2024-01-18 14:28:06 +00:00

419 lines
12 KiB
Go

// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"context"
"errors"
"fmt"
)
// QUICEncryptionLevel represents a QUIC encryption level used to transmit
// handshake messages.
type QUICEncryptionLevel int
const (
QUICEncryptionLevelInitial = QUICEncryptionLevel(iota)
QUICEncryptionLevelEarly
QUICEncryptionLevelHandshake
QUICEncryptionLevelApplication
)
func (l QUICEncryptionLevel) String() string {
switch l {
case QUICEncryptionLevelInitial:
return "Initial"
case QUICEncryptionLevelEarly:
return "Early"
case QUICEncryptionLevelHandshake:
return "Handshake"
case QUICEncryptionLevelApplication:
return "Application"
default:
return fmt.Sprintf("QUICEncryptionLevel(%v)", int(l))
}
}
// A QUICConn represents a connection which uses a QUIC implementation as the underlying
// transport as described in RFC 9001.
//
// Methods of QUICConn are not safe for concurrent use.
type QUICConn struct {
conn *Conn
sessionTicketSent bool
}
// A QUICConfig configures a QUICConn.
type QUICConfig struct {
TLSConfig *Config
ExtraConfig *ExtraConfig
}
// A QUICEventKind is a type of operation on a QUIC connection.
type QUICEventKind int
const (
// QUICNoEvent indicates that there are no events available.
QUICNoEvent QUICEventKind = iota
// QUICSetReadSecret and QUICSetWriteSecret provide the read and write
// secrets for a given encryption level.
// QUICEvent.Level, QUICEvent.Data, and QUICEvent.Suite are set.
//
// Secrets for the Initial encryption level are derived from the initial
// destination connection ID, and are not provided by the QUICConn.
QUICSetReadSecret
QUICSetWriteSecret
// QUICWriteData provides data to send to the peer in CRYPTO frames.
// QUICEvent.Data is set.
QUICWriteData
// QUICTransportParameters provides the peer's QUIC transport parameters.
// QUICEvent.Data is set.
QUICTransportParameters
// QUICTransportParametersRequired indicates that the caller must provide
// QUIC transport parameters to send to the peer. The caller should set
// the transport parameters with QUICConn.SetTransportParameters and call
// QUICConn.NextEvent again.
//
// If transport parameters are set before calling QUICConn.Start, the
// connection will never generate a QUICTransportParametersRequired event.
QUICTransportParametersRequired
// QUICRejectedEarlyData indicates that the server rejected 0-RTT data even
// if we offered it. It's returned before QUICEncryptionLevelApplication
// keys are returned.
QUICRejectedEarlyData
// QUICHandshakeDone indicates that the TLS handshake has completed.
QUICHandshakeDone
)
// A QUICEvent is an event occurring on a QUIC connection.
//
// The type of event is specified by the Kind field.
// The contents of the other fields are kind-specific.
type QUICEvent struct {
Kind QUICEventKind
// Set for QUICSetReadSecret, QUICSetWriteSecret, and QUICWriteData.
Level QUICEncryptionLevel
// Set for QUICTransportParameters, QUICSetReadSecret, QUICSetWriteSecret, and QUICWriteData.
// The contents are owned by crypto/tls, and are valid until the next NextEvent call.
Data []byte
// Set for QUICSetReadSecret and QUICSetWriteSecret.
Suite uint16
}
type quicState struct {
events []QUICEvent
nextEvent int
// eventArr is a statically allocated event array, large enough to handle
// the usual maximum number of events resulting from a single call: transport
// parameters, Initial data, Early read secret, Handshake write and read
// secrets, Handshake data, Application write secret, Application data.
eventArr [8]QUICEvent
started bool
signalc chan struct{} // handshake data is available to be read
blockedc chan struct{} // handshake is waiting for data, closed when done
cancelc <-chan struct{} // handshake has been canceled
cancel context.CancelFunc
// readbuf is shared between HandleData and the handshake goroutine.
// HandshakeCryptoData passes ownership to the handshake goroutine by
// reading from signalc, and reclaims ownership by reading from blockedc.
readbuf []byte
transportParams []byte // to send to the peer
}
// QUICClient returns a new TLS client side connection using QUICTransport as the
// underlying transport. The config cannot be nil.
//
// The config's MinVersion must be at least TLS 1.3.
func QUICClient(config *QUICConfig) *QUICConn {
return newQUICConn(Client(nil, config.TLSConfig), config.ExtraConfig)
}
// QUICServer returns a new TLS server side connection using QUICTransport as the
// underlying transport. The config cannot be nil.
//
// The config's MinVersion must be at least TLS 1.3.
func QUICServer(config *QUICConfig) *QUICConn {
return newQUICConn(Server(nil, config.TLSConfig), config.ExtraConfig)
}
func newQUICConn(conn *Conn, extraConfig *ExtraConfig) *QUICConn {
conn.quic = &quicState{
signalc: make(chan struct{}),
blockedc: make(chan struct{}),
}
conn.quic.events = conn.quic.eventArr[:0]
conn.extraConfig = extraConfig
return &QUICConn{
conn: conn,
}
}
// Start starts the client or server handshake protocol.
// It may produce connection events, which may be read with NextEvent.
//
// Start must be called at most once.
func (q *QUICConn) Start(ctx context.Context) error {
if q.conn.quic.started {
return quicError(errors.New("tls: Start called more than once"))
}
q.conn.quic.started = true
if q.conn.config.MinVersion < VersionTLS13 {
return quicError(errors.New("tls: Config MinVersion must be at least TLS 1.13"))
}
go q.conn.HandshakeContext(ctx)
if _, ok := <-q.conn.quic.blockedc; !ok {
return q.conn.handshakeErr
}
return nil
}
// NextEvent returns the next event occurring on the connection.
// It returns an event with a Kind of QUICNoEvent when no events are available.
func (q *QUICConn) NextEvent() QUICEvent {
qs := q.conn.quic
if last := qs.nextEvent - 1; last >= 0 && len(qs.events[last].Data) > 0 {
// Write over some of the previous event's data,
// to catch callers erroniously retaining it.
qs.events[last].Data[0] = 0
}
if qs.nextEvent >= len(qs.events) {
qs.events = qs.events[:0]
qs.nextEvent = 0
return QUICEvent{Kind: QUICNoEvent}
}
e := qs.events[qs.nextEvent]
qs.events[qs.nextEvent] = QUICEvent{} // zero out references to data
qs.nextEvent++
return e
}
// Close closes the connection and stops any in-progress handshake.
func (q *QUICConn) Close() error {
if q.conn.quic.cancel == nil {
return nil // never started
}
q.conn.quic.cancel()
for range q.conn.quic.blockedc {
// Wait for the handshake goroutine to return.
}
return q.conn.handshakeErr
}
// HandleData handles handshake bytes received from the peer.
// It may produce connection events, which may be read with NextEvent.
func (q *QUICConn) HandleData(level QUICEncryptionLevel, data []byte) error {
c := q.conn
if c.in.level != level {
return quicError(c.in.setErrorLocked(errors.New("tls: handshake data received at wrong level")))
}
c.quic.readbuf = data
<-c.quic.signalc
_, ok := <-c.quic.blockedc
if ok {
// The handshake goroutine is waiting for more data.
return nil
}
// The handshake goroutine has exited.
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
c.hand.Write(c.quic.readbuf)
c.quic.readbuf = nil
for q.conn.hand.Len() >= 4 && q.conn.handshakeErr == nil {
b := q.conn.hand.Bytes()
n := int(b[1])<<16 | int(b[2])<<8 | int(b[3])
if n > maxHandshake {
q.conn.handshakeErr = fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)
break
}
if len(b) < 4+n {
return nil
}
if err := q.conn.handlePostHandshakeMessage(); err != nil {
q.conn.handshakeErr = err
}
}
if q.conn.handshakeErr != nil {
return quicError(q.conn.handshakeErr)
}
return nil
}
// SendSessionTicket sends a session ticket to the client.
// It produces connection events, which may be read with NextEvent.
// Currently, it can only be called once.
func (q *QUICConn) SendSessionTicket(earlyData bool) error {
c := q.conn
if !c.isHandshakeComplete.Load() {
return quicError(errors.New("tls: SendSessionTicket called before handshake completed"))
}
if c.isClient {
return quicError(errors.New("tls: SendSessionTicket called on the client"))
}
if q.sessionTicketSent {
return quicError(errors.New("tls: SendSessionTicket called multiple times"))
}
q.sessionTicketSent = true
return quicError(c.sendSessionTicket(earlyData))
}
// ConnectionState returns basic TLS details about the connection.
func (q *QUICConn) ConnectionState() ConnectionState {
return q.conn.ConnectionState()
}
// SetTransportParameters sets the transport parameters to send to the peer.
//
// Server connections may delay setting the transport parameters until after
// receiving the client's transport parameters. See QUICTransportParametersRequired.
func (q *QUICConn) SetTransportParameters(params []byte) {
if params == nil {
params = []byte{}
}
q.conn.quic.transportParams = params
if q.conn.quic.started {
<-q.conn.quic.signalc
<-q.conn.quic.blockedc
}
}
// quicError ensures err is an AlertError.
// If err is not already, quicError wraps it with alertInternalError.
func quicError(err error) error {
if err == nil {
return nil
}
var ae AlertError
if errors.As(err, &ae) {
return err
}
var a alert
if !errors.As(err, &a) {
a = alertInternalError
}
// Return an error wrapping the original error and an AlertError.
// Truncate the text of the alert to 0 characters.
return fmt.Errorf("%w%.0w", err, AlertError(a))
}
func (c *Conn) quicReadHandshakeBytes(n int) error {
for c.hand.Len() < n {
if err := c.quicWaitForSignal(); err != nil {
return err
}
}
return nil
}
func (c *Conn) quicSetReadSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICSetReadSecret,
Level: level,
Suite: suite,
Data: secret,
})
}
func (c *Conn) quicSetWriteSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICSetWriteSecret,
Level: level,
Suite: suite,
Data: secret,
})
}
func (c *Conn) quicWriteCryptoData(level QUICEncryptionLevel, data []byte) {
var last *QUICEvent
if len(c.quic.events) > 0 {
last = &c.quic.events[len(c.quic.events)-1]
}
if last == nil || last.Kind != QUICWriteData || last.Level != level {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICWriteData,
Level: level,
})
last = &c.quic.events[len(c.quic.events)-1]
}
last.Data = append(last.Data, data...)
}
func (c *Conn) quicSetTransportParameters(params []byte) {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICTransportParameters,
Data: params,
})
}
func (c *Conn) quicGetTransportParameters() ([]byte, error) {
if c.quic.transportParams == nil {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICTransportParametersRequired,
})
}
for c.quic.transportParams == nil {
if err := c.quicWaitForSignal(); err != nil {
return nil, err
}
}
return c.quic.transportParams, nil
}
func (c *Conn) quicHandshakeComplete() {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICHandshakeDone,
})
}
func (c *Conn) quicRejectedEarlyData() {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICRejectedEarlyData,
})
}
// quicWaitForSignal notifies the QUICConn that handshake progress is blocked,
// and waits for a signal that the handshake should proceed.
//
// The handshake may become blocked waiting for handshake bytes
// or for the user to provide transport parameters.
func (c *Conn) quicWaitForSignal() error {
// Drop the handshake mutex while blocked to allow the user
// to call ConnectionState before the handshake completes.
c.handshakeMutex.Unlock()
defer c.handshakeMutex.Lock()
// Send on blockedc to notify the QUICConn that the handshake is blocked.
// Exported methods of QUICConn wait for the handshake to become blocked
// before returning to the user.
select {
case c.quic.blockedc <- struct{}{}:
case <-c.quic.cancelc:
return c.sendAlertLocked(alertCloseNotify)
}
// The QUICConn reads from signalc to notify us that the handshake may
// be able to proceed. (The QUICConn reads, because we close signalc to
// indicate that the handshake has completed.)
select {
case c.quic.signalc <- struct{}{}:
c.hand.Write(c.quic.readbuf)
c.quic.readbuf = nil
case <-c.quic.cancelc:
return c.sendAlertLocked(alertCloseNotify)
}
return nil
}