status-go/vendor/github.com/yeqown/go-qrcode/v2/encoder.go

351 lines
7.7 KiB
Go

// Package qrcode ...
// encoder.go working for data encoding
package qrcode
import (
"fmt"
"log"
"github.com/yeqown/reedsolomon/binary"
)
// encMode ...
type encMode uint
const (
// a qrbool of EncModeAuto will trigger a detection of the letter set from the input data,
EncModeAuto = 0
// EncModeNone mode ...
EncModeNone encMode = 1 << iota
// EncModeNumeric mode ...
EncModeNumeric
// EncModeAlphanumeric mode ...
EncModeAlphanumeric
// EncModeByte mode ...
EncModeByte
// EncModeJP mode ...
EncModeJP
)
var (
paddingByte1, _ = binary.NewFromBinaryString("11101100")
paddingByte2, _ = binary.NewFromBinaryString("00010001")
)
// getEncModeName ...
func getEncModeName(mode encMode) string {
switch mode {
case EncModeNone:
return "none"
case EncModeNumeric:
return "numeric"
case EncModeAlphanumeric:
return "alphanumeric"
case EncModeByte:
return "byte"
case EncModeJP:
return "japan"
default:
return "unknown"
}
}
// getEncodeModeIndicator ...
func getEncodeModeIndicator(mode encMode) *binary.Binary {
switch mode {
case EncModeNumeric:
return binary.New(false, false, false, true)
case EncModeAlphanumeric:
return binary.New(false, false, true, false)
case EncModeByte:
return binary.New(false, true, false, false)
case EncModeJP:
return binary.New(true, false, false, false)
default:
panic("no indicator")
}
}
// encoder ... data to bit stream ...
type encoder struct {
// self init
dst *binary.Binary
data []byte // raw input data
// initial params
mode encMode // encode mode
ecLv ecLevel // error correction level
// self load
version version // QR version ref
}
func newEncoder(m encMode, ec ecLevel, v version) *encoder {
return &encoder{
dst: nil,
data: nil,
mode: m,
ecLv: ec,
version: v,
}
}
// Encode ...
// 1. encode raw data into bitset
// 2. append _defaultPadding data
//
func (e *encoder) Encode(byts []byte) (*binary.Binary, error) {
e.dst = binary.New()
e.data = byts
// append mode indicator symbol
indicator := getEncodeModeIndicator(e.mode)
e.dst.Append(indicator)
// append chars length counter bits symbol
e.dst.AppendUint32(uint32(len(byts)), e.charCountBits())
// encode data with specified mode
switch e.mode {
case EncModeNumeric:
e.encodeNumeric()
case EncModeAlphanumeric:
e.encodeAlphanumeric()
case EncModeByte:
e.encodeByte()
case EncModeJP:
panic("this has not been finished")
}
// fill and _defaultPadding bits
e.breakUpInto8bit()
return e.dst, nil
}
// 0001b mode indicator
func (e *encoder) encodeNumeric() {
if e.dst == nil {
log.Println("e.dst is nil")
return
}
for i := 0; i < len(e.data); i += 3 {
charsRemaining := len(e.data) - i
var value uint32
bitsUsed := 1
for j := 0; j < charsRemaining && j < 3; j++ {
value *= 10
value += uint32(e.data[i+j] - 0x30)
bitsUsed += 3
}
e.dst.AppendUint32(value, bitsUsed)
}
}
// 0010b mode indicator
func (e *encoder) encodeAlphanumeric() {
if e.dst == nil {
log.Println("e.dst is nil")
return
}
for i := 0; i < len(e.data); i += 2 {
charsRemaining := len(e.data) - i
var value uint32
for j := 0; j < charsRemaining && j < 2; j++ {
value *= 45
value += encodeAlphanumericCharacter(e.data[i+j])
}
bitsUsed := 6
if charsRemaining > 1 {
bitsUsed = 11
}
e.dst.AppendUint32(value, bitsUsed)
}
}
// 0100b mode indicator
func (e *encoder) encodeByte() {
if e.dst == nil {
log.Println("e.dst is nil")
return
}
for _, b := range e.data {
_ = e.dst.AppendByte(b, 8)
}
}
// Break Up into 8-bit Codewords and Add Pad Bytes if Necessary
func (e *encoder) breakUpInto8bit() {
// fill ending code (max 4bit)
// depends on max capacity of current version and EC level
maxCap := e.version.NumTotalCodewords() * 8
if less := maxCap - e.dst.Len(); less < 0 {
err := fmt.Errorf(
"wrong version(%d) cap(%d bits) and could not contain all bits: %d bits",
e.version.Ver, maxCap, e.dst.Len(),
)
panic(err)
} else if less < 4 {
e.dst.AppendNumBools(less, false)
} else {
e.dst.AppendNumBools(4, false)
}
// append `0` to be 8 times bits length
if mod := e.dst.Len() % 8; mod != 0 {
e.dst.AppendNumBools(8-mod, false)
}
// _defaultPadding bytes
// _defaultPadding byte 11101100 00010001
if n := maxCap - e.dst.Len(); n > 0 {
debugLogf("maxCap: %d, len: %d, less: %d", maxCap, e.dst.Len(), n)
for i := 1; i <= (n / 8); i++ {
if i%2 == 1 {
e.dst.Append(paddingByte1)
} else {
e.dst.Append(paddingByte2)
}
}
}
}
// 字符计数指示符位长字典
var charCountMap = map[string]int{
"9_numeric": 10,
"9_alphanumeric": 9,
"9_byte": 8,
"9_japan": 8,
"26_numeric": 12,
"26_alphanumeric": 11,
"26_byte": 16,
"26_japan": 10,
"40_numeric": 14,
"40_alphanumeric": 13,
"40_byte": 16,
"40_japan": 12,
}
// charCountBits
func (e *encoder) charCountBits() int {
var lv int
if v := e.version.Ver; v <= 9 {
lv = 9
} else if v <= 26 {
lv = 26
} else {
lv = 40
}
pos := fmt.Sprintf("%d_%s", lv, getEncModeName(e.mode))
return charCountMap[pos]
}
// v must be a QR Code defined alphanumeric character: 0-9, A-Z, SP, $%*+-./ or
// :. The characters are mapped to values in the range 0-44 respectively.
func encodeAlphanumericCharacter(v byte) uint32 {
c := uint32(v)
switch {
case c >= '0' && c <= '9':
// 0-9 encoded as 0-9.
return c - '0'
case c >= 'A' && c <= 'Z':
// A-Z encoded as 10-35.
return c - 'A' + 10
case c == ' ':
return 36
case c == '$':
return 37
case c == '%':
return 38
case c == '*':
return 39
case c == '+':
return 40
case c == '-':
return 41
case c == '.':
return 42
case c == '/':
return 43
case c == ':':
return 44
default:
log.Panicf("encodeAlphanumericCharacter() with non alphanumeric char %c", v)
}
return 0
}
// analyzeEncFunc returns true is current byte matched in current mode,
// otherwise means you should use a bigger character set to check.
type analyzeEncFunc func(byte) bool
// analyzeEncodeModeFromRaw try to detect letter set of input data,
// so that encoder can determine which mode should be use.
// reference: https://en.wikipedia.org/wiki/QR_code
//
// case1: only numbers, use EncModeNumeric.
// case2: could not use EncModeNumeric, but you can find all of them in character mapping, use EncModeAlphanumeric.
// case3: could not use EncModeAlphanumeric, but you can find all of them in ISO-8859-1 character set, use EncModeByte.
// case4: could not use EncModeByte, use EncModeJP, no more choice.
//
func analyzeEncodeModeFromRaw(raw []byte) encMode {
analyzeFnMapping := map[encMode]analyzeEncFunc{
EncModeNumeric: analyzeNum,
EncModeAlphanumeric: analyzeAlphaNum,
EncModeByte: nil,
EncModeJP: nil,
}
var (
f analyzeEncFunc
mode = EncModeNumeric
)
// loop to check each character in raw data,
// from low mode to higher while current mode could bearing the input data.
for _, byt := range raw {
reAnalyze:
if f = analyzeFnMapping[mode]; f == nil {
break
}
// issue#28 @borislavone reports this bug.
// FIXED(@yeqown): next encMode analyzeVersionAuto func did not check the previous byte,
// add goto statement to reanalyze previous byte which can't be analyzed in last encMode.
if !f(byt) {
mode <<= 1
goto reAnalyze
}
}
return mode
}
// analyzeNum is byt in num encMode
func analyzeNum(byt byte) bool {
return byt >= '0' && byt <= '9'
}
// analyzeAlphaNum is byt in alpha number
func analyzeAlphaNum(byt byte) bool {
if (byt >= '0' && byt <= '9') || (byt >= 'A' && byt <= 'Z') {
return true
}
switch byt {
case ' ', '$', '%', '*', '+', '-', '.', '/', ':':
return true
}
return false
}
//// analyzeByte is byt in bytes.
//func analyzeByte(byt byte) qrbool {
// return false
//}