint `json:"rexmits"` // # of retranmissions on timeout invoked
Backoffs uint `json:"backoffs"` // # of times retransmission backoff timer invoked
WindowOrKeepAliveProbes uint `json:"wnd_ka_probes"` // # of window or keep alive probes sent
UnackedSegs uint `json:"unacked_segs"` // # of unack'd segments
SackedSegs uint `json:"sacked_segs"` // # of sack'd segments
LostSegs uint `json:"lost_segs"` // # of lost segments
RetransSegs uint `json:"retrans_segs"` // # of retransmitting segments in transmission queue
ForwardAckSegs uint `json:"fack_segs"` // # of forward ack segments in transmission queue
ReorderedSegs uint `json:"reord_segs"` // # of reordered segments allowed
ReceiverRTT time.Duration `json:"rcv_rtt"` // current RTT for receiver
TotalRetransSegs uint `json:"total_retrans_segs"` // # of retransmitted segments
PacingRate uint64 `json:"pacing_rate"` // pacing rate
ThruBytesAcked uint64 `json:"thru_bytes_acked"` // # of bytes for which cumulative acknowledgments have been received
ThruBytesReceived uint64 `json:"thru_bytes_rcvd"` // # of bytes for which cumulative acknowledgments have been sent
SegsOut uint `json:"segs_out"` // # of segments sent
SegsIn uint `json:"segs_in"` // # of segments received
NotSentBytes uint `json:"not_sent_bytes"` // # of bytes not sent yet
MinRTT time.Duration `json:"min_rtt"` // current measured minimum RTT; zero means not available
DataSegsOut uint `json:"data_segs_out"` // # of segments sent containing a positive length data segment
DataSegsIn uint `json:"data_segs_in"` // # of segments received containing a positive length data segment
}
var sysStates = [12]State{Unknown, Established, SynSent, SynReceived, FinWait1, FinWait2, TimeWait, Closed, CloseWait, LastAck, Listen, Closing}
const (
sizeofTCPInfoV4_9 = 0xa0
sizeofTCPInfoV3_19 = 0x78
sizeofTCPInfoV2_6_10 = 0x57
)
func parseInfo(b []byte) (tcpopt.Option, error) {
if len(b) < sizeofTCPInfoV4_9 {
return parseInfo3_19(b)
}
ti := (*tcpInfo)(unsafe.Pointer(&b[0]))
i := &Info{State: sysStates[ti.State]}
if ti.Options&sysTCPI_OPT_WSCALE != 0 {
i.Options = append(i.Options, WindowScale(ti.Pad_cgo_0[0]>>4))
i.PeerOptions = append(i.PeerOptions, WindowScale(ti.Pad_cgo_0[0]&0x0f))
}
if ti.Options&sysTCPI_OPT_SACK != 0 {
i.Options = append(i.Options, SACKPermitted(true))
i.PeerOptions = append(i.PeerOptions, SACKPermitted(true))
}
if ti.Options&sysTCPI_OPT_TIMESTAMPS != 0 {
i.Options = append(i.Options, Timestamps(true))
i.PeerOptions = append(i.PeerOptions, Timestamps(true))
}
i.SenderMSS = MaxSegSize(ti.Snd_mss)
i.ReceiverMSS = MaxSegSize(ti.Rcv_mss)
i.RTT = time.Duration(ti.Rtt) * time.Microsecond
i.RTTVar = time.Duration(ti.Rttvar) * time.Microsecond
i.RTO = time.Duration(ti.Rto) * time.Microsecond
i.ATO = time.Duration(ti.Ato) * time.Microsecond
i.LastDataSent = time.Duration(ti.Last_data_sent) * time.Millisecond
i.LastDataReceived = time.Duration(ti.Last_data_recv) * time.Millisecond
i.LastAckReceived = time.Duration(ti.Last_ack_recv) * time.Millisecond
i.FlowControl = &FlowControl{
ReceiverWindow: uint(ti.Rcv_space),
}
i.CongestionControl = &CongestionControl{
SenderSSThreshold: uint(ti.Snd_ssthresh),
ReceiverSSThreshold: uint(ti.Rcv_ssthresh),
SenderWindowSegs: uint(ti.Snd_cwnd),
}
i.Sys = &SysInfo{
PathMTU: uint(ti.Pmtu),
AdvertisedMSS: MaxSegSize(ti.Advmss),
CAState: CAState(ti.Ca_state),
Retransmissions: uint(ti.Retransmits),
Backoffs: uint(ti.Backoff),
WindowOrKeepAliveProbes: uint(ti.Probes),
UnackedSegs: uint(ti.Unacked),
SackedSegs: uint(ti.Sacked),
LostSegs: uint(ti.Lost),
RetransSegs: uint(ti.Retrans),
ForwardAckSegs: uint(ti.Fackets),
ReorderedSegs: uint(ti.Reordering),
ReceiverRTT: time.Duration(ti.Rcv_rtt) * time.Microsecond,
TotalRetransSegs: uint(ti.Total_retrans),
PacingRate: uint64(ti.Pacing_rate),
ThruBytesAcked: uint64(ti.Bytes_acked),
ThruBytesReceived: uint64(ti.Bytes_received),
SegsIn: uint(ti.Segs_in),
SegsOut: uint(ti.Segs_out),
NotSentBytes: uint(ti.Notsent_bytes),
MinRTT: time.Duration(ti.Min_rtt) * time.Microsecond,
DataSegsIn: uint(ti.Data_segs_in),
DataSegsOut: uint(ti.Data_segs_out),
}
return i, nil
}
func parseInfo3_19(b []byte) (tcpopt.Option, error) {
if len(b) < sizeofTCPInfoV3_19 {
return parseInfo2_6_10(b)
}
ti := (*tcpInfo3_19)(unsafe.Pointer(&b[0]))
i := &Info{State: sysStates[ti.State]}
if ti.Options&sysTCPI_OPT_WSCALE != 0 {
i.Options = append(i.Options, WindowScale(ti.Pad_cgo_0[0]>>4))
i.PeerOptions = append(i.PeerOptions, WindowScale(ti.Pad_cgo_0[0]&0x0f))
}
if ti.Options&sysTCPI_OPT_SACK != 0 {
i.Options = append(i.Options, SACKPermitted(true))
i.PeerOptions = append(i.PeerOptions, SACKPermitted(true))
}
if ti.Options&sysTCPI_OPT_TIMESTAMPS != 0 {
i.Options = append(i.Options, Timestamps(true))
i.PeerOptions = append(i.PeerOptions, Timestamps(true))
}
i.SenderMSS = MaxSegSize(ti.Snd_mss)
i.ReceiverMSS = MaxSegSize(ti.Rcv_mss)
i.RTT = time.Duration(ti.Rtt) * time.Microsecond
i.RTTVar = time.Duration(ti.Rttvar) * time.Microsecond
i.RTO = time.Duration(ti.Rto) * time.Microsecond
i.ATO = time.Duration(ti.Ato) * time.Microsecond
i.LastDataSent = time.Duration(ti.Last_data_sent) * time.Millisecond
i.LastDataReceived = time.Duration(ti.Last_data_recv) * time.Millisecond
i.LastAckReceived = time.Duration(ti.Last_ack_recv) * time.Millisecond
i.FlowControl = &FlowControl{
ReceiverWindow: uint(ti.Rcv_space),
}
i.CongestionControl = &CongestionControl{
SenderSSThreshold: uint(ti.Snd_ssthresh),
ReceiverSSThreshold: uint(ti.Rcv_ssthresh),
SenderWindowSegs: uint(ti.Snd_cwnd),
}
i.Sys = &SysInfo{
PathMTU: uint(ti.Pmtu),
AdvertisedMSS: MaxSegSize(ti.Advmss),
CAState: CAState(ti.Ca_state),
Retransmissions: uint(ti.Retransmits),
Backoffs: uint(ti.Backoff),
WindowOrKeepAliveProbes: uint(ti.Probes),
UnackedSegs: uint(ti.Unacked),
SackedSegs: uint(ti.Sacked),
LostSegs: uint(ti.Lost),
RetransSegs: uint(ti.Retrans),
ForwardAckSegs: uint(ti.Fackets),
ReorderedSegs: uint(ti.Reordering),
ReceiverRTT: time.Duration(ti.Rcv_rtt) * time.Microsecond,
TotalRetransSegs: uint(ti.Total_retrans),
PacingRate: uint64(ti.Pacing_rate),
}
return i, nil
}
func parseInfo2_6_10(b []byte) (tcpopt.Option, error) {
if len(b) < sizeofTCPInfoV2_6_10 {
return nil, errors.New("short buffer")
}
ti := (*tcpInfo2_6_10)(unsafe.Pointer(&b[0]))
i := &Info{State: sysStates[ti.State]}
if ti.Options&sysTCPI_OPT_WSCALE != 0 {
i.Options = append(i.Options, WindowScale(ti.Pad_cgo_0[0]>>4))
i.PeerOptions = append(i.PeerOptions, WindowScale(ti.Pad_cgo_0[0]&0x0f))
}
if ti.Options&sysTCPI_OPT_SACK != 0 {
i.Options = append(i.Options, SACKPermitted(true))
i.PeerOptions = append(i.PeerOptions, SACKPermitted(true))
}
if ti.Options&sysTCPI_OPT_TIMESTAMPS != 0 {
i.Options = append(i.Options, Timestamps(true))
i.PeerOptions = append(i.PeerOptions, Timestamps(true))
}
i.SenderMSS = MaxSegSize(ti.Snd_mss)
i.ReceiverMSS = MaxSegSize(ti.Rcv_mss)
i.RTT = time.Duration(ti.Rtt) * time.Microsecond
i.RTTVar = time.Duration(ti.Rttvar) * time.Microsecond
i.RTO = time.Duration(ti.Rto) * time.Microsecond
i.ATO = time.Duration(ti.Ato) * time.Microsecond
i.LastDataSent = time.Duration(ti.Last_data_sent) * time.Millisecond
i.LastDataReceived = time.Duration(ti.Last_data_recv) * time.Millisecond
i.LastAckReceived = time.Duration(ti.Last_ack_recv) * time.Millisecond
i.FlowControl = &FlowControl{
ReceiverWindow: uint(ti.Rcv_space),
}
i.CongestionControl = &CongestionControl{
SenderSSThreshold: uint(ti.Snd_ssthresh),
ReceiverSSThreshold: uint(ti.Rcv_ssthresh),
SenderWindowSegs: uint(ti.Snd_cwnd),
}
i.Sys = &SysInfo{
PathMTU: uint(ti.Pmtu),
AdvertisedMSS: MaxSegSize(ti.Advmss),
CAState: CAState(ti.Ca_state),
Retransmissions: uint(ti.Retransmits),
Backoffs: uint(ti.Backoff),
WindowOrKeepAliveProbes: uint(ti.Probes),
UnackedSegs: uint(ti.Unacked),
SackedSegs: uint(ti.Sacked),
LostSegs: uint(ti.Lost),
RetransSegs: uint(ti.Retrans),
ForwardAckSegs: uint(ti.Fackets),
ReorderedSegs: uint(ti.Reordering),
ReceiverRTT: time.Duration(ti.Rcv_rtt) * time.Microsecond,
TotalRetransSegs: uint(ti.Total_retrans),
}
return i, nil
}
// A VegasInfo represents Vegas congestion control information.
type VegasInfo struct {
Enabled bool `json:"enabled"`
RoundTrips uint `json:"rnd_trips"` // # of round-trips
RTT time.Duration `json:"rtt"` // round-trip time
MinRTT time.Duration `json:"min_rtt"` // minimum round-trip time
}
// Algorithm implements the Algorithm method of CCAlgorithmInfo
// interface.
func (vi *VegasInfo) Algorithm() string { return "vegas" }
// A CEState represents a state of ECN congestion encountered (CE)
// codepoint.
type CEState int
// A DCTCPInfo represents Datacenter TCP congestion control
// information.
type DCTCPInfo struct {
Enabled bool `json:"enabled"`
CEState CEState `json:"ce_state"` // state of ECN CE codepoint
Alpha uint `json:"alpha"` // fraction of bytes sent
ECNAckedBytes uint `json:"ecn_acked"` // # of acked bytes with ECN
TotalAckedBytes uint `json:"total_acked"` // total # of acked bytes
}
// Algorithm implements the Algorithm method of CCAlgorithmInfo
// interface.
func (di *DCTCPInfo) Algorithm() string { return "dctcp" }
// A BBRInfo represents Bottleneck Bandwidth and Round-trip
// propagation time-based congestion control information.
type BBRInfo struct {
MaxBW uint64 `json:"max_bw"` // maximum-filtered bandwidth in bps
MinRTT time.Duration `json:"min_rtt"` // minimum-filtered round-trip time
PacingGain uint `json:"pacing_gain"` // pacing gain shifted left 8 bits
CongWindowGain uint `json:"cwnd_gain"` // congestion window gain shifted left 8 bits
}
// Algorithm implements the Algorithm method of CCAlgorithmInfo
// interface.
func (bi *BBRInfo) Algorithm() string { return "bbr" }
func parseCCAlgorithmInfo(name string, b []byte) (CCAlgorithmInfo, error) {
if strings.HasPrefix(name, "dctcp") {
if len(b) < sizeofTCPDCTCPInfo {
return nil, errors.New("short buffer")
}
sdi := (*tcpDCTCPInfo)(unsafe.Pointer(&b[0]))
di := &DCTCPInfo{Alpha: uint(sdi.Alpha)}
if sdi.Enabled != 0 {
di.Enabled = true
}
return di, nil
}
if strings.HasPrefix(name, "bbr") {
if len(b) < sizeofTCPBBRInfo {
return nil, errors.New("short buffer")
}
sbi := (*tcpBBRInfo)(unsafe.Pointer(&b[0]))
return &BBRInfo{
MaxBW: uint64(sbi.Bw_hi)<<32 | uint64(sbi.Bw_lo),
MinRTT: time.Duration(sbi.Min_rtt) * time.Microsecond,
PacingGain: uint(sbi.Pacing_gain),
CongWindowGain: uint(sbi.Cwnd_gain),
}, nil
}
if len(b) < sizeofTCPVegasInfo {
return nil, errors.New("short buffer")
}
svi := (*tcpVegasInfo)(unsafe.Pointer(&b[0]))
vi := &VegasInfo{
RoundTrips: uint(svi.Rttcnt),
RTT: time.Duration(svi.Rtt) * time.Microsecond,
MinRTT: time.Duration(svi.Minrtt) * time.Microsecond,
}
if svi.Enabled != 0 {
vi.Enabled = true
}
return vi, nil
}