mirror of
https://github.com/status-im/status-go.git
synced 2025-01-19 19:20:00 +00:00
510 lines
12 KiB
Go
510 lines
12 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package base32 implements base32 encoding as specified by RFC 4648.
|
|
package base32
|
|
|
|
import (
|
|
"io"
|
|
"strconv"
|
|
)
|
|
|
|
/*
|
|
* Encodings
|
|
*/
|
|
|
|
// An Encoding is a radix 32 encoding/decoding scheme, defined by a
|
|
// 32-character alphabet. The most common is the "base32" encoding
|
|
// introduced for SASL GSSAPI and standardized in RFC 4648.
|
|
// The alternate "base32hex" encoding is used in DNSSEC.
|
|
type Encoding struct {
|
|
encode string
|
|
decodeMap [256]byte
|
|
padChar rune
|
|
}
|
|
|
|
// Alphabet returns the Base32 alphabet used
|
|
func (enc *Encoding) Alphabet() string {
|
|
return enc.encode
|
|
}
|
|
|
|
const (
|
|
StdPadding rune = '='
|
|
NoPadding rune = -1
|
|
)
|
|
|
|
const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"
|
|
const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV"
|
|
|
|
// NewEncoding returns a new Encoding defined by the given alphabet,
|
|
// which must be a 32-byte string.
|
|
func NewEncoding(encoder string) *Encoding {
|
|
e := new(Encoding)
|
|
e.padChar = StdPadding
|
|
e.encode = encoder
|
|
for i := 0; i < len(e.decodeMap); i++ {
|
|
e.decodeMap[i] = 0xFF
|
|
}
|
|
for i := 0; i < len(encoder); i++ {
|
|
e.decodeMap[encoder[i]] = byte(i)
|
|
}
|
|
return e
|
|
}
|
|
|
|
// NewEncoding returns a new case insensitive Encoding defined by the
|
|
// given alphabet, which must be a 32-byte string.
|
|
func NewEncodingCI(encoder string) *Encoding {
|
|
e := new(Encoding)
|
|
e.padChar = StdPadding
|
|
e.encode = encoder
|
|
for i := 0; i < len(e.decodeMap); i++ {
|
|
e.decodeMap[i] = 0xFF
|
|
}
|
|
for i := 0; i < len(encoder); i++ {
|
|
e.decodeMap[asciiToLower(encoder[i])] = byte(i)
|
|
e.decodeMap[asciiToUpper(encoder[i])] = byte(i)
|
|
}
|
|
return e
|
|
}
|
|
|
|
func asciiToLower(c byte) byte {
|
|
if c >= 'A' && c <= 'Z' {
|
|
return c + 32
|
|
}
|
|
return c
|
|
}
|
|
|
|
func asciiToUpper(c byte) byte {
|
|
if c >= 'a' && c <= 'z' {
|
|
return c - 32
|
|
}
|
|
return c
|
|
}
|
|
|
|
// WithPadding creates a new encoding identical to enc except
|
|
// with a specified padding character, or NoPadding to disable padding.
|
|
func (enc Encoding) WithPadding(padding rune) *Encoding {
|
|
enc.padChar = padding
|
|
return &enc
|
|
}
|
|
|
|
// StdEncoding is the standard base32 encoding, as defined in
|
|
// RFC 4648.
|
|
var StdEncoding = NewEncodingCI(encodeStd)
|
|
|
|
// HexEncoding is the “Extended Hex Alphabet” defined in RFC 4648.
|
|
// It is typically used in DNS.
|
|
var HexEncoding = NewEncodingCI(encodeHex)
|
|
|
|
var RawStdEncoding = NewEncodingCI(encodeStd).WithPadding(NoPadding)
|
|
var RawHexEncoding = NewEncodingCI(encodeHex).WithPadding(NoPadding)
|
|
|
|
/*
|
|
* Encoder
|
|
*/
|
|
|
|
// Encode encodes src using the encoding enc, writing
|
|
// EncodedLen(len(src)) bytes to dst.
|
|
//
|
|
// The encoding pads the output to a multiple of 8 bytes,
|
|
// so Encode is not appropriate for use on individual blocks
|
|
// of a large data stream. Use NewEncoder() instead.
|
|
func (enc *Encoding) Encode(dst, src []byte) {
|
|
if len(src) == 0 {
|
|
return
|
|
}
|
|
|
|
// Unpack 8x 5-bit source blocks into a 5 byte
|
|
// destination quantum
|
|
for len(src) > 4 {
|
|
dst[7] = enc.encode[src[4]&0x1F]
|
|
dst[6] = enc.encode[(src[4]>>5)|(src[3]<<3)&0x1F]
|
|
dst[5] = enc.encode[(src[3]>>2)&0x1F]
|
|
dst[4] = enc.encode[(src[3]>>7)|(src[2]<<1)&0x1F]
|
|
dst[3] = enc.encode[((src[2]>>4)|(src[1]<<4))&0x1F]
|
|
dst[2] = enc.encode[(src[1]>>1)&0x1F]
|
|
dst[1] = enc.encode[((src[1]>>6)|(src[0]<<2))&0x1F]
|
|
dst[0] = enc.encode[src[0]>>3]
|
|
src = src[5:]
|
|
dst = dst[8:]
|
|
}
|
|
|
|
var carry byte
|
|
|
|
switch len(src) {
|
|
case 4:
|
|
dst[6] = enc.encode[(src[3]<<3)&0x1F]
|
|
dst[5] = enc.encode[(src[3]>>2)&0x1F]
|
|
carry = src[3] >> 7
|
|
fallthrough
|
|
case 3:
|
|
dst[4] = enc.encode[carry|(src[2]<<1)&0x1F]
|
|
carry = (src[2] >> 4) & 0x1F
|
|
fallthrough
|
|
case 2:
|
|
dst[3] = enc.encode[carry|(src[1]<<4)&0x1F]
|
|
dst[2] = enc.encode[(src[1]>>1)&0x1F]
|
|
carry = (src[1] >> 6) & 0x1F
|
|
fallthrough
|
|
case 1:
|
|
dst[1] = enc.encode[carry|(src[0]<<2)&0x1F]
|
|
dst[0] = enc.encode[src[0]>>3]
|
|
case 0:
|
|
return
|
|
}
|
|
|
|
if enc.padChar != NoPadding {
|
|
dst[7] = byte(enc.padChar)
|
|
if len(src) < 4 {
|
|
dst[6] = byte(enc.padChar)
|
|
dst[5] = byte(enc.padChar)
|
|
if len(src) < 3 {
|
|
dst[4] = byte(enc.padChar)
|
|
if len(src) < 2 {
|
|
dst[3] = byte(enc.padChar)
|
|
dst[2] = byte(enc.padChar)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// EncodeToString returns the base32 encoding of src.
|
|
func (enc *Encoding) EncodeToString(src []byte) string {
|
|
buf := make([]byte, enc.EncodedLen(len(src)))
|
|
enc.Encode(buf, src)
|
|
return string(buf)
|
|
}
|
|
|
|
type encoder struct {
|
|
err error
|
|
enc *Encoding
|
|
w io.Writer
|
|
buf [5]byte // buffered data waiting to be encoded
|
|
nbuf int // number of bytes in buf
|
|
out [1024]byte // output buffer
|
|
}
|
|
|
|
func (e *encoder) Write(p []byte) (n int, err error) {
|
|
if e.err != nil {
|
|
return 0, e.err
|
|
}
|
|
|
|
// Leading fringe.
|
|
if e.nbuf > 0 {
|
|
var i int
|
|
for i = 0; i < len(p) && e.nbuf < 5; i++ {
|
|
e.buf[e.nbuf] = p[i]
|
|
e.nbuf++
|
|
}
|
|
n += i
|
|
p = p[i:]
|
|
if e.nbuf < 5 {
|
|
return
|
|
}
|
|
e.enc.Encode(e.out[0:], e.buf[0:])
|
|
if _, e.err = e.w.Write(e.out[0:8]); e.err != nil {
|
|
return n, e.err
|
|
}
|
|
e.nbuf = 0
|
|
}
|
|
|
|
// Large interior chunks.
|
|
for len(p) >= 5 {
|
|
nn := len(e.out) / 8 * 5
|
|
if nn > len(p) {
|
|
nn = len(p)
|
|
nn -= nn % 5
|
|
}
|
|
e.enc.Encode(e.out[0:], p[0:nn])
|
|
if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil {
|
|
return n, e.err
|
|
}
|
|
n += nn
|
|
p = p[nn:]
|
|
}
|
|
|
|
// Trailing fringe.
|
|
//lint:ignore S1001 fixed-length 5-byte slice
|
|
for i := 0; i < len(p); i++ {
|
|
e.buf[i] = p[i]
|
|
}
|
|
e.nbuf = len(p)
|
|
n += len(p)
|
|
return
|
|
}
|
|
|
|
// Close flushes any pending output from the encoder.
|
|
// It is an error to call Write after calling Close.
|
|
func (e *encoder) Close() error {
|
|
// If there's anything left in the buffer, flush it out
|
|
if e.err == nil && e.nbuf > 0 {
|
|
e.enc.Encode(e.out[0:], e.buf[0:e.nbuf])
|
|
e.nbuf = 0
|
|
_, e.err = e.w.Write(e.out[0:8])
|
|
}
|
|
return e.err
|
|
}
|
|
|
|
// NewEncoder returns a new base32 stream encoder. Data written to
|
|
// the returned writer will be encoded using enc and then written to w.
|
|
// Base32 encodings operate in 5-byte blocks; when finished
|
|
// writing, the caller must Close the returned encoder to flush any
|
|
// partially written blocks.
|
|
func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser {
|
|
return &encoder{enc: enc, w: w}
|
|
}
|
|
|
|
// EncodedLen returns the length in bytes of the base32 encoding
|
|
// of an input buffer of length n.
|
|
func (enc *Encoding) EncodedLen(n int) int {
|
|
if enc.padChar == NoPadding {
|
|
return (n*8 + 4) / 5 // minimum # chars at 5 bits per char
|
|
}
|
|
return (n + 4) / 5 * 8
|
|
}
|
|
|
|
/*
|
|
* Decoder
|
|
*/
|
|
|
|
type CorruptInputError int64
|
|
|
|
func (e CorruptInputError) Error() string {
|
|
return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10)
|
|
}
|
|
|
|
// decode is like Decode but returns an additional 'end' value, which
|
|
// indicates if end-of-message padding was encountered and thus any
|
|
// additional data is an error. This method assumes that src has been
|
|
// stripped of all supported whitespace ('\r' and '\n').
|
|
func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) {
|
|
olen := len(src)
|
|
for len(src) > 0 && !end {
|
|
// Decode quantum using the base32 alphabet
|
|
var dbuf [8]byte
|
|
dlen := 8
|
|
|
|
for j := 0; j < 8; {
|
|
if len(src) == 0 {
|
|
if enc.padChar != NoPadding {
|
|
return n, false, CorruptInputError(olen - len(src) - j)
|
|
}
|
|
dlen = j
|
|
break
|
|
}
|
|
in := src[0]
|
|
src = src[1:]
|
|
if in == byte(enc.padChar) && j >= 2 && len(src) < 8 {
|
|
if enc.padChar == NoPadding {
|
|
return n, false, CorruptInputError(olen)
|
|
}
|
|
|
|
// We've reached the end and there's padding
|
|
if len(src)+j < 8-1 {
|
|
// not enough padding
|
|
return n, false, CorruptInputError(olen)
|
|
}
|
|
for k := 0; k < 8-1-j; k++ {
|
|
if len(src) > k && src[k] != byte(enc.padChar) {
|
|
// incorrect padding
|
|
return n, false, CorruptInputError(olen - len(src) + k - 1)
|
|
}
|
|
}
|
|
dlen, end = j, true
|
|
// 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not
|
|
// valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing
|
|
// the five valid padding lengths, and Section 9 "Illustrations and
|
|
// Examples" for an illustration for how the 1st, 3rd and 6th base32
|
|
// src bytes do not yield enough information to decode a dst byte.
|
|
if dlen == 1 || dlen == 3 || dlen == 6 {
|
|
return n, false, CorruptInputError(olen - len(src) - 1)
|
|
}
|
|
break
|
|
}
|
|
dbuf[j] = enc.decodeMap[in]
|
|
if dbuf[j] == 0xFF {
|
|
return n, false, CorruptInputError(olen - len(src) - 1)
|
|
}
|
|
j++
|
|
}
|
|
|
|
// Pack 8x 5-bit source blocks into 5 byte destination
|
|
// quantum
|
|
switch dlen {
|
|
case 8:
|
|
dst[4] = dbuf[6]<<5 | dbuf[7]
|
|
fallthrough
|
|
case 7:
|
|
dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3
|
|
fallthrough
|
|
case 5:
|
|
dst[2] = dbuf[3]<<4 | dbuf[4]>>1
|
|
fallthrough
|
|
case 4:
|
|
dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4
|
|
fallthrough
|
|
case 2:
|
|
dst[0] = dbuf[0]<<3 | dbuf[1]>>2
|
|
}
|
|
|
|
if len(dst) > 5 {
|
|
dst = dst[5:]
|
|
}
|
|
|
|
switch dlen {
|
|
case 2:
|
|
n += 1
|
|
case 4:
|
|
n += 2
|
|
case 5:
|
|
n += 3
|
|
case 7:
|
|
n += 4
|
|
case 8:
|
|
n += 5
|
|
}
|
|
}
|
|
return n, end, nil
|
|
}
|
|
|
|
// Decode decodes src using the encoding enc. It writes at most
|
|
// DecodedLen(len(src)) bytes to dst and returns the number of bytes
|
|
// written. If src contains invalid base32 data, it will return the
|
|
// number of bytes successfully written and CorruptInputError.
|
|
// New line characters (\r and \n) are ignored.
|
|
func (enc *Encoding) Decode(dst, s []byte) (n int, err error) {
|
|
// FIXME: if dst is the same as s use decodeInPlace
|
|
stripped := make([]byte, 0, len(s))
|
|
for _, c := range s {
|
|
if c != '\r' && c != '\n' {
|
|
stripped = append(stripped, c)
|
|
}
|
|
}
|
|
n, _, err = enc.decode(dst, stripped)
|
|
return
|
|
}
|
|
|
|
func (enc *Encoding) decodeInPlace(strb []byte) (n int, err error) {
|
|
off := 0
|
|
for _, b := range strb {
|
|
if b == '\n' || b == '\r' {
|
|
continue
|
|
}
|
|
strb[off] = b
|
|
off++
|
|
}
|
|
n, _, err = enc.decode(strb, strb[:off])
|
|
return
|
|
}
|
|
|
|
// DecodeString returns the bytes represented by the base32 string s.
|
|
func (enc *Encoding) DecodeString(s string) ([]byte, error) {
|
|
strb := []byte(s)
|
|
n, err := enc.decodeInPlace(strb)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return strb[:n], nil
|
|
}
|
|
|
|
type decoder struct {
|
|
err error
|
|
enc *Encoding
|
|
r io.Reader
|
|
end bool // saw end of message
|
|
buf [1024]byte // leftover input
|
|
nbuf int
|
|
out []byte // leftover decoded output
|
|
outbuf [1024 / 8 * 5]byte
|
|
}
|
|
|
|
func (d *decoder) Read(p []byte) (n int, err error) {
|
|
if d.err != nil {
|
|
return 0, d.err
|
|
}
|
|
|
|
// Use leftover decoded output from last read.
|
|
if len(d.out) > 0 {
|
|
n = copy(p, d.out)
|
|
d.out = d.out[n:]
|
|
return n, nil
|
|
}
|
|
|
|
// Read a chunk.
|
|
nn := len(p) / 5 * 8
|
|
if nn < 8 {
|
|
nn = 8
|
|
}
|
|
if nn > len(d.buf) {
|
|
nn = len(d.buf)
|
|
}
|
|
nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf)
|
|
d.nbuf += nn
|
|
if d.nbuf < 8 {
|
|
return 0, d.err
|
|
}
|
|
|
|
// Decode chunk into p, or d.out and then p if p is too small.
|
|
nr := d.nbuf / 8 * 8
|
|
nw := d.nbuf / 8 * 5
|
|
if nw > len(p) {
|
|
nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr])
|
|
d.out = d.outbuf[0:nw]
|
|
n = copy(p, d.out)
|
|
d.out = d.out[n:]
|
|
} else {
|
|
n, d.end, d.err = d.enc.decode(p, d.buf[0:nr])
|
|
}
|
|
d.nbuf -= nr
|
|
for i := 0; i < d.nbuf; i++ {
|
|
d.buf[i] = d.buf[i+nr]
|
|
}
|
|
|
|
if d.err == nil {
|
|
d.err = err
|
|
}
|
|
return n, d.err
|
|
}
|
|
|
|
type newlineFilteringReader struct {
|
|
wrapped io.Reader
|
|
}
|
|
|
|
func (r *newlineFilteringReader) Read(p []byte) (int, error) {
|
|
n, err := r.wrapped.Read(p)
|
|
for n > 0 {
|
|
offset := 0
|
|
for i, b := range p[0:n] {
|
|
if b != '\r' && b != '\n' {
|
|
if i != offset {
|
|
p[offset] = b
|
|
}
|
|
offset++
|
|
}
|
|
}
|
|
if offset > 0 {
|
|
return offset, err
|
|
}
|
|
// Previous buffer entirely whitespace, read again
|
|
n, err = r.wrapped.Read(p)
|
|
}
|
|
return n, err
|
|
}
|
|
|
|
// NewDecoder constructs a new base32 stream decoder.
|
|
func NewDecoder(enc *Encoding, r io.Reader) io.Reader {
|
|
return &decoder{enc: enc, r: &newlineFilteringReader{r}}
|
|
}
|
|
|
|
// DecodedLen returns the maximum length in bytes of the decoded data
|
|
// corresponding to n bytes of base32-encoded data.
|
|
func (enc *Encoding) DecodedLen(n int) int {
|
|
if enc.padChar == NoPadding {
|
|
return (n*5 + 7) / 8
|
|
}
|
|
|
|
return n / 8 * 5
|
|
}
|