RichΛrd 0babdad17b
chore: upgrade go-waku to v0.5 (#3213)
* chore: upgrade go-waku to v0.5
* chore: add println and logs to check what's being stored in the enr, and preemptively delete the multiaddr field (#3219)
* feat: add wakuv2 test (#3218)
2023-02-22 17:58:17 -04:00

1844 lines
46 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package qtls
import (
"fmt"
"strings"
"golang.org/x/crypto/cryptobyte"
)
// The marshalingFunction type is an adapter to allow the use of ordinary
// functions as cryptobyte.MarshalingValue.
type marshalingFunction func(b *cryptobyte.Builder) error
func (f marshalingFunction) Marshal(b *cryptobyte.Builder) error {
return f(b)
}
// addBytesWithLength appends a sequence of bytes to the cryptobyte.Builder. If
// the length of the sequence is not the value specified, it produces an error.
func addBytesWithLength(b *cryptobyte.Builder, v []byte, n int) {
b.AddValue(marshalingFunction(func(b *cryptobyte.Builder) error {
if len(v) != n {
return fmt.Errorf("invalid value length: expected %d, got %d", n, len(v))
}
b.AddBytes(v)
return nil
}))
}
// addUint64 appends a big-endian, 64-bit value to the cryptobyte.Builder.
func addUint64(b *cryptobyte.Builder, v uint64) {
b.AddUint32(uint32(v >> 32))
b.AddUint32(uint32(v))
}
// readUint64 decodes a big-endian, 64-bit value into out and advances over it.
// It reports whether the read was successful.
func readUint64(s *cryptobyte.String, out *uint64) bool {
var hi, lo uint32
if !s.ReadUint32(&hi) || !s.ReadUint32(&lo) {
return false
}
*out = uint64(hi)<<32 | uint64(lo)
return true
}
// readUint8LengthPrefixed acts like s.ReadUint8LengthPrefixed, but targets a
// []byte instead of a cryptobyte.String.
func readUint8LengthPrefixed(s *cryptobyte.String, out *[]byte) bool {
return s.ReadUint8LengthPrefixed((*cryptobyte.String)(out))
}
// readUint16LengthPrefixed acts like s.ReadUint16LengthPrefixed, but targets a
// []byte instead of a cryptobyte.String.
func readUint16LengthPrefixed(s *cryptobyte.String, out *[]byte) bool {
return s.ReadUint16LengthPrefixed((*cryptobyte.String)(out))
}
// readUint24LengthPrefixed acts like s.ReadUint24LengthPrefixed, but targets a
// []byte instead of a cryptobyte.String.
func readUint24LengthPrefixed(s *cryptobyte.String, out *[]byte) bool {
return s.ReadUint24LengthPrefixed((*cryptobyte.String)(out))
}
type clientHelloMsg struct {
raw []byte
vers uint16
random []byte
sessionId []byte
cipherSuites []uint16
compressionMethods []uint8
serverName string
ocspStapling bool
supportedCurves []CurveID
supportedPoints []uint8
ticketSupported bool
sessionTicket []uint8
supportedSignatureAlgorithms []SignatureScheme
supportedSignatureAlgorithmsCert []SignatureScheme
secureRenegotiationSupported bool
secureRenegotiation []byte
alpnProtocols []string
scts bool
supportedVersions []uint16
cookie []byte
keyShares []keyShare
earlyData bool
pskModes []uint8
pskIdentities []pskIdentity
pskBinders [][]byte
additionalExtensions []Extension
}
func (m *clientHelloMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeClientHello)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16(m.vers)
addBytesWithLength(b, m.random, 32)
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.sessionId)
})
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, suite := range m.cipherSuites {
b.AddUint16(suite)
}
})
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.compressionMethods)
})
// If extensions aren't present, omit them.
var extensionsPresent bool
bWithoutExtensions := *b
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
if len(m.serverName) > 0 {
// RFC 6066, Section 3
b.AddUint16(extensionServerName)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8(0) // name_type = host_name
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes([]byte(m.serverName))
})
})
})
}
if m.ocspStapling {
// RFC 4366, Section 3.6
b.AddUint16(extensionStatusRequest)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8(1) // status_type = ocsp
b.AddUint16(0) // empty responder_id_list
b.AddUint16(0) // empty request_extensions
})
}
if len(m.supportedCurves) > 0 {
// RFC 4492, sections 5.1.1 and RFC 8446, Section 4.2.7
b.AddUint16(extensionSupportedCurves)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, curve := range m.supportedCurves {
b.AddUint16(uint16(curve))
}
})
})
}
if len(m.supportedPoints) > 0 {
// RFC 4492, Section 5.1.2
b.AddUint16(extensionSupportedPoints)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.supportedPoints)
})
})
}
if m.ticketSupported {
// RFC 5077, Section 3.2
b.AddUint16(extensionSessionTicket)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.sessionTicket)
})
}
if len(m.supportedSignatureAlgorithms) > 0 {
// RFC 5246, Section 7.4.1.4.1
b.AddUint16(extensionSignatureAlgorithms)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, sigAlgo := range m.supportedSignatureAlgorithms {
b.AddUint16(uint16(sigAlgo))
}
})
})
}
if len(m.supportedSignatureAlgorithmsCert) > 0 {
// RFC 8446, Section 4.2.3
b.AddUint16(extensionSignatureAlgorithmsCert)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, sigAlgo := range m.supportedSignatureAlgorithmsCert {
b.AddUint16(uint16(sigAlgo))
}
})
})
}
if m.secureRenegotiationSupported {
// RFC 5746, Section 3.2
b.AddUint16(extensionRenegotiationInfo)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.secureRenegotiation)
})
})
}
if len(m.alpnProtocols) > 0 {
// RFC 7301, Section 3.1
b.AddUint16(extensionALPN)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, proto := range m.alpnProtocols {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes([]byte(proto))
})
}
})
})
}
if m.scts {
// RFC 6962, Section 3.3.1
b.AddUint16(extensionSCT)
b.AddUint16(0) // empty extension_data
}
if len(m.supportedVersions) > 0 {
// RFC 8446, Section 4.2.1
b.AddUint16(extensionSupportedVersions)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
for _, vers := range m.supportedVersions {
b.AddUint16(vers)
}
})
})
}
if len(m.cookie) > 0 {
// RFC 8446, Section 4.2.2
b.AddUint16(extensionCookie)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.cookie)
})
})
}
if len(m.keyShares) > 0 {
// RFC 8446, Section 4.2.8
b.AddUint16(extensionKeyShare)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, ks := range m.keyShares {
b.AddUint16(uint16(ks.group))
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(ks.data)
})
}
})
})
}
if m.earlyData {
// RFC 8446, Section 4.2.10
b.AddUint16(extensionEarlyData)
b.AddUint16(0) // empty extension_data
}
if len(m.pskModes) > 0 {
// RFC 8446, Section 4.2.9
b.AddUint16(extensionPSKModes)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.pskModes)
})
})
}
for _, ext := range m.additionalExtensions {
b.AddUint16(ext.Type)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(ext.Data)
})
}
if len(m.pskIdentities) > 0 { // pre_shared_key must be the last extension
// RFC 8446, Section 4.2.11
b.AddUint16(extensionPreSharedKey)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, psk := range m.pskIdentities {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(psk.label)
})
b.AddUint32(psk.obfuscatedTicketAge)
}
})
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, binder := range m.pskBinders {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(binder)
})
}
})
})
}
extensionsPresent = len(b.BytesOrPanic()) > 2
})
if !extensionsPresent {
*b = bWithoutExtensions
}
})
m.raw = b.BytesOrPanic()
return m.raw
}
// marshalWithoutBinders returns the ClientHello through the
// PreSharedKeyExtension.identities field, according to RFC 8446, Section
// 4.2.11.2. Note that m.pskBinders must be set to slices of the correct length.
func (m *clientHelloMsg) marshalWithoutBinders() []byte {
bindersLen := 2 // uint16 length prefix
for _, binder := range m.pskBinders {
bindersLen += 1 // uint8 length prefix
bindersLen += len(binder)
}
fullMessage := m.marshal()
return fullMessage[:len(fullMessage)-bindersLen]
}
// updateBinders updates the m.pskBinders field, if necessary updating the
// cached marshaled representation. The supplied binders must have the same
// length as the current m.pskBinders.
func (m *clientHelloMsg) updateBinders(pskBinders [][]byte) {
if len(pskBinders) != len(m.pskBinders) {
panic("tls: internal error: pskBinders length mismatch")
}
for i := range m.pskBinders {
if len(pskBinders[i]) != len(m.pskBinders[i]) {
panic("tls: internal error: pskBinders length mismatch")
}
}
m.pskBinders = pskBinders
if m.raw != nil {
lenWithoutBinders := len(m.marshalWithoutBinders())
b := cryptobyte.NewFixedBuilder(m.raw[:lenWithoutBinders])
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, binder := range m.pskBinders {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(binder)
})
}
})
if out, err := b.Bytes(); err != nil || len(out) != len(m.raw) {
panic("tls: internal error: failed to update binders")
}
}
}
func (m *clientHelloMsg) unmarshal(data []byte) bool {
*m = clientHelloMsg{raw: data}
s := cryptobyte.String(data)
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint16(&m.vers) || !s.ReadBytes(&m.random, 32) ||
!readUint8LengthPrefixed(&s, &m.sessionId) {
return false
}
var cipherSuites cryptobyte.String
if !s.ReadUint16LengthPrefixed(&cipherSuites) {
return false
}
m.cipherSuites = []uint16{}
m.secureRenegotiationSupported = false
for !cipherSuites.Empty() {
var suite uint16
if !cipherSuites.ReadUint16(&suite) {
return false
}
if suite == scsvRenegotiation {
m.secureRenegotiationSupported = true
}
m.cipherSuites = append(m.cipherSuites, suite)
}
if !readUint8LengthPrefixed(&s, &m.compressionMethods) {
return false
}
if s.Empty() {
// ClientHello is optionally followed by extension data
return true
}
var extensions cryptobyte.String
if !s.ReadUint16LengthPrefixed(&extensions) || !s.Empty() {
return false
}
seenExts := make(map[uint16]bool)
for !extensions.Empty() {
var extension uint16
var extData cryptobyte.String
if !extensions.ReadUint16(&extension) ||
!extensions.ReadUint16LengthPrefixed(&extData) {
return false
}
if seenExts[extension] {
return false
}
seenExts[extension] = true
switch extension {
case extensionServerName:
// RFC 6066, Section 3
var nameList cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&nameList) || nameList.Empty() {
return false
}
for !nameList.Empty() {
var nameType uint8
var serverName cryptobyte.String
if !nameList.ReadUint8(&nameType) ||
!nameList.ReadUint16LengthPrefixed(&serverName) ||
serverName.Empty() {
return false
}
if nameType != 0 {
continue
}
if len(m.serverName) != 0 {
// Multiple names of the same name_type are prohibited.
return false
}
m.serverName = string(serverName)
// An SNI value may not include a trailing dot.
if strings.HasSuffix(m.serverName, ".") {
return false
}
}
case extensionStatusRequest:
// RFC 4366, Section 3.6
var statusType uint8
var ignored cryptobyte.String
if !extData.ReadUint8(&statusType) ||
!extData.ReadUint16LengthPrefixed(&ignored) ||
!extData.ReadUint16LengthPrefixed(&ignored) {
return false
}
m.ocspStapling = statusType == statusTypeOCSP
case extensionSupportedCurves:
// RFC 4492, sections 5.1.1 and RFC 8446, Section 4.2.7
var curves cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&curves) || curves.Empty() {
return false
}
for !curves.Empty() {
var curve uint16
if !curves.ReadUint16(&curve) {
return false
}
m.supportedCurves = append(m.supportedCurves, CurveID(curve))
}
case extensionSupportedPoints:
// RFC 4492, Section 5.1.2
if !readUint8LengthPrefixed(&extData, &m.supportedPoints) ||
len(m.supportedPoints) == 0 {
return false
}
case extensionSessionTicket:
// RFC 5077, Section 3.2
m.ticketSupported = true
extData.ReadBytes(&m.sessionTicket, len(extData))
case extensionSignatureAlgorithms:
// RFC 5246, Section 7.4.1.4.1
var sigAndAlgs cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
return false
}
for !sigAndAlgs.Empty() {
var sigAndAlg uint16
if !sigAndAlgs.ReadUint16(&sigAndAlg) {
return false
}
m.supportedSignatureAlgorithms = append(
m.supportedSignatureAlgorithms, SignatureScheme(sigAndAlg))
}
case extensionSignatureAlgorithmsCert:
// RFC 8446, Section 4.2.3
var sigAndAlgs cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
return false
}
for !sigAndAlgs.Empty() {
var sigAndAlg uint16
if !sigAndAlgs.ReadUint16(&sigAndAlg) {
return false
}
m.supportedSignatureAlgorithmsCert = append(
m.supportedSignatureAlgorithmsCert, SignatureScheme(sigAndAlg))
}
case extensionRenegotiationInfo:
// RFC 5746, Section 3.2
if !readUint8LengthPrefixed(&extData, &m.secureRenegotiation) {
return false
}
m.secureRenegotiationSupported = true
case extensionALPN:
// RFC 7301, Section 3.1
var protoList cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&protoList) || protoList.Empty() {
return false
}
for !protoList.Empty() {
var proto cryptobyte.String
if !protoList.ReadUint8LengthPrefixed(&proto) || proto.Empty() {
return false
}
m.alpnProtocols = append(m.alpnProtocols, string(proto))
}
case extensionSCT:
// RFC 6962, Section 3.3.1
m.scts = true
case extensionSupportedVersions:
// RFC 8446, Section 4.2.1
var versList cryptobyte.String
if !extData.ReadUint8LengthPrefixed(&versList) || versList.Empty() {
return false
}
for !versList.Empty() {
var vers uint16
if !versList.ReadUint16(&vers) {
return false
}
m.supportedVersions = append(m.supportedVersions, vers)
}
case extensionCookie:
// RFC 8446, Section 4.2.2
if !readUint16LengthPrefixed(&extData, &m.cookie) ||
len(m.cookie) == 0 {
return false
}
case extensionKeyShare:
// RFC 8446, Section 4.2.8
var clientShares cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&clientShares) {
return false
}
for !clientShares.Empty() {
var ks keyShare
if !clientShares.ReadUint16((*uint16)(&ks.group)) ||
!readUint16LengthPrefixed(&clientShares, &ks.data) ||
len(ks.data) == 0 {
return false
}
m.keyShares = append(m.keyShares, ks)
}
case extensionEarlyData:
// RFC 8446, Section 4.2.10
m.earlyData = true
case extensionPSKModes:
// RFC 8446, Section 4.2.9
if !readUint8LengthPrefixed(&extData, &m.pskModes) {
return false
}
case extensionPreSharedKey:
// RFC 8446, Section 4.2.11
if !extensions.Empty() {
return false // pre_shared_key must be the last extension
}
var identities cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&identities) || identities.Empty() {
return false
}
for !identities.Empty() {
var psk pskIdentity
if !readUint16LengthPrefixed(&identities, &psk.label) ||
!identities.ReadUint32(&psk.obfuscatedTicketAge) ||
len(psk.label) == 0 {
return false
}
m.pskIdentities = append(m.pskIdentities, psk)
}
var binders cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&binders) || binders.Empty() {
return false
}
for !binders.Empty() {
var binder []byte
if !readUint8LengthPrefixed(&binders, &binder) ||
len(binder) == 0 {
return false
}
m.pskBinders = append(m.pskBinders, binder)
}
default:
m.additionalExtensions = append(m.additionalExtensions, Extension{Type: extension, Data: extData})
continue
}
if !extData.Empty() {
return false
}
}
return true
}
type serverHelloMsg struct {
raw []byte
vers uint16
random []byte
sessionId []byte
cipherSuite uint16
compressionMethod uint8
ocspStapling bool
ticketSupported bool
secureRenegotiationSupported bool
secureRenegotiation []byte
alpnProtocol string
scts [][]byte
supportedVersion uint16
serverShare keyShare
selectedIdentityPresent bool
selectedIdentity uint16
supportedPoints []uint8
// HelloRetryRequest extensions
cookie []byte
selectedGroup CurveID
}
func (m *serverHelloMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeServerHello)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16(m.vers)
addBytesWithLength(b, m.random, 32)
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.sessionId)
})
b.AddUint16(m.cipherSuite)
b.AddUint8(m.compressionMethod)
// If extensions aren't present, omit them.
var extensionsPresent bool
bWithoutExtensions := *b
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
if m.ocspStapling {
b.AddUint16(extensionStatusRequest)
b.AddUint16(0) // empty extension_data
}
if m.ticketSupported {
b.AddUint16(extensionSessionTicket)
b.AddUint16(0) // empty extension_data
}
if m.secureRenegotiationSupported {
b.AddUint16(extensionRenegotiationInfo)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.secureRenegotiation)
})
})
}
if len(m.alpnProtocol) > 0 {
b.AddUint16(extensionALPN)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes([]byte(m.alpnProtocol))
})
})
})
}
if len(m.scts) > 0 {
b.AddUint16(extensionSCT)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, sct := range m.scts {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(sct)
})
}
})
})
}
if m.supportedVersion != 0 {
b.AddUint16(extensionSupportedVersions)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16(m.supportedVersion)
})
}
if m.serverShare.group != 0 {
b.AddUint16(extensionKeyShare)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16(uint16(m.serverShare.group))
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.serverShare.data)
})
})
}
if m.selectedIdentityPresent {
b.AddUint16(extensionPreSharedKey)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16(m.selectedIdentity)
})
}
if len(m.cookie) > 0 {
b.AddUint16(extensionCookie)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.cookie)
})
})
}
if m.selectedGroup != 0 {
b.AddUint16(extensionKeyShare)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16(uint16(m.selectedGroup))
})
}
if len(m.supportedPoints) > 0 {
b.AddUint16(extensionSupportedPoints)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.supportedPoints)
})
})
}
extensionsPresent = len(b.BytesOrPanic()) > 2
})
if !extensionsPresent {
*b = bWithoutExtensions
}
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *serverHelloMsg) unmarshal(data []byte) bool {
*m = serverHelloMsg{raw: data}
s := cryptobyte.String(data)
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint16(&m.vers) || !s.ReadBytes(&m.random, 32) ||
!readUint8LengthPrefixed(&s, &m.sessionId) ||
!s.ReadUint16(&m.cipherSuite) ||
!s.ReadUint8(&m.compressionMethod) {
return false
}
if s.Empty() {
// ServerHello is optionally followed by extension data
return true
}
var extensions cryptobyte.String
if !s.ReadUint16LengthPrefixed(&extensions) || !s.Empty() {
return false
}
seenExts := make(map[uint16]bool)
for !extensions.Empty() {
var extension uint16
var extData cryptobyte.String
if !extensions.ReadUint16(&extension) ||
!extensions.ReadUint16LengthPrefixed(&extData) {
return false
}
if seenExts[extension] {
return false
}
seenExts[extension] = true
switch extension {
case extensionStatusRequest:
m.ocspStapling = true
case extensionSessionTicket:
m.ticketSupported = true
case extensionRenegotiationInfo:
if !readUint8LengthPrefixed(&extData, &m.secureRenegotiation) {
return false
}
m.secureRenegotiationSupported = true
case extensionALPN:
var protoList cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&protoList) || protoList.Empty() {
return false
}
var proto cryptobyte.String
if !protoList.ReadUint8LengthPrefixed(&proto) ||
proto.Empty() || !protoList.Empty() {
return false
}
m.alpnProtocol = string(proto)
case extensionSCT:
var sctList cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&sctList) || sctList.Empty() {
return false
}
for !sctList.Empty() {
var sct []byte
if !readUint16LengthPrefixed(&sctList, &sct) ||
len(sct) == 0 {
return false
}
m.scts = append(m.scts, sct)
}
case extensionSupportedVersions:
if !extData.ReadUint16(&m.supportedVersion) {
return false
}
case extensionCookie:
if !readUint16LengthPrefixed(&extData, &m.cookie) ||
len(m.cookie) == 0 {
return false
}
case extensionKeyShare:
// This extension has different formats in SH and HRR, accept either
// and let the handshake logic decide. See RFC 8446, Section 4.2.8.
if len(extData) == 2 {
if !extData.ReadUint16((*uint16)(&m.selectedGroup)) {
return false
}
} else {
if !extData.ReadUint16((*uint16)(&m.serverShare.group)) ||
!readUint16LengthPrefixed(&extData, &m.serverShare.data) {
return false
}
}
case extensionPreSharedKey:
m.selectedIdentityPresent = true
if !extData.ReadUint16(&m.selectedIdentity) {
return false
}
case extensionSupportedPoints:
// RFC 4492, Section 5.1.2
if !readUint8LengthPrefixed(&extData, &m.supportedPoints) ||
len(m.supportedPoints) == 0 {
return false
}
default:
// Ignore unknown extensions.
continue
}
if !extData.Empty() {
return false
}
}
return true
}
type encryptedExtensionsMsg struct {
raw []byte
alpnProtocol string
earlyData bool
additionalExtensions []Extension
}
func (m *encryptedExtensionsMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeEncryptedExtensions)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
if len(m.alpnProtocol) > 0 {
b.AddUint16(extensionALPN)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes([]byte(m.alpnProtocol))
})
})
})
}
if m.earlyData {
// RFC 8446, Section 4.2.10
b.AddUint16(extensionEarlyData)
b.AddUint16(0) // empty extension_data
}
for _, ext := range m.additionalExtensions {
b.AddUint16(ext.Type)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(ext.Data)
})
}
})
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *encryptedExtensionsMsg) unmarshal(data []byte) bool {
*m = encryptedExtensionsMsg{raw: data}
s := cryptobyte.String(data)
var extensions cryptobyte.String
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint16LengthPrefixed(&extensions) || !s.Empty() {
return false
}
for !extensions.Empty() {
var ext uint16
var extData cryptobyte.String
if !extensions.ReadUint16(&ext) ||
!extensions.ReadUint16LengthPrefixed(&extData) {
return false
}
switch ext {
case extensionALPN:
var protoList cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&protoList) || protoList.Empty() {
return false
}
var proto cryptobyte.String
if !protoList.ReadUint8LengthPrefixed(&proto) ||
proto.Empty() || !protoList.Empty() {
return false
}
m.alpnProtocol = string(proto)
case extensionEarlyData:
m.earlyData = true
default:
m.additionalExtensions = append(m.additionalExtensions, Extension{Type: ext, Data: extData})
continue
}
if !extData.Empty() {
return false
}
}
return true
}
type endOfEarlyDataMsg struct{}
func (m *endOfEarlyDataMsg) marshal() []byte {
x := make([]byte, 4)
x[0] = typeEndOfEarlyData
return x
}
func (m *endOfEarlyDataMsg) unmarshal(data []byte) bool {
return len(data) == 4
}
type keyUpdateMsg struct {
raw []byte
updateRequested bool
}
func (m *keyUpdateMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeKeyUpdate)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
if m.updateRequested {
b.AddUint8(1)
} else {
b.AddUint8(0)
}
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *keyUpdateMsg) unmarshal(data []byte) bool {
m.raw = data
s := cryptobyte.String(data)
var updateRequested uint8
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint8(&updateRequested) || !s.Empty() {
return false
}
switch updateRequested {
case 0:
m.updateRequested = false
case 1:
m.updateRequested = true
default:
return false
}
return true
}
type newSessionTicketMsgTLS13 struct {
raw []byte
lifetime uint32
ageAdd uint32
nonce []byte
label []byte
maxEarlyData uint32
}
func (m *newSessionTicketMsgTLS13) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeNewSessionTicket)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint32(m.lifetime)
b.AddUint32(m.ageAdd)
b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.nonce)
})
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.label)
})
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
if m.maxEarlyData > 0 {
b.AddUint16(extensionEarlyData)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint32(m.maxEarlyData)
})
}
})
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *newSessionTicketMsgTLS13) unmarshal(data []byte) bool {
*m = newSessionTicketMsgTLS13{raw: data}
s := cryptobyte.String(data)
var extensions cryptobyte.String
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint32(&m.lifetime) ||
!s.ReadUint32(&m.ageAdd) ||
!readUint8LengthPrefixed(&s, &m.nonce) ||
!readUint16LengthPrefixed(&s, &m.label) ||
!s.ReadUint16LengthPrefixed(&extensions) ||
!s.Empty() {
return false
}
for !extensions.Empty() {
var extension uint16
var extData cryptobyte.String
if !extensions.ReadUint16(&extension) ||
!extensions.ReadUint16LengthPrefixed(&extData) {
return false
}
switch extension {
case extensionEarlyData:
if !extData.ReadUint32(&m.maxEarlyData) {
return false
}
default:
// Ignore unknown extensions.
continue
}
if !extData.Empty() {
return false
}
}
return true
}
type certificateRequestMsgTLS13 struct {
raw []byte
ocspStapling bool
scts bool
supportedSignatureAlgorithms []SignatureScheme
supportedSignatureAlgorithmsCert []SignatureScheme
certificateAuthorities [][]byte
}
func (m *certificateRequestMsgTLS13) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeCertificateRequest)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
// certificate_request_context (SHALL be zero length unless used for
// post-handshake authentication)
b.AddUint8(0)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
if m.ocspStapling {
b.AddUint16(extensionStatusRequest)
b.AddUint16(0) // empty extension_data
}
if m.scts {
// RFC 8446, Section 4.4.2.1 makes no mention of
// signed_certificate_timestamp in CertificateRequest, but
// "Extensions in the Certificate message from the client MUST
// correspond to extensions in the CertificateRequest message
// from the server." and it appears in the table in Section 4.2.
b.AddUint16(extensionSCT)
b.AddUint16(0) // empty extension_data
}
if len(m.supportedSignatureAlgorithms) > 0 {
b.AddUint16(extensionSignatureAlgorithms)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, sigAlgo := range m.supportedSignatureAlgorithms {
b.AddUint16(uint16(sigAlgo))
}
})
})
}
if len(m.supportedSignatureAlgorithmsCert) > 0 {
b.AddUint16(extensionSignatureAlgorithmsCert)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, sigAlgo := range m.supportedSignatureAlgorithmsCert {
b.AddUint16(uint16(sigAlgo))
}
})
})
}
if len(m.certificateAuthorities) > 0 {
b.AddUint16(extensionCertificateAuthorities)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, ca := range m.certificateAuthorities {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(ca)
})
}
})
})
}
})
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *certificateRequestMsgTLS13) unmarshal(data []byte) bool {
*m = certificateRequestMsgTLS13{raw: data}
s := cryptobyte.String(data)
var context, extensions cryptobyte.String
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint8LengthPrefixed(&context) || !context.Empty() ||
!s.ReadUint16LengthPrefixed(&extensions) ||
!s.Empty() {
return false
}
for !extensions.Empty() {
var extension uint16
var extData cryptobyte.String
if !extensions.ReadUint16(&extension) ||
!extensions.ReadUint16LengthPrefixed(&extData) {
return false
}
switch extension {
case extensionStatusRequest:
m.ocspStapling = true
case extensionSCT:
m.scts = true
case extensionSignatureAlgorithms:
var sigAndAlgs cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
return false
}
for !sigAndAlgs.Empty() {
var sigAndAlg uint16
if !sigAndAlgs.ReadUint16(&sigAndAlg) {
return false
}
m.supportedSignatureAlgorithms = append(
m.supportedSignatureAlgorithms, SignatureScheme(sigAndAlg))
}
case extensionSignatureAlgorithmsCert:
var sigAndAlgs cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
return false
}
for !sigAndAlgs.Empty() {
var sigAndAlg uint16
if !sigAndAlgs.ReadUint16(&sigAndAlg) {
return false
}
m.supportedSignatureAlgorithmsCert = append(
m.supportedSignatureAlgorithmsCert, SignatureScheme(sigAndAlg))
}
case extensionCertificateAuthorities:
var auths cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&auths) || auths.Empty() {
return false
}
for !auths.Empty() {
var ca []byte
if !readUint16LengthPrefixed(&auths, &ca) || len(ca) == 0 {
return false
}
m.certificateAuthorities = append(m.certificateAuthorities, ca)
}
default:
// Ignore unknown extensions.
continue
}
if !extData.Empty() {
return false
}
}
return true
}
type certificateMsg struct {
raw []byte
certificates [][]byte
}
func (m *certificateMsg) marshal() (x []byte) {
if m.raw != nil {
return m.raw
}
var i int
for _, slice := range m.certificates {
i += len(slice)
}
length := 3 + 3*len(m.certificates) + i
x = make([]byte, 4+length)
x[0] = typeCertificate
x[1] = uint8(length >> 16)
x[2] = uint8(length >> 8)
x[3] = uint8(length)
certificateOctets := length - 3
x[4] = uint8(certificateOctets >> 16)
x[5] = uint8(certificateOctets >> 8)
x[6] = uint8(certificateOctets)
y := x[7:]
for _, slice := range m.certificates {
y[0] = uint8(len(slice) >> 16)
y[1] = uint8(len(slice) >> 8)
y[2] = uint8(len(slice))
copy(y[3:], slice)
y = y[3+len(slice):]
}
m.raw = x
return
}
func (m *certificateMsg) unmarshal(data []byte) bool {
if len(data) < 7 {
return false
}
m.raw = data
certsLen := uint32(data[4])<<16 | uint32(data[5])<<8 | uint32(data[6])
if uint32(len(data)) != certsLen+7 {
return false
}
numCerts := 0
d := data[7:]
for certsLen > 0 {
if len(d) < 4 {
return false
}
certLen := uint32(d[0])<<16 | uint32(d[1])<<8 | uint32(d[2])
if uint32(len(d)) < 3+certLen {
return false
}
d = d[3+certLen:]
certsLen -= 3 + certLen
numCerts++
}
m.certificates = make([][]byte, numCerts)
d = data[7:]
for i := 0; i < numCerts; i++ {
certLen := uint32(d[0])<<16 | uint32(d[1])<<8 | uint32(d[2])
m.certificates[i] = d[3 : 3+certLen]
d = d[3+certLen:]
}
return true
}
type certificateMsgTLS13 struct {
raw []byte
certificate Certificate
ocspStapling bool
scts bool
}
func (m *certificateMsgTLS13) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeCertificate)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8(0) // certificate_request_context
certificate := m.certificate
if !m.ocspStapling {
certificate.OCSPStaple = nil
}
if !m.scts {
certificate.SignedCertificateTimestamps = nil
}
marshalCertificate(b, certificate)
})
m.raw = b.BytesOrPanic()
return m.raw
}
func marshalCertificate(b *cryptobyte.Builder, certificate Certificate) {
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
for i, cert := range certificate.Certificate {
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(cert)
})
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
if i > 0 {
// This library only supports OCSP and SCT for leaf certificates.
return
}
if certificate.OCSPStaple != nil {
b.AddUint16(extensionStatusRequest)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8(statusTypeOCSP)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(certificate.OCSPStaple)
})
})
}
if certificate.SignedCertificateTimestamps != nil {
b.AddUint16(extensionSCT)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
for _, sct := range certificate.SignedCertificateTimestamps {
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(sct)
})
}
})
})
}
})
}
})
}
func (m *certificateMsgTLS13) unmarshal(data []byte) bool {
*m = certificateMsgTLS13{raw: data}
s := cryptobyte.String(data)
var context cryptobyte.String
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint8LengthPrefixed(&context) || !context.Empty() ||
!unmarshalCertificate(&s, &m.certificate) ||
!s.Empty() {
return false
}
m.scts = m.certificate.SignedCertificateTimestamps != nil
m.ocspStapling = m.certificate.OCSPStaple != nil
return true
}
func unmarshalCertificate(s *cryptobyte.String, certificate *Certificate) bool {
var certList cryptobyte.String
if !s.ReadUint24LengthPrefixed(&certList) {
return false
}
for !certList.Empty() {
var cert []byte
var extensions cryptobyte.String
if !readUint24LengthPrefixed(&certList, &cert) ||
!certList.ReadUint16LengthPrefixed(&extensions) {
return false
}
certificate.Certificate = append(certificate.Certificate, cert)
for !extensions.Empty() {
var extension uint16
var extData cryptobyte.String
if !extensions.ReadUint16(&extension) ||
!extensions.ReadUint16LengthPrefixed(&extData) {
return false
}
if len(certificate.Certificate) > 1 {
// This library only supports OCSP and SCT for leaf certificates.
continue
}
switch extension {
case extensionStatusRequest:
var statusType uint8
if !extData.ReadUint8(&statusType) || statusType != statusTypeOCSP ||
!readUint24LengthPrefixed(&extData, &certificate.OCSPStaple) ||
len(certificate.OCSPStaple) == 0 {
return false
}
case extensionSCT:
var sctList cryptobyte.String
if !extData.ReadUint16LengthPrefixed(&sctList) || sctList.Empty() {
return false
}
for !sctList.Empty() {
var sct []byte
if !readUint16LengthPrefixed(&sctList, &sct) ||
len(sct) == 0 {
return false
}
certificate.SignedCertificateTimestamps = append(
certificate.SignedCertificateTimestamps, sct)
}
default:
// Ignore unknown extensions.
continue
}
if !extData.Empty() {
return false
}
}
}
return true
}
type serverKeyExchangeMsg struct {
raw []byte
key []byte
}
func (m *serverKeyExchangeMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
length := len(m.key)
x := make([]byte, length+4)
x[0] = typeServerKeyExchange
x[1] = uint8(length >> 16)
x[2] = uint8(length >> 8)
x[3] = uint8(length)
copy(x[4:], m.key)
m.raw = x
return x
}
func (m *serverKeyExchangeMsg) unmarshal(data []byte) bool {
m.raw = data
if len(data) < 4 {
return false
}
m.key = data[4:]
return true
}
type certificateStatusMsg struct {
raw []byte
response []byte
}
func (m *certificateStatusMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeCertificateStatus)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddUint8(statusTypeOCSP)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.response)
})
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *certificateStatusMsg) unmarshal(data []byte) bool {
m.raw = data
s := cryptobyte.String(data)
var statusType uint8
if !s.Skip(4) || // message type and uint24 length field
!s.ReadUint8(&statusType) || statusType != statusTypeOCSP ||
!readUint24LengthPrefixed(&s, &m.response) ||
len(m.response) == 0 || !s.Empty() {
return false
}
return true
}
type serverHelloDoneMsg struct{}
func (m *serverHelloDoneMsg) marshal() []byte {
x := make([]byte, 4)
x[0] = typeServerHelloDone
return x
}
func (m *serverHelloDoneMsg) unmarshal(data []byte) bool {
return len(data) == 4
}
type clientKeyExchangeMsg struct {
raw []byte
ciphertext []byte
}
func (m *clientKeyExchangeMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
length := len(m.ciphertext)
x := make([]byte, length+4)
x[0] = typeClientKeyExchange
x[1] = uint8(length >> 16)
x[2] = uint8(length >> 8)
x[3] = uint8(length)
copy(x[4:], m.ciphertext)
m.raw = x
return x
}
func (m *clientKeyExchangeMsg) unmarshal(data []byte) bool {
m.raw = data
if len(data) < 4 {
return false
}
l := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
if l != len(data)-4 {
return false
}
m.ciphertext = data[4:]
return true
}
type finishedMsg struct {
raw []byte
verifyData []byte
}
func (m *finishedMsg) marshal() []byte {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeFinished)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.verifyData)
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *finishedMsg) unmarshal(data []byte) bool {
m.raw = data
s := cryptobyte.String(data)
return s.Skip(1) &&
readUint24LengthPrefixed(&s, &m.verifyData) &&
s.Empty()
}
type certificateRequestMsg struct {
raw []byte
// hasSignatureAlgorithm indicates whether this message includes a list of
// supported signature algorithms. This change was introduced with TLS 1.2.
hasSignatureAlgorithm bool
certificateTypes []byte
supportedSignatureAlgorithms []SignatureScheme
certificateAuthorities [][]byte
}
func (m *certificateRequestMsg) marshal() (x []byte) {
if m.raw != nil {
return m.raw
}
// See RFC 4346, Section 7.4.4.
length := 1 + len(m.certificateTypes) + 2
casLength := 0
for _, ca := range m.certificateAuthorities {
casLength += 2 + len(ca)
}
length += casLength
if m.hasSignatureAlgorithm {
length += 2 + 2*len(m.supportedSignatureAlgorithms)
}
x = make([]byte, 4+length)
x[0] = typeCertificateRequest
x[1] = uint8(length >> 16)
x[2] = uint8(length >> 8)
x[3] = uint8(length)
x[4] = uint8(len(m.certificateTypes))
copy(x[5:], m.certificateTypes)
y := x[5+len(m.certificateTypes):]
if m.hasSignatureAlgorithm {
n := len(m.supportedSignatureAlgorithms) * 2
y[0] = uint8(n >> 8)
y[1] = uint8(n)
y = y[2:]
for _, sigAlgo := range m.supportedSignatureAlgorithms {
y[0] = uint8(sigAlgo >> 8)
y[1] = uint8(sigAlgo)
y = y[2:]
}
}
y[0] = uint8(casLength >> 8)
y[1] = uint8(casLength)
y = y[2:]
for _, ca := range m.certificateAuthorities {
y[0] = uint8(len(ca) >> 8)
y[1] = uint8(len(ca))
y = y[2:]
copy(y, ca)
y = y[len(ca):]
}
m.raw = x
return
}
func (m *certificateRequestMsg) unmarshal(data []byte) bool {
m.raw = data
if len(data) < 5 {
return false
}
length := uint32(data[1])<<16 | uint32(data[2])<<8 | uint32(data[3])
if uint32(len(data))-4 != length {
return false
}
numCertTypes := int(data[4])
data = data[5:]
if numCertTypes == 0 || len(data) <= numCertTypes {
return false
}
m.certificateTypes = make([]byte, numCertTypes)
if copy(m.certificateTypes, data) != numCertTypes {
return false
}
data = data[numCertTypes:]
if m.hasSignatureAlgorithm {
if len(data) < 2 {
return false
}
sigAndHashLen := uint16(data[0])<<8 | uint16(data[1])
data = data[2:]
if sigAndHashLen&1 != 0 {
return false
}
if len(data) < int(sigAndHashLen) {
return false
}
numSigAlgos := sigAndHashLen / 2
m.supportedSignatureAlgorithms = make([]SignatureScheme, numSigAlgos)
for i := range m.supportedSignatureAlgorithms {
m.supportedSignatureAlgorithms[i] = SignatureScheme(data[0])<<8 | SignatureScheme(data[1])
data = data[2:]
}
}
if len(data) < 2 {
return false
}
casLength := uint16(data[0])<<8 | uint16(data[1])
data = data[2:]
if len(data) < int(casLength) {
return false
}
cas := make([]byte, casLength)
copy(cas, data)
data = data[casLength:]
m.certificateAuthorities = nil
for len(cas) > 0 {
if len(cas) < 2 {
return false
}
caLen := uint16(cas[0])<<8 | uint16(cas[1])
cas = cas[2:]
if len(cas) < int(caLen) {
return false
}
m.certificateAuthorities = append(m.certificateAuthorities, cas[:caLen])
cas = cas[caLen:]
}
return len(data) == 0
}
type certificateVerifyMsg struct {
raw []byte
hasSignatureAlgorithm bool // format change introduced in TLS 1.2
signatureAlgorithm SignatureScheme
signature []byte
}
func (m *certificateVerifyMsg) marshal() (x []byte) {
if m.raw != nil {
return m.raw
}
var b cryptobyte.Builder
b.AddUint8(typeCertificateVerify)
b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
if m.hasSignatureAlgorithm {
b.AddUint16(uint16(m.signatureAlgorithm))
}
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.signature)
})
})
m.raw = b.BytesOrPanic()
return m.raw
}
func (m *certificateVerifyMsg) unmarshal(data []byte) bool {
m.raw = data
s := cryptobyte.String(data)
if !s.Skip(4) { // message type and uint24 length field
return false
}
if m.hasSignatureAlgorithm {
if !s.ReadUint16((*uint16)(&m.signatureAlgorithm)) {
return false
}
}
return readUint16LengthPrefixed(&s, &m.signature) && s.Empty()
}
type newSessionTicketMsg struct {
raw []byte
ticket []byte
}
func (m *newSessionTicketMsg) marshal() (x []byte) {
if m.raw != nil {
return m.raw
}
// See RFC 5077, Section 3.3.
ticketLen := len(m.ticket)
length := 2 + 4 + ticketLen
x = make([]byte, 4+length)
x[0] = typeNewSessionTicket
x[1] = uint8(length >> 16)
x[2] = uint8(length >> 8)
x[3] = uint8(length)
x[8] = uint8(ticketLen >> 8)
x[9] = uint8(ticketLen)
copy(x[10:], m.ticket)
m.raw = x
return
}
func (m *newSessionTicketMsg) unmarshal(data []byte) bool {
m.raw = data
if len(data) < 10 {
return false
}
length := uint32(data[1])<<16 | uint32(data[2])<<8 | uint32(data[3])
if uint32(len(data))-4 != length {
return false
}
ticketLen := int(data[8])<<8 + int(data[9])
if len(data)-10 != ticketLen {
return false
}
m.ticket = data[10:]
return true
}
type helloRequestMsg struct {
}
func (*helloRequestMsg) marshal() []byte {
return []byte{typeHelloRequest, 0, 0, 0}
}
func (*helloRequestMsg) unmarshal(data []byte) bool {
return len(data) == 4
}