package quic import ( "bytes" "context" "crypto/tls" "errors" "fmt" "io" "net" "reflect" "sync" "sync/atomic" "time" "github.com/lucas-clemente/quic-go/internal/ackhandler" "github.com/lucas-clemente/quic-go/internal/flowcontrol" "github.com/lucas-clemente/quic-go/internal/handshake" "github.com/lucas-clemente/quic-go/internal/logutils" "github.com/lucas-clemente/quic-go/internal/protocol" "github.com/lucas-clemente/quic-go/internal/qerr" "github.com/lucas-clemente/quic-go/internal/utils" "github.com/lucas-clemente/quic-go/internal/wire" "github.com/lucas-clemente/quic-go/logging" ) type unpacker interface { Unpack(hdr *wire.Header, rcvTime time.Time, data []byte) (*unpackedPacket, error) } type streamGetter interface { GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error) GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error) } type streamManager interface { GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error) GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error) OpenStream() (Stream, error) OpenUniStream() (SendStream, error) OpenStreamSync(context.Context) (Stream, error) OpenUniStreamSync(context.Context) (SendStream, error) AcceptStream(context.Context) (Stream, error) AcceptUniStream(context.Context) (ReceiveStream, error) DeleteStream(protocol.StreamID) error UpdateLimits(*wire.TransportParameters) HandleMaxStreamsFrame(*wire.MaxStreamsFrame) CloseWithError(error) ResetFor0RTT() UseResetMaps() } type cryptoStreamHandler interface { RunHandshake() ChangeConnectionID(protocol.ConnectionID) SetLargest1RTTAcked(protocol.PacketNumber) error SetHandshakeConfirmed() GetSessionTicket() ([]byte, error) io.Closer ConnectionState() handshake.ConnectionState } type packetInfo struct { addr net.IP ifIndex uint32 } type receivedPacket struct { buffer *packetBuffer remoteAddr net.Addr rcvTime time.Time data []byte ecn protocol.ECN info *packetInfo } func (p *receivedPacket) Size() protocol.ByteCount { return protocol.ByteCount(len(p.data)) } func (p *receivedPacket) Clone() *receivedPacket { return &receivedPacket{ remoteAddr: p.remoteAddr, rcvTime: p.rcvTime, data: p.data, buffer: p.buffer, ecn: p.ecn, info: p.info, } } type connRunner interface { Add(protocol.ConnectionID, packetHandler) bool GetStatelessResetToken(protocol.ConnectionID) protocol.StatelessResetToken Retire(protocol.ConnectionID) Remove(protocol.ConnectionID) ReplaceWithClosed(protocol.ConnectionID, packetHandler) AddResetToken(protocol.StatelessResetToken, packetHandler) RemoveResetToken(protocol.StatelessResetToken) } type handshakeRunner struct { onReceivedParams func(*wire.TransportParameters) onError func(error) dropKeys func(protocol.EncryptionLevel) onHandshakeComplete func() } func (r *handshakeRunner) OnReceivedParams(tp *wire.TransportParameters) { r.onReceivedParams(tp) } func (r *handshakeRunner) OnError(e error) { r.onError(e) } func (r *handshakeRunner) DropKeys(el protocol.EncryptionLevel) { r.dropKeys(el) } func (r *handshakeRunner) OnHandshakeComplete() { r.onHandshakeComplete() } type closeError struct { err error remote bool immediate bool } type errCloseForRecreating struct { nextPacketNumber protocol.PacketNumber nextVersion protocol.VersionNumber } func (e *errCloseForRecreating) Error() string { return "closing connection in order to recreate it" } var connTracingID uint64 // to be accessed atomically func nextConnTracingID() uint64 { return atomic.AddUint64(&connTracingID, 1) } // A Connection is a QUIC connection type connection struct { // Destination connection ID used during the handshake. // Used to check source connection ID on incoming packets. handshakeDestConnID protocol.ConnectionID // Set for the client. Destination connection ID used on the first Initial sent. origDestConnID protocol.ConnectionID retrySrcConnID *protocol.ConnectionID // only set for the client (and if a Retry was performed) srcConnIDLen int perspective protocol.Perspective version protocol.VersionNumber config *Config conn sendConn sendQueue sender streamsMap streamManager connIDManager *connIDManager connIDGenerator *connIDGenerator rttStats *utils.RTTStats cryptoStreamManager *cryptoStreamManager sentPacketHandler ackhandler.SentPacketHandler receivedPacketHandler ackhandler.ReceivedPacketHandler retransmissionQueue *retransmissionQueue framer framer windowUpdateQueue *windowUpdateQueue connFlowController flowcontrol.ConnectionFlowController tokenStoreKey string // only set for the client tokenGenerator *handshake.TokenGenerator // only set for the server unpacker unpacker frameParser wire.FrameParser packer packer mtuDiscoverer mtuDiscoverer // initialized when the handshake completes oneRTTStream cryptoStream // only set for the server cryptoStreamHandler cryptoStreamHandler receivedPackets chan *receivedPacket sendingScheduled chan struct{} closeOnce sync.Once // closeChan is used to notify the run loop that it should terminate closeChan chan closeError ctx context.Context ctxCancel context.CancelFunc handshakeCtx context.Context handshakeCtxCancel context.CancelFunc undecryptablePackets []*receivedPacket // undecryptable packets, waiting for a change in encryption level undecryptablePacketsToProcess []*receivedPacket clientHelloWritten <-chan *wire.TransportParameters earlyConnReadyChan chan struct{} handshakeCompleteChan chan struct{} // is closed when the handshake completes sentFirstPacket bool handshakeComplete bool handshakeConfirmed bool receivedRetry bool versionNegotiated bool receivedFirstPacket bool idleTimeout time.Duration creationTime time.Time // The idle timeout is set based on the max of the time we received the last packet... lastPacketReceivedTime time.Time // ... and the time we sent a new ack-eliciting packet after receiving a packet. firstAckElicitingPacketAfterIdleSentTime time.Time // pacingDeadline is the time when the next packet should be sent pacingDeadline time.Time peerParams *wire.TransportParameters timer *utils.Timer // keepAlivePingSent stores whether a keep alive PING is in flight. // It is reset as soon as we receive a packet from the peer. keepAlivePingSent bool keepAliveInterval time.Duration datagramQueue *datagramQueue logID string tracer logging.ConnectionTracer logger utils.Logger } var ( _ Connection = &connection{} _ EarlyConnection = &connection{} _ streamSender = &connection{} deadlineSendImmediately = time.Time{}.Add(42 * time.Millisecond) // any value > time.Time{} and before time.Now() is fine ) var newConnection = func( conn sendConn, runner connRunner, origDestConnID protocol.ConnectionID, retrySrcConnID *protocol.ConnectionID, clientDestConnID protocol.ConnectionID, destConnID protocol.ConnectionID, srcConnID protocol.ConnectionID, statelessResetToken protocol.StatelessResetToken, conf *Config, tlsConf *tls.Config, tokenGenerator *handshake.TokenGenerator, enable0RTT bool, tracer logging.ConnectionTracer, tracingID uint64, logger utils.Logger, v protocol.VersionNumber, ) quicConn { s := &connection{ conn: conn, config: conf, handshakeDestConnID: destConnID, srcConnIDLen: srcConnID.Len(), tokenGenerator: tokenGenerator, oneRTTStream: newCryptoStream(), perspective: protocol.PerspectiveServer, handshakeCompleteChan: make(chan struct{}), tracer: tracer, logger: logger, version: v, } if origDestConnID != nil { s.logID = origDestConnID.String() } else { s.logID = destConnID.String() } s.connIDManager = newConnIDManager( destConnID, func(token protocol.StatelessResetToken) { runner.AddResetToken(token, s) }, runner.RemoveResetToken, s.queueControlFrame, ) s.connIDGenerator = newConnIDGenerator( srcConnID, clientDestConnID, func(connID protocol.ConnectionID) { runner.Add(connID, s) }, runner.GetStatelessResetToken, runner.Remove, runner.Retire, runner.ReplaceWithClosed, s.queueControlFrame, s.version, ) s.preSetup() s.ctx, s.ctxCancel = context.WithCancel(context.WithValue(context.Background(), ConnectionTracingKey, tracingID)) s.sentPacketHandler, s.receivedPacketHandler = ackhandler.NewAckHandler( 0, getMaxPacketSize(s.conn.RemoteAddr()), s.rttStats, s.perspective, s.tracer, s.logger, s.version, ) initialStream := newCryptoStream() handshakeStream := newCryptoStream() params := &wire.TransportParameters{ InitialMaxStreamDataBidiLocal: protocol.ByteCount(s.config.InitialStreamReceiveWindow), InitialMaxStreamDataBidiRemote: protocol.ByteCount(s.config.InitialStreamReceiveWindow), InitialMaxStreamDataUni: protocol.ByteCount(s.config.InitialStreamReceiveWindow), InitialMaxData: protocol.ByteCount(s.config.InitialConnectionReceiveWindow), MaxIdleTimeout: s.config.MaxIdleTimeout, MaxBidiStreamNum: protocol.StreamNum(s.config.MaxIncomingStreams), MaxUniStreamNum: protocol.StreamNum(s.config.MaxIncomingUniStreams), MaxAckDelay: protocol.MaxAckDelayInclGranularity, AckDelayExponent: protocol.AckDelayExponent, DisableActiveMigration: true, StatelessResetToken: &statelessResetToken, OriginalDestinationConnectionID: origDestConnID, ActiveConnectionIDLimit: protocol.MaxActiveConnectionIDs, InitialSourceConnectionID: srcConnID, RetrySourceConnectionID: retrySrcConnID, } if s.config.EnableDatagrams { params.MaxDatagramFrameSize = protocol.MaxDatagramFrameSize } if s.tracer != nil { s.tracer.SentTransportParameters(params) } cs := handshake.NewCryptoSetupServer( initialStream, handshakeStream, clientDestConnID, conn.LocalAddr(), conn.RemoteAddr(), params, &handshakeRunner{ onReceivedParams: s.handleTransportParameters, onError: s.closeLocal, dropKeys: s.dropEncryptionLevel, onHandshakeComplete: func() { runner.Retire(clientDestConnID) close(s.handshakeCompleteChan) }, }, tlsConf, enable0RTT, s.rttStats, tracer, logger, s.version, ) s.cryptoStreamHandler = cs s.packer = newPacketPacker( srcConnID, s.connIDManager.Get, initialStream, handshakeStream, s.sentPacketHandler, s.retransmissionQueue, s.RemoteAddr(), cs, s.framer, s.receivedPacketHandler, s.datagramQueue, s.perspective, s.version, ) s.unpacker = newPacketUnpacker(cs, s.version) s.cryptoStreamManager = newCryptoStreamManager(cs, initialStream, handshakeStream, s.oneRTTStream) return s } // declare this as a variable, such that we can it mock it in the tests var newClientConnection = func( conn sendConn, runner connRunner, destConnID protocol.ConnectionID, srcConnID protocol.ConnectionID, conf *Config, tlsConf *tls.Config, initialPacketNumber protocol.PacketNumber, enable0RTT bool, hasNegotiatedVersion bool, tracer logging.ConnectionTracer, tracingID uint64, logger utils.Logger, v protocol.VersionNumber, ) quicConn { s := &connection{ conn: conn, config: conf, origDestConnID: destConnID, handshakeDestConnID: destConnID, srcConnIDLen: srcConnID.Len(), perspective: protocol.PerspectiveClient, handshakeCompleteChan: make(chan struct{}), logID: destConnID.String(), logger: logger, tracer: tracer, versionNegotiated: hasNegotiatedVersion, version: v, } s.connIDManager = newConnIDManager( destConnID, func(token protocol.StatelessResetToken) { runner.AddResetToken(token, s) }, runner.RemoveResetToken, s.queueControlFrame, ) s.connIDGenerator = newConnIDGenerator( srcConnID, nil, func(connID protocol.ConnectionID) { runner.Add(connID, s) }, runner.GetStatelessResetToken, runner.Remove, runner.Retire, runner.ReplaceWithClosed, s.queueControlFrame, s.version, ) s.preSetup() s.ctx, s.ctxCancel = context.WithCancel(context.WithValue(context.Background(), ConnectionTracingKey, tracingID)) s.sentPacketHandler, s.receivedPacketHandler = ackhandler.NewAckHandler( initialPacketNumber, getMaxPacketSize(s.conn.RemoteAddr()), s.rttStats, s.perspective, s.tracer, s.logger, s.version, ) initialStream := newCryptoStream() handshakeStream := newCryptoStream() params := &wire.TransportParameters{ InitialMaxStreamDataBidiRemote: protocol.ByteCount(s.config.InitialStreamReceiveWindow), InitialMaxStreamDataBidiLocal: protocol.ByteCount(s.config.InitialStreamReceiveWindow), InitialMaxStreamDataUni: protocol.ByteCount(s.config.InitialStreamReceiveWindow), InitialMaxData: protocol.ByteCount(s.config.InitialConnectionReceiveWindow), MaxIdleTimeout: s.config.MaxIdleTimeout, MaxBidiStreamNum: protocol.StreamNum(s.config.MaxIncomingStreams), MaxUniStreamNum: protocol.StreamNum(s.config.MaxIncomingUniStreams), MaxAckDelay: protocol.MaxAckDelayInclGranularity, AckDelayExponent: protocol.AckDelayExponent, DisableActiveMigration: true, ActiveConnectionIDLimit: protocol.MaxActiveConnectionIDs, InitialSourceConnectionID: srcConnID, } if s.config.EnableDatagrams { params.MaxDatagramFrameSize = protocol.MaxDatagramFrameSize } if s.tracer != nil { s.tracer.SentTransportParameters(params) } cs, clientHelloWritten := handshake.NewCryptoSetupClient( initialStream, handshakeStream, destConnID, conn.LocalAddr(), conn.RemoteAddr(), params, &handshakeRunner{ onReceivedParams: s.handleTransportParameters, onError: s.closeLocal, dropKeys: s.dropEncryptionLevel, onHandshakeComplete: func() { close(s.handshakeCompleteChan) }, }, tlsConf, enable0RTT, s.rttStats, tracer, logger, s.version, ) s.clientHelloWritten = clientHelloWritten s.cryptoStreamHandler = cs s.cryptoStreamManager = newCryptoStreamManager(cs, initialStream, handshakeStream, newCryptoStream()) s.unpacker = newPacketUnpacker(cs, s.version) s.packer = newPacketPacker( srcConnID, s.connIDManager.Get, initialStream, handshakeStream, s.sentPacketHandler, s.retransmissionQueue, s.RemoteAddr(), cs, s.framer, s.receivedPacketHandler, s.datagramQueue, s.perspective, s.version, ) if len(tlsConf.ServerName) > 0 { s.tokenStoreKey = tlsConf.ServerName } else { s.tokenStoreKey = conn.RemoteAddr().String() } if s.config.TokenStore != nil { if token := s.config.TokenStore.Pop(s.tokenStoreKey); token != nil { s.packer.SetToken(token.data) } } return s } func (s *connection) preSetup() { s.sendQueue = newSendQueue(s.conn) s.retransmissionQueue = newRetransmissionQueue(s.version) s.frameParser = wire.NewFrameParser(s.config.EnableDatagrams, s.version) s.rttStats = &utils.RTTStats{} s.connFlowController = flowcontrol.NewConnectionFlowController( protocol.ByteCount(s.config.InitialConnectionReceiveWindow), protocol.ByteCount(s.config.MaxConnectionReceiveWindow), s.onHasConnectionWindowUpdate, func(size protocol.ByteCount) bool { if s.config.AllowConnectionWindowIncrease == nil { return true } return s.config.AllowConnectionWindowIncrease(s, uint64(size)) }, s.rttStats, s.logger, ) s.earlyConnReadyChan = make(chan struct{}) s.streamsMap = newStreamsMap( s, s.newFlowController, uint64(s.config.MaxIncomingStreams), uint64(s.config.MaxIncomingUniStreams), s.perspective, s.version, ) s.framer = newFramer(s.streamsMap, s.version) s.receivedPackets = make(chan *receivedPacket, protocol.MaxConnUnprocessedPackets) s.closeChan = make(chan closeError, 1) s.sendingScheduled = make(chan struct{}, 1) s.handshakeCtx, s.handshakeCtxCancel = context.WithCancel(context.Background()) now := time.Now() s.lastPacketReceivedTime = now s.creationTime = now s.windowUpdateQueue = newWindowUpdateQueue(s.streamsMap, s.connFlowController, s.framer.QueueControlFrame) if s.config.EnableDatagrams { s.datagramQueue = newDatagramQueue(s.scheduleSending, s.logger) } } // run the connection main loop func (s *connection) run() error { defer s.ctxCancel() s.timer = utils.NewTimer() go s.cryptoStreamHandler.RunHandshake() go func() { if err := s.sendQueue.Run(); err != nil { s.destroyImpl(err) } }() if s.perspective == protocol.PerspectiveClient { select { case zeroRTTParams := <-s.clientHelloWritten: s.scheduleSending() if zeroRTTParams != nil { s.restoreTransportParameters(zeroRTTParams) close(s.earlyConnReadyChan) } case closeErr := <-s.closeChan: // put the close error back into the channel, so that the run loop can receive it s.closeChan <- closeErr } } var ( closeErr closeError sendQueueAvailable <-chan struct{} ) runLoop: for { // Close immediately if requested select { case closeErr = <-s.closeChan: break runLoop case <-s.handshakeCompleteChan: s.handleHandshakeComplete() default: } s.maybeResetTimer() var processedUndecryptablePacket bool if len(s.undecryptablePacketsToProcess) > 0 { queue := s.undecryptablePacketsToProcess s.undecryptablePacketsToProcess = nil for _, p := range queue { if processed := s.handlePacketImpl(p); processed { processedUndecryptablePacket = true } // Don't set timers and send packets if the packet made us close the connection. select { case closeErr = <-s.closeChan: break runLoop default: } } } // If we processed any undecryptable packets, jump to the resetting of the timers directly. if !processedUndecryptablePacket { select { case closeErr = <-s.closeChan: break runLoop case <-s.timer.Chan(): s.timer.SetRead() // We do all the interesting stuff after the switch statement, so // nothing to see here. case <-s.sendingScheduled: // We do all the interesting stuff after the switch statement, so // nothing to see here. case <-sendQueueAvailable: case firstPacket := <-s.receivedPackets: wasProcessed := s.handlePacketImpl(firstPacket) // Don't set timers and send packets if the packet made us close the connection. select { case closeErr = <-s.closeChan: break runLoop default: } if s.handshakeComplete { // Now process all packets in the receivedPackets channel. // Limit the number of packets to the length of the receivedPackets channel, // so we eventually get a chance to send out an ACK when receiving a lot of packets. numPackets := len(s.receivedPackets) receiveLoop: for i := 0; i < numPackets; i++ { select { case p := <-s.receivedPackets: if processed := s.handlePacketImpl(p); processed { wasProcessed = true } select { case closeErr = <-s.closeChan: break runLoop default: } default: break receiveLoop } } } // Only reset the timers if this packet was actually processed. // This avoids modifying any state when handling undecryptable packets, // which could be injected by an attacker. if !wasProcessed { continue } case <-s.handshakeCompleteChan: s.handleHandshakeComplete() } } now := time.Now() if timeout := s.sentPacketHandler.GetLossDetectionTimeout(); !timeout.IsZero() && timeout.Before(now) { // This could cause packets to be retransmitted. // Check it before trying to send packets. if err := s.sentPacketHandler.OnLossDetectionTimeout(); err != nil { s.closeLocal(err) } } if keepAliveTime := s.nextKeepAliveTime(); !keepAliveTime.IsZero() && !now.Before(keepAliveTime) { // send a PING frame since there is no activity in the connection s.logger.Debugf("Sending a keep-alive PING to keep the connection alive.") s.framer.QueueControlFrame(&wire.PingFrame{}) s.keepAlivePingSent = true } else if !s.handshakeComplete && now.Sub(s.creationTime) >= s.config.handshakeTimeout() { s.destroyImpl(qerr.ErrHandshakeTimeout) continue } else { idleTimeoutStartTime := s.idleTimeoutStartTime() if (!s.handshakeComplete && now.Sub(idleTimeoutStartTime) >= s.config.HandshakeIdleTimeout) || (s.handshakeComplete && now.Sub(idleTimeoutStartTime) >= s.idleTimeout) { s.destroyImpl(qerr.ErrIdleTimeout) continue } } if s.sendQueue.WouldBlock() { // The send queue is still busy sending out packets. // Wait until there's space to enqueue new packets. sendQueueAvailable = s.sendQueue.Available() continue } if err := s.sendPackets(); err != nil { s.closeLocal(err) } if s.sendQueue.WouldBlock() { sendQueueAvailable = s.sendQueue.Available() } else { sendQueueAvailable = nil } } s.handleCloseError(&closeErr) if e := (&errCloseForRecreating{}); !errors.As(closeErr.err, &e) && s.tracer != nil { s.tracer.Close() } s.logger.Infof("Connection %s closed.", s.logID) s.cryptoStreamHandler.Close() s.sendQueue.Close() s.timer.Stop() return closeErr.err } // blocks until the early connection can be used func (s *connection) earlyConnReady() <-chan struct{} { return s.earlyConnReadyChan } func (s *connection) HandshakeComplete() context.Context { return s.handshakeCtx } func (s *connection) Context() context.Context { return s.ctx } func (s *connection) supportsDatagrams() bool { return s.peerParams.MaxDatagramFrameSize != protocol.InvalidByteCount } func (s *connection) ConnectionState() ConnectionState { return ConnectionState{ TLS: s.cryptoStreamHandler.ConnectionState(), SupportsDatagrams: s.supportsDatagrams(), } } // Time when the next keep-alive packet should be sent. // It returns a zero time if no keep-alive should be sent. func (s *connection) nextKeepAliveTime() time.Time { if s.config.KeepAlivePeriod == 0 || s.keepAlivePingSent || !s.firstAckElicitingPacketAfterIdleSentTime.IsZero() { return time.Time{} } return s.lastPacketReceivedTime.Add(s.keepAliveInterval) } func (s *connection) maybeResetTimer() { var deadline time.Time if !s.handshakeComplete { deadline = utils.MinTime( s.creationTime.Add(s.config.handshakeTimeout()), s.idleTimeoutStartTime().Add(s.config.HandshakeIdleTimeout), ) } else { if keepAliveTime := s.nextKeepAliveTime(); !keepAliveTime.IsZero() { deadline = keepAliveTime } else { deadline = s.idleTimeoutStartTime().Add(s.idleTimeout) } } if ackAlarm := s.receivedPacketHandler.GetAlarmTimeout(); !ackAlarm.IsZero() { deadline = utils.MinTime(deadline, ackAlarm) } if lossTime := s.sentPacketHandler.GetLossDetectionTimeout(); !lossTime.IsZero() { deadline = utils.MinTime(deadline, lossTime) } if !s.pacingDeadline.IsZero() { deadline = utils.MinTime(deadline, s.pacingDeadline) } s.timer.Reset(deadline) } func (s *connection) idleTimeoutStartTime() time.Time { return utils.MaxTime(s.lastPacketReceivedTime, s.firstAckElicitingPacketAfterIdleSentTime) } func (s *connection) handleHandshakeComplete() { s.handshakeComplete = true s.handshakeCompleteChan = nil // prevent this case from ever being selected again defer s.handshakeCtxCancel() // Once the handshake completes, we have derived 1-RTT keys. // There's no point in queueing undecryptable packets for later decryption any more. s.undecryptablePackets = nil s.connIDManager.SetHandshakeComplete() s.connIDGenerator.SetHandshakeComplete() if s.perspective == protocol.PerspectiveClient { s.applyTransportParameters() return } s.handleHandshakeConfirmed() ticket, err := s.cryptoStreamHandler.GetSessionTicket() if err != nil { s.closeLocal(err) } if ticket != nil { s.oneRTTStream.Write(ticket) for s.oneRTTStream.HasData() { s.queueControlFrame(s.oneRTTStream.PopCryptoFrame(protocol.MaxPostHandshakeCryptoFrameSize)) } } token, err := s.tokenGenerator.NewToken(s.conn.RemoteAddr()) if err != nil { s.closeLocal(err) } s.queueControlFrame(&wire.NewTokenFrame{Token: token}) s.queueControlFrame(&wire.HandshakeDoneFrame{}) } func (s *connection) handleHandshakeConfirmed() { s.handshakeConfirmed = true s.sentPacketHandler.SetHandshakeConfirmed() s.cryptoStreamHandler.SetHandshakeConfirmed() if !s.config.DisablePathMTUDiscovery { maxPacketSize := s.peerParams.MaxUDPPayloadSize if maxPacketSize == 0 { maxPacketSize = protocol.MaxByteCount } maxPacketSize = utils.MinByteCount(maxPacketSize, protocol.MaxPacketBufferSize) s.mtuDiscoverer = newMTUDiscoverer( s.rttStats, getMaxPacketSize(s.conn.RemoteAddr()), maxPacketSize, func(size protocol.ByteCount) { s.sentPacketHandler.SetMaxDatagramSize(size) s.packer.SetMaxPacketSize(size) }, ) } } func (s *connection) handlePacketImpl(rp *receivedPacket) bool { s.sentPacketHandler.ReceivedBytes(rp.Size()) if wire.IsVersionNegotiationPacket(rp.data) { s.handleVersionNegotiationPacket(rp) return false } var counter uint8 var lastConnID protocol.ConnectionID var processed bool data := rp.data p := rp for len(data) > 0 { if counter > 0 { p = p.Clone() p.data = data } hdr, packetData, rest, err := wire.ParsePacket(p.data, s.srcConnIDLen) if err != nil { if s.tracer != nil { dropReason := logging.PacketDropHeaderParseError if err == wire.ErrUnsupportedVersion { dropReason = logging.PacketDropUnsupportedVersion } s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, protocol.ByteCount(len(data)), dropReason) } s.logger.Debugf("error parsing packet: %s", err) break } if hdr.IsLongHeader && hdr.Version != s.version { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), protocol.ByteCount(len(data)), logging.PacketDropUnexpectedVersion) } s.logger.Debugf("Dropping packet with version %x. Expected %x.", hdr.Version, s.version) break } if counter > 0 && !hdr.DestConnectionID.Equal(lastConnID) { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), protocol.ByteCount(len(data)), logging.PacketDropUnknownConnectionID) } s.logger.Debugf("coalesced packet has different destination connection ID: %s, expected %s", hdr.DestConnectionID, lastConnID) break } lastConnID = hdr.DestConnectionID if counter > 0 { p.buffer.Split() } counter++ // only log if this actually a coalesced packet if s.logger.Debug() && (counter > 1 || len(rest) > 0) { s.logger.Debugf("Parsed a coalesced packet. Part %d: %d bytes. Remaining: %d bytes.", counter, len(packetData), len(rest)) } p.data = packetData if wasProcessed := s.handleSinglePacket(p, hdr); wasProcessed { processed = true } data = rest } p.buffer.MaybeRelease() return processed } func (s *connection) handleSinglePacket(p *receivedPacket, hdr *wire.Header) bool /* was the packet successfully processed */ { var wasQueued bool defer func() { // Put back the packet buffer if the packet wasn't queued for later decryption. if !wasQueued { p.buffer.Decrement() } }() if hdr.Type == protocol.PacketTypeRetry { return s.handleRetryPacket(hdr, p.data) } // The server can change the source connection ID with the first Handshake packet. // After this, all packets with a different source connection have to be ignored. if s.receivedFirstPacket && hdr.IsLongHeader && hdr.Type == protocol.PacketTypeInitial && !hdr.SrcConnectionID.Equal(s.handshakeDestConnID) { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeInitial, p.Size(), logging.PacketDropUnknownConnectionID) } s.logger.Debugf("Dropping Initial packet (%d bytes) with unexpected source connection ID: %s (expected %s)", p.Size(), hdr.SrcConnectionID, s.handshakeDestConnID) return false } // drop 0-RTT packets, if we are a client if s.perspective == protocol.PerspectiveClient && hdr.Type == protocol.PacketType0RTT { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketType0RTT, p.Size(), logging.PacketDropKeyUnavailable) } return false } packet, err := s.unpacker.Unpack(hdr, p.rcvTime, p.data) if err != nil { switch err { case handshake.ErrKeysDropped: if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), p.Size(), logging.PacketDropKeyUnavailable) } s.logger.Debugf("Dropping %s packet (%d bytes) because we already dropped the keys.", hdr.PacketType(), p.Size()) case handshake.ErrKeysNotYetAvailable: // Sealer for this encryption level not yet available. // Try again later. wasQueued = true s.tryQueueingUndecryptablePacket(p, hdr) case wire.ErrInvalidReservedBits: s.closeLocal(&qerr.TransportError{ ErrorCode: qerr.ProtocolViolation, ErrorMessage: err.Error(), }) case handshake.ErrDecryptionFailed: // This might be a packet injected by an attacker. Drop it. if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), p.Size(), logging.PacketDropPayloadDecryptError) } s.logger.Debugf("Dropping %s packet (%d bytes) that could not be unpacked. Error: %s", hdr.PacketType(), p.Size(), err) default: var headerErr *headerParseError if errors.As(err, &headerErr) { // This might be a packet injected by an attacker. Drop it. if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), p.Size(), logging.PacketDropHeaderParseError) } s.logger.Debugf("Dropping %s packet (%d bytes) for which we couldn't unpack the header. Error: %s", hdr.PacketType(), p.Size(), err) } else { // This is an error returned by the AEAD (other than ErrDecryptionFailed). // For example, a PROTOCOL_VIOLATION due to key updates. s.closeLocal(err) } } return false } if s.logger.Debug() { s.logger.Debugf("<- Reading packet %d (%d bytes) for connection %s, %s", packet.packetNumber, p.Size(), hdr.DestConnectionID, packet.encryptionLevel) packet.hdr.Log(s.logger) } if s.receivedPacketHandler.IsPotentiallyDuplicate(packet.packetNumber, packet.encryptionLevel) { s.logger.Debugf("Dropping (potentially) duplicate packet.") if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), p.Size(), logging.PacketDropDuplicate) } return false } if err := s.handleUnpackedPacket(packet, p.ecn, p.rcvTime, p.Size()); err != nil { s.closeLocal(err) return false } return true } func (s *connection) handleRetryPacket(hdr *wire.Header, data []byte) bool /* was this a valid Retry */ { if s.perspective == protocol.PerspectiveServer { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket) } s.logger.Debugf("Ignoring Retry.") return false } if s.receivedFirstPacket { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket) } s.logger.Debugf("Ignoring Retry, since we already received a packet.") return false } destConnID := s.connIDManager.Get() if hdr.SrcConnectionID.Equal(destConnID) { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.ByteCount(len(data)), logging.PacketDropUnexpectedPacket) } s.logger.Debugf("Ignoring Retry, since the server didn't change the Source Connection ID.") return false } // If a token is already set, this means that we already received a Retry from the server. // Ignore this Retry packet. if s.receivedRetry { s.logger.Debugf("Ignoring Retry, since a Retry was already received.") return false } tag := handshake.GetRetryIntegrityTag(data[:len(data)-16], destConnID, hdr.Version) if !bytes.Equal(data[len(data)-16:], tag[:]) { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeRetry, protocol.ByteCount(len(data)), logging.PacketDropPayloadDecryptError) } s.logger.Debugf("Ignoring spoofed Retry. Integrity Tag doesn't match.") return false } if s.logger.Debug() { s.logger.Debugf("<- Received Retry:") (&wire.ExtendedHeader{Header: *hdr}).Log(s.logger) s.logger.Debugf("Switching destination connection ID to: %s", hdr.SrcConnectionID) } if s.tracer != nil { s.tracer.ReceivedRetry(hdr) } newDestConnID := hdr.SrcConnectionID s.receivedRetry = true if err := s.sentPacketHandler.ResetForRetry(); err != nil { s.closeLocal(err) return false } s.handshakeDestConnID = newDestConnID s.retrySrcConnID = &newDestConnID s.cryptoStreamHandler.ChangeConnectionID(newDestConnID) s.packer.SetToken(hdr.Token) s.connIDManager.ChangeInitialConnID(newDestConnID) s.scheduleSending() return true } func (s *connection) handleVersionNegotiationPacket(p *receivedPacket) { if s.perspective == protocol.PerspectiveServer || // servers never receive version negotiation packets s.receivedFirstPacket || s.versionNegotiated { // ignore delayed / duplicated version negotiation packets if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, p.Size(), logging.PacketDropUnexpectedPacket) } return } hdr, supportedVersions, err := wire.ParseVersionNegotiationPacket(bytes.NewReader(p.data)) if err != nil { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, p.Size(), logging.PacketDropHeaderParseError) } s.logger.Debugf("Error parsing Version Negotiation packet: %s", err) return } for _, v := range supportedVersions { if v == s.version { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeVersionNegotiation, p.Size(), logging.PacketDropUnexpectedVersion) } // The Version Negotiation packet contains the version that we offered. // This might be a packet sent by an attacker, or it was corrupted. return } } s.logger.Infof("Received a Version Negotiation packet. Supported Versions: %s", supportedVersions) if s.tracer != nil { s.tracer.ReceivedVersionNegotiationPacket(hdr, supportedVersions) } newVersion, ok := protocol.ChooseSupportedVersion(s.config.Versions, supportedVersions) if !ok { s.destroyImpl(&VersionNegotiationError{ Ours: s.config.Versions, Theirs: supportedVersions, }) s.logger.Infof("No compatible QUIC version found.") return } if s.tracer != nil { s.tracer.NegotiatedVersion(newVersion, s.config.Versions, supportedVersions) } s.logger.Infof("Switching to QUIC version %s.", newVersion) nextPN, _ := s.sentPacketHandler.PeekPacketNumber(protocol.EncryptionInitial) s.destroyImpl(&errCloseForRecreating{ nextPacketNumber: nextPN, nextVersion: newVersion, }) } func (s *connection) handleUnpackedPacket( packet *unpackedPacket, ecn protocol.ECN, rcvTime time.Time, packetSize protocol.ByteCount, // only for logging ) error { if len(packet.data) == 0 { return &qerr.TransportError{ ErrorCode: qerr.ProtocolViolation, ErrorMessage: "empty packet", } } if !s.receivedFirstPacket { s.receivedFirstPacket = true if !s.versionNegotiated && s.tracer != nil { var clientVersions, serverVersions []protocol.VersionNumber switch s.perspective { case protocol.PerspectiveClient: clientVersions = s.config.Versions case protocol.PerspectiveServer: serverVersions = s.config.Versions } s.tracer.NegotiatedVersion(s.version, clientVersions, serverVersions) } // The server can change the source connection ID with the first Handshake packet. if s.perspective == protocol.PerspectiveClient && packet.hdr.IsLongHeader && !packet.hdr.SrcConnectionID.Equal(s.handshakeDestConnID) { cid := packet.hdr.SrcConnectionID s.logger.Debugf("Received first packet. Switching destination connection ID to: %s", cid) s.handshakeDestConnID = cid s.connIDManager.ChangeInitialConnID(cid) } // We create the connection as soon as we receive the first packet from the client. // We do that before authenticating the packet. // That means that if the source connection ID was corrupted, // we might have create a connection with an incorrect source connection ID. // Once we authenticate the first packet, we need to update it. if s.perspective == protocol.PerspectiveServer { if !packet.hdr.SrcConnectionID.Equal(s.handshakeDestConnID) { s.handshakeDestConnID = packet.hdr.SrcConnectionID s.connIDManager.ChangeInitialConnID(packet.hdr.SrcConnectionID) } if s.tracer != nil { s.tracer.StartedConnection( s.conn.LocalAddr(), s.conn.RemoteAddr(), packet.hdr.SrcConnectionID, packet.hdr.DestConnectionID, ) } } } s.lastPacketReceivedTime = rcvTime s.firstAckElicitingPacketAfterIdleSentTime = time.Time{} s.keepAlivePingSent = false // Only used for tracing. // If we're not tracing, this slice will always remain empty. var frames []wire.Frame r := bytes.NewReader(packet.data) var isAckEliciting bool for { frame, err := s.frameParser.ParseNext(r, packet.encryptionLevel) if err != nil { return err } if frame == nil { break } if ackhandler.IsFrameAckEliciting(frame) { isAckEliciting = true } // Only process frames now if we're not logging. // If we're logging, we need to make sure that the packet_received event is logged first. if s.tracer == nil { if err := s.handleFrame(frame, packet.encryptionLevel, packet.hdr.DestConnectionID); err != nil { return err } } else { frames = append(frames, frame) } } if s.tracer != nil { fs := make([]logging.Frame, len(frames)) for i, frame := range frames { fs[i] = logutils.ConvertFrame(frame) } s.tracer.ReceivedPacket(packet.hdr, packetSize, fs) for _, frame := range frames { if err := s.handleFrame(frame, packet.encryptionLevel, packet.hdr.DestConnectionID); err != nil { return err } } } return s.receivedPacketHandler.ReceivedPacket(packet.packetNumber, ecn, packet.encryptionLevel, rcvTime, isAckEliciting) } func (s *connection) handleFrame(f wire.Frame, encLevel protocol.EncryptionLevel, destConnID protocol.ConnectionID) error { var err error wire.LogFrame(s.logger, f, false) switch frame := f.(type) { case *wire.CryptoFrame: err = s.handleCryptoFrame(frame, encLevel) case *wire.StreamFrame: err = s.handleStreamFrame(frame) case *wire.AckFrame: err = s.handleAckFrame(frame, encLevel) case *wire.ConnectionCloseFrame: s.handleConnectionCloseFrame(frame) case *wire.ResetStreamFrame: err = s.handleResetStreamFrame(frame) case *wire.MaxDataFrame: s.handleMaxDataFrame(frame) case *wire.MaxStreamDataFrame: err = s.handleMaxStreamDataFrame(frame) case *wire.MaxStreamsFrame: s.handleMaxStreamsFrame(frame) case *wire.DataBlockedFrame: case *wire.StreamDataBlockedFrame: case *wire.StreamsBlockedFrame: case *wire.StopSendingFrame: err = s.handleStopSendingFrame(frame) case *wire.PingFrame: case *wire.PathChallengeFrame: s.handlePathChallengeFrame(frame) case *wire.PathResponseFrame: // since we don't send PATH_CHALLENGEs, we don't expect PATH_RESPONSEs err = errors.New("unexpected PATH_RESPONSE frame") case *wire.NewTokenFrame: err = s.handleNewTokenFrame(frame) case *wire.NewConnectionIDFrame: err = s.handleNewConnectionIDFrame(frame) case *wire.RetireConnectionIDFrame: err = s.handleRetireConnectionIDFrame(frame, destConnID) case *wire.HandshakeDoneFrame: err = s.handleHandshakeDoneFrame() case *wire.DatagramFrame: err = s.handleDatagramFrame(frame) default: err = fmt.Errorf("unexpected frame type: %s", reflect.ValueOf(&frame).Elem().Type().Name()) } return err } // handlePacket is called by the server with a new packet func (s *connection) handlePacket(p *receivedPacket) { // Discard packets once the amount of queued packets is larger than // the channel size, protocol.MaxConnUnprocessedPackets select { case s.receivedPackets <- p: default: if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropDOSPrevention) } } } func (s *connection) handleConnectionCloseFrame(frame *wire.ConnectionCloseFrame) { if frame.IsApplicationError { s.closeRemote(&qerr.ApplicationError{ Remote: true, ErrorCode: qerr.ApplicationErrorCode(frame.ErrorCode), ErrorMessage: frame.ReasonPhrase, }) return } s.closeRemote(&qerr.TransportError{ Remote: true, ErrorCode: qerr.TransportErrorCode(frame.ErrorCode), FrameType: frame.FrameType, ErrorMessage: frame.ReasonPhrase, }) } func (s *connection) handleCryptoFrame(frame *wire.CryptoFrame, encLevel protocol.EncryptionLevel) error { encLevelChanged, err := s.cryptoStreamManager.HandleCryptoFrame(frame, encLevel) if err != nil { return err } if encLevelChanged { // Queue all packets for decryption that have been undecryptable so far. s.undecryptablePacketsToProcess = s.undecryptablePackets s.undecryptablePackets = nil } return nil } func (s *connection) handleStreamFrame(frame *wire.StreamFrame) error { str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID) if err != nil { return err } if str == nil { // Stream is closed and already garbage collected // ignore this StreamFrame return nil } return str.handleStreamFrame(frame) } func (s *connection) handleMaxDataFrame(frame *wire.MaxDataFrame) { s.connFlowController.UpdateSendWindow(frame.MaximumData) } func (s *connection) handleMaxStreamDataFrame(frame *wire.MaxStreamDataFrame) error { str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID) if err != nil { return err } if str == nil { // stream is closed and already garbage collected return nil } str.updateSendWindow(frame.MaximumStreamData) return nil } func (s *connection) handleMaxStreamsFrame(frame *wire.MaxStreamsFrame) { s.streamsMap.HandleMaxStreamsFrame(frame) } func (s *connection) handleResetStreamFrame(frame *wire.ResetStreamFrame) error { str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID) if err != nil { return err } if str == nil { // stream is closed and already garbage collected return nil } return str.handleResetStreamFrame(frame) } func (s *connection) handleStopSendingFrame(frame *wire.StopSendingFrame) error { str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID) if err != nil { return err } if str == nil { // stream is closed and already garbage collected return nil } str.handleStopSendingFrame(frame) return nil } func (s *connection) handlePathChallengeFrame(frame *wire.PathChallengeFrame) { s.queueControlFrame(&wire.PathResponseFrame{Data: frame.Data}) } func (s *connection) handleNewTokenFrame(frame *wire.NewTokenFrame) error { if s.perspective == protocol.PerspectiveServer { return &qerr.TransportError{ ErrorCode: qerr.ProtocolViolation, ErrorMessage: "received NEW_TOKEN frame from the client", } } if s.config.TokenStore != nil { s.config.TokenStore.Put(s.tokenStoreKey, &ClientToken{data: frame.Token}) } return nil } func (s *connection) handleNewConnectionIDFrame(f *wire.NewConnectionIDFrame) error { return s.connIDManager.Add(f) } func (s *connection) handleRetireConnectionIDFrame(f *wire.RetireConnectionIDFrame, destConnID protocol.ConnectionID) error { return s.connIDGenerator.Retire(f.SequenceNumber, destConnID) } func (s *connection) handleHandshakeDoneFrame() error { if s.perspective == protocol.PerspectiveServer { return &qerr.TransportError{ ErrorCode: qerr.ProtocolViolation, ErrorMessage: "received a HANDSHAKE_DONE frame", } } if !s.handshakeConfirmed { s.handleHandshakeConfirmed() } return nil } func (s *connection) handleAckFrame(frame *wire.AckFrame, encLevel protocol.EncryptionLevel) error { acked1RTTPacket, err := s.sentPacketHandler.ReceivedAck(frame, encLevel, s.lastPacketReceivedTime) if err != nil { return err } if !acked1RTTPacket { return nil } if s.perspective == protocol.PerspectiveClient && !s.handshakeConfirmed { s.handleHandshakeConfirmed() } return s.cryptoStreamHandler.SetLargest1RTTAcked(frame.LargestAcked()) } func (s *connection) handleDatagramFrame(f *wire.DatagramFrame) error { if f.Length(s.version) > protocol.MaxDatagramFrameSize { return &qerr.TransportError{ ErrorCode: qerr.ProtocolViolation, ErrorMessage: "DATAGRAM frame too large", } } s.datagramQueue.HandleDatagramFrame(f) return nil } // closeLocal closes the connection and send a CONNECTION_CLOSE containing the error func (s *connection) closeLocal(e error) { s.closeOnce.Do(func() { if e == nil { s.logger.Infof("Closing connection.") } else { s.logger.Errorf("Closing connection with error: %s", e) } s.closeChan <- closeError{err: e, immediate: false, remote: false} }) } // destroy closes the connection without sending the error on the wire func (s *connection) destroy(e error) { s.destroyImpl(e) <-s.ctx.Done() } func (s *connection) destroyImpl(e error) { s.closeOnce.Do(func() { if nerr, ok := e.(net.Error); ok && nerr.Timeout() { s.logger.Errorf("Destroying connection: %s", e) } else { s.logger.Errorf("Destroying connection with error: %s", e) } s.closeChan <- closeError{err: e, immediate: true, remote: false} }) } func (s *connection) closeRemote(e error) { s.closeOnce.Do(func() { s.logger.Errorf("Peer closed connection with error: %s", e) s.closeChan <- closeError{err: e, immediate: true, remote: true} }) } // Close the connection. It sends a NO_ERROR application error. // It waits until the run loop has stopped before returning func (s *connection) shutdown() { s.closeLocal(nil) <-s.ctx.Done() } func (s *connection) CloseWithError(code ApplicationErrorCode, desc string) error { s.closeLocal(&qerr.ApplicationError{ ErrorCode: code, ErrorMessage: desc, }) <-s.ctx.Done() return nil } func (s *connection) handleCloseError(closeErr *closeError) { e := closeErr.err if e == nil { e = &qerr.ApplicationError{} } else { defer func() { closeErr.err = e }() } var ( statelessResetErr *StatelessResetError versionNegotiationErr *VersionNegotiationError recreateErr *errCloseForRecreating applicationErr *ApplicationError transportErr *TransportError ) switch { case errors.Is(e, qerr.ErrIdleTimeout), errors.Is(e, qerr.ErrHandshakeTimeout), errors.As(e, &statelessResetErr), errors.As(e, &versionNegotiationErr), errors.As(e, &recreateErr), errors.As(e, &applicationErr), errors.As(e, &transportErr): default: e = &qerr.TransportError{ ErrorCode: qerr.InternalError, ErrorMessage: e.Error(), } } s.streamsMap.CloseWithError(e) s.connIDManager.Close() if s.datagramQueue != nil { s.datagramQueue.CloseWithError(e) } if s.tracer != nil && !errors.As(e, &recreateErr) { s.tracer.ClosedConnection(e) } // If this is a remote close we're done here if closeErr.remote { s.connIDGenerator.ReplaceWithClosed(newClosedRemoteConn(s.perspective)) return } if closeErr.immediate { s.connIDGenerator.RemoveAll() return } // Don't send out any CONNECTION_CLOSE if this is an error that occurred // before we even sent out the first packet. if s.perspective == protocol.PerspectiveClient && !s.sentFirstPacket { s.connIDGenerator.RemoveAll() return } connClosePacket, err := s.sendConnectionClose(e) if err != nil { s.logger.Debugf("Error sending CONNECTION_CLOSE: %s", err) } cs := newClosedLocalConn(s.conn, connClosePacket, s.perspective, s.logger) s.connIDGenerator.ReplaceWithClosed(cs) } func (s *connection) dropEncryptionLevel(encLevel protocol.EncryptionLevel) { s.sentPacketHandler.DropPackets(encLevel) s.receivedPacketHandler.DropPackets(encLevel) if s.tracer != nil { s.tracer.DroppedEncryptionLevel(encLevel) } if encLevel == protocol.Encryption0RTT { s.streamsMap.ResetFor0RTT() if err := s.connFlowController.Reset(); err != nil { s.closeLocal(err) } if err := s.framer.Handle0RTTRejection(); err != nil { s.closeLocal(err) } } } // is called for the client, when restoring transport parameters saved for 0-RTT func (s *connection) restoreTransportParameters(params *wire.TransportParameters) { if s.logger.Debug() { s.logger.Debugf("Restoring Transport Parameters: %s", params) } s.peerParams = params s.connIDGenerator.SetMaxActiveConnIDs(params.ActiveConnectionIDLimit) s.connFlowController.UpdateSendWindow(params.InitialMaxData) s.streamsMap.UpdateLimits(params) } func (s *connection) handleTransportParameters(params *wire.TransportParameters) { if err := s.checkTransportParameters(params); err != nil { s.closeLocal(&qerr.TransportError{ ErrorCode: qerr.TransportParameterError, ErrorMessage: err.Error(), }) } s.peerParams = params // On the client side we have to wait for handshake completion. // During a 0-RTT connection, we are only allowed to use the new transport parameters for 1-RTT packets. if s.perspective == protocol.PerspectiveServer { s.applyTransportParameters() // On the server side, the early connection is ready as soon as we processed // the client's transport parameters. close(s.earlyConnReadyChan) } } func (s *connection) checkTransportParameters(params *wire.TransportParameters) error { if s.logger.Debug() { s.logger.Debugf("Processed Transport Parameters: %s", params) } if s.tracer != nil { s.tracer.ReceivedTransportParameters(params) } // check the initial_source_connection_id if !params.InitialSourceConnectionID.Equal(s.handshakeDestConnID) { return fmt.Errorf("expected initial_source_connection_id to equal %s, is %s", s.handshakeDestConnID, params.InitialSourceConnectionID) } if s.perspective == protocol.PerspectiveServer { return nil } // check the original_destination_connection_id if !params.OriginalDestinationConnectionID.Equal(s.origDestConnID) { return fmt.Errorf("expected original_destination_connection_id to equal %s, is %s", s.origDestConnID, params.OriginalDestinationConnectionID) } if s.retrySrcConnID != nil { // a Retry was performed if params.RetrySourceConnectionID == nil { return errors.New("missing retry_source_connection_id") } if !(*params.RetrySourceConnectionID).Equal(*s.retrySrcConnID) { return fmt.Errorf("expected retry_source_connection_id to equal %s, is %s", s.retrySrcConnID, *params.RetrySourceConnectionID) } } else if params.RetrySourceConnectionID != nil { return errors.New("received retry_source_connection_id, although no Retry was performed") } return nil } func (s *connection) applyTransportParameters() { params := s.peerParams // Our local idle timeout will always be > 0. s.idleTimeout = utils.MinNonZeroDuration(s.config.MaxIdleTimeout, params.MaxIdleTimeout) s.keepAliveInterval = utils.MinDuration(s.config.KeepAlivePeriod, utils.MinDuration(s.idleTimeout/2, protocol.MaxKeepAliveInterval)) s.streamsMap.UpdateLimits(params) s.packer.HandleTransportParameters(params) s.frameParser.SetAckDelayExponent(params.AckDelayExponent) s.connFlowController.UpdateSendWindow(params.InitialMaxData) s.rttStats.SetMaxAckDelay(params.MaxAckDelay) s.connIDGenerator.SetMaxActiveConnIDs(params.ActiveConnectionIDLimit) if params.StatelessResetToken != nil { s.connIDManager.SetStatelessResetToken(*params.StatelessResetToken) } // We don't support connection migration yet, so we don't have any use for the preferred_address. if params.PreferredAddress != nil { // Retire the connection ID. s.connIDManager.AddFromPreferredAddress(params.PreferredAddress.ConnectionID, params.PreferredAddress.StatelessResetToken) } } func (s *connection) sendPackets() error { s.pacingDeadline = time.Time{} var sentPacket bool // only used in for packets sent in send mode SendAny for { sendMode := s.sentPacketHandler.SendMode() if sendMode == ackhandler.SendAny && s.handshakeComplete && !s.sentPacketHandler.HasPacingBudget() { deadline := s.sentPacketHandler.TimeUntilSend() if deadline.IsZero() { deadline = deadlineSendImmediately } s.pacingDeadline = deadline // Allow sending of an ACK if we're pacing limit (if we haven't sent out a packet yet). // This makes sure that a peer that is mostly receiving data (and thus has an inaccurate cwnd estimate) // sends enough ACKs to allow its peer to utilize the bandwidth. if sentPacket { return nil } sendMode = ackhandler.SendAck } switch sendMode { case ackhandler.SendNone: return nil case ackhandler.SendAck: // If we already sent packets, and the send mode switches to SendAck, // as we've just become congestion limited. // There's no need to try to send an ACK at this moment. if sentPacket { return nil } // We can at most send a single ACK only packet. // There will only be a new ACK after receiving new packets. // SendAck is only returned when we're congestion limited, so we don't need to set the pacingt timer. return s.maybeSendAckOnlyPacket() case ackhandler.SendPTOInitial: if err := s.sendProbePacket(protocol.EncryptionInitial); err != nil { return err } case ackhandler.SendPTOHandshake: if err := s.sendProbePacket(protocol.EncryptionHandshake); err != nil { return err } case ackhandler.SendPTOAppData: if err := s.sendProbePacket(protocol.Encryption1RTT); err != nil { return err } case ackhandler.SendAny: sent, err := s.sendPacket() if err != nil || !sent { return err } sentPacket = true default: return fmt.Errorf("BUG: invalid send mode %d", sendMode) } // Prioritize receiving of packets over sending out more packets. if len(s.receivedPackets) > 0 { s.pacingDeadline = deadlineSendImmediately return nil } if s.sendQueue.WouldBlock() { return nil } } } func (s *connection) maybeSendAckOnlyPacket() error { packet, err := s.packer.MaybePackAckPacket(s.handshakeConfirmed) if err != nil { return err } if packet == nil { return nil } s.sendPackedPacket(packet, time.Now()) return nil } func (s *connection) sendProbePacket(encLevel protocol.EncryptionLevel) error { // Queue probe packets until we actually send out a packet, // or until there are no more packets to queue. var packet *packedPacket for { if wasQueued := s.sentPacketHandler.QueueProbePacket(encLevel); !wasQueued { break } var err error packet, err = s.packer.MaybePackProbePacket(encLevel) if err != nil { return err } if packet != nil { break } } if packet == nil { //nolint:exhaustive // Cannot send probe packets for 0-RTT. switch encLevel { case protocol.EncryptionInitial: s.retransmissionQueue.AddInitial(&wire.PingFrame{}) case protocol.EncryptionHandshake: s.retransmissionQueue.AddHandshake(&wire.PingFrame{}) case protocol.Encryption1RTT: s.retransmissionQueue.AddAppData(&wire.PingFrame{}) default: panic("unexpected encryption level") } var err error packet, err = s.packer.MaybePackProbePacket(encLevel) if err != nil { return err } } if packet == nil || packet.packetContents == nil { return fmt.Errorf("connection BUG: couldn't pack %s probe packet", encLevel) } s.sendPackedPacket(packet, time.Now()) return nil } func (s *connection) sendPacket() (bool, error) { if isBlocked, offset := s.connFlowController.IsNewlyBlocked(); isBlocked { s.framer.QueueControlFrame(&wire.DataBlockedFrame{MaximumData: offset}) } s.windowUpdateQueue.QueueAll() now := time.Now() if !s.handshakeConfirmed { packet, err := s.packer.PackCoalescedPacket() if err != nil || packet == nil { return false, err } s.sentFirstPacket = true s.logCoalescedPacket(packet) for _, p := range packet.packets { if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && p.IsAckEliciting() { s.firstAckElicitingPacketAfterIdleSentTime = now } s.sentPacketHandler.SentPacket(p.ToAckHandlerPacket(now, s.retransmissionQueue)) } s.connIDManager.SentPacket() s.sendQueue.Send(packet.buffer) return true, nil } if !s.config.DisablePathMTUDiscovery && s.mtuDiscoverer.ShouldSendProbe(now) { packet, err := s.packer.PackMTUProbePacket(s.mtuDiscoverer.GetPing()) if err != nil { return false, err } s.sendPackedPacket(packet, now) return true, nil } packet, err := s.packer.PackPacket() if err != nil || packet == nil { return false, err } s.sendPackedPacket(packet, now) return true, nil } func (s *connection) sendPackedPacket(packet *packedPacket, now time.Time) { if s.firstAckElicitingPacketAfterIdleSentTime.IsZero() && packet.IsAckEliciting() { s.firstAckElicitingPacketAfterIdleSentTime = now } s.logPacket(packet) s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket(now, s.retransmissionQueue)) s.connIDManager.SentPacket() s.sendQueue.Send(packet.buffer) } func (s *connection) sendConnectionClose(e error) ([]byte, error) { var packet *coalescedPacket var err error var transportErr *qerr.TransportError var applicationErr *qerr.ApplicationError if errors.As(e, &transportErr) { packet, err = s.packer.PackConnectionClose(transportErr) } else if errors.As(e, &applicationErr) { packet, err = s.packer.PackApplicationClose(applicationErr) } else { packet, err = s.packer.PackConnectionClose(&qerr.TransportError{ ErrorCode: qerr.InternalError, ErrorMessage: fmt.Sprintf("connection BUG: unspecified error type (msg: %s)", e.Error()), }) } if err != nil { return nil, err } s.logCoalescedPacket(packet) return packet.buffer.Data, s.conn.Write(packet.buffer.Data) } func (s *connection) logPacketContents(p *packetContents) { // tracing if s.tracer != nil { frames := make([]logging.Frame, 0, len(p.frames)) for _, f := range p.frames { frames = append(frames, logutils.ConvertFrame(f.Frame)) } s.tracer.SentPacket(p.header, p.length, p.ack, frames) } // quic-go logging if !s.logger.Debug() { return } p.header.Log(s.logger) if p.ack != nil { wire.LogFrame(s.logger, p.ack, true) } for _, frame := range p.frames { wire.LogFrame(s.logger, frame.Frame, true) } } func (s *connection) logCoalescedPacket(packet *coalescedPacket) { if s.logger.Debug() { if len(packet.packets) > 1 { s.logger.Debugf("-> Sending coalesced packet (%d parts, %d bytes) for connection %s", len(packet.packets), packet.buffer.Len(), s.logID) } else { s.logger.Debugf("-> Sending packet %d (%d bytes) for connection %s, %s", packet.packets[0].header.PacketNumber, packet.buffer.Len(), s.logID, packet.packets[0].EncryptionLevel()) } } for _, p := range packet.packets { s.logPacketContents(p) } } func (s *connection) logPacket(packet *packedPacket) { if s.logger.Debug() { s.logger.Debugf("-> Sending packet %d (%d bytes) for connection %s, %s", packet.header.PacketNumber, packet.buffer.Len(), s.logID, packet.EncryptionLevel()) } s.logPacketContents(packet.packetContents) } // AcceptStream returns the next stream openend by the peer func (s *connection) AcceptStream(ctx context.Context) (Stream, error) { return s.streamsMap.AcceptStream(ctx) } func (s *connection) AcceptUniStream(ctx context.Context) (ReceiveStream, error) { return s.streamsMap.AcceptUniStream(ctx) } // OpenStream opens a stream func (s *connection) OpenStream() (Stream, error) { return s.streamsMap.OpenStream() } func (s *connection) OpenStreamSync(ctx context.Context) (Stream, error) { return s.streamsMap.OpenStreamSync(ctx) } func (s *connection) OpenUniStream() (SendStream, error) { return s.streamsMap.OpenUniStream() } func (s *connection) OpenUniStreamSync(ctx context.Context) (SendStream, error) { return s.streamsMap.OpenUniStreamSync(ctx) } func (s *connection) newFlowController(id protocol.StreamID) flowcontrol.StreamFlowController { initialSendWindow := s.peerParams.InitialMaxStreamDataUni if id.Type() == protocol.StreamTypeBidi { if id.InitiatedBy() == s.perspective { initialSendWindow = s.peerParams.InitialMaxStreamDataBidiRemote } else { initialSendWindow = s.peerParams.InitialMaxStreamDataBidiLocal } } return flowcontrol.NewStreamFlowController( id, s.connFlowController, protocol.ByteCount(s.config.InitialStreamReceiveWindow), protocol.ByteCount(s.config.MaxStreamReceiveWindow), initialSendWindow, s.onHasStreamWindowUpdate, s.rttStats, s.logger, ) } // scheduleSending signals that we have data for sending func (s *connection) scheduleSending() { select { case s.sendingScheduled <- struct{}{}: default: } } func (s *connection) tryQueueingUndecryptablePacket(p *receivedPacket, hdr *wire.Header) { if s.handshakeComplete { panic("shouldn't queue undecryptable packets after handshake completion") } if len(s.undecryptablePackets)+1 > protocol.MaxUndecryptablePackets { if s.tracer != nil { s.tracer.DroppedPacket(logging.PacketTypeFromHeader(hdr), p.Size(), logging.PacketDropDOSPrevention) } s.logger.Infof("Dropping undecryptable packet (%d bytes). Undecryptable packet queue full.", p.Size()) return } s.logger.Infof("Queueing packet (%d bytes) for later decryption", p.Size()) if s.tracer != nil { s.tracer.BufferedPacket(logging.PacketTypeFromHeader(hdr)) } s.undecryptablePackets = append(s.undecryptablePackets, p) } func (s *connection) queueControlFrame(f wire.Frame) { s.framer.QueueControlFrame(f) s.scheduleSending() } func (s *connection) onHasStreamWindowUpdate(id protocol.StreamID) { s.windowUpdateQueue.AddStream(id) s.scheduleSending() } func (s *connection) onHasConnectionWindowUpdate() { s.windowUpdateQueue.AddConnection() s.scheduleSending() } func (s *connection) onHasStreamData(id protocol.StreamID) { s.framer.AddActiveStream(id) s.scheduleSending() } func (s *connection) onStreamCompleted(id protocol.StreamID) { if err := s.streamsMap.DeleteStream(id); err != nil { s.closeLocal(err) } } func (s *connection) SendMessage(p []byte) error { f := &wire.DatagramFrame{DataLenPresent: true} if protocol.ByteCount(len(p)) > f.MaxDataLen(s.peerParams.MaxDatagramFrameSize, s.version) { return errors.New("message too large") } f.Data = make([]byte, len(p)) copy(f.Data, p) return s.datagramQueue.AddAndWait(f) } func (s *connection) ReceiveMessage() ([]byte, error) { return s.datagramQueue.Receive() } func (s *connection) LocalAddr() net.Addr { return s.conn.LocalAddr() } func (s *connection) RemoteAddr() net.Addr { return s.conn.RemoteAddr() } func (s *connection) getPerspective() protocol.Perspective { return s.perspective } func (s *connection) GetVersion() protocol.VersionNumber { return s.version } func (s *connection) NextConnection() Connection { <-s.HandshakeComplete().Done() s.streamsMap.UseResetMaps() return s }