package v1 import ( "bytes" "errors" "fmt" "io" "io/ioutil" "math" "net" "sync" "time" "go.uber.org/zap" mapset "github.com/deckarep/golang-set" gethcommon "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/rlp" "github.com/status-im/status-go/waku/common" ) type Peer struct { host common.WakuHost rw p2p.MsgReadWriter p2pPeer *p2p.Peer logger *zap.Logger quit chan struct{} trusted bool powRequirement float64 // bloomMu is to allow thread safe access to // the bloom filter bloomMu sync.Mutex bloomFilter []byte // topicInterestMu is to allow thread safe access to // the map of topic interests topicInterestMu sync.Mutex topicInterest map[common.TopicType]bool // fullNode is used to indicate that the node will be accepting any // envelope. The opposite is an "empty node" , which is when // a bloom filter is all 0s or topic interest is an empty map (not nil). // In that case no envelope is accepted. fullNode bool confirmationsEnabled bool packetRateLimitsMu sync.Mutex packetRateLimits common.RateLimits bytesRateLimitsMu sync.Mutex bytesRateLimits common.RateLimits known mapset.Set // Messages already known by the peer to avoid wasting bandwidth } func NewPeer(host common.WakuHost, p2pPeer *p2p.Peer, rw p2p.MsgReadWriter, logger *zap.Logger) common.Peer { if logger == nil { logger = zap.NewNop() } return &Peer{ host: host, p2pPeer: p2pPeer, logger: logger, rw: rw, trusted: false, powRequirement: 0.0, known: mapset.NewSet(), quit: make(chan struct{}), bloomFilter: common.MakeFullNodeBloom(), fullNode: true, } } func (p *Peer) Start() error { if err := p.handshake(); err != nil { return err } go p.update() p.logger.Debug("starting peer", zap.Binary("peerID", p.ID())) return nil } func (p *Peer) Stop() { close(p.quit) p.logger.Debug("stopping peer", zap.Binary("peerID", p.ID())) } func (p *Peer) NotifyAboutPowRequirementChange(pow float64) error { i := math.Float64bits(pow) return p2p.Send(p.rw, statusUpdateCode, StatusOptions{PoWRequirement: &i}) } func (p *Peer) NotifyAboutBloomFilterChange(bloom []byte) error { return p2p.Send(p.rw, statusUpdateCode, StatusOptions{BloomFilter: bloom}) } func (p *Peer) NotifyAboutTopicInterestChange(topics []common.TopicType) error { return p2p.Send(p.rw, statusUpdateCode, StatusOptions{TopicInterest: topics}) } func (p *Peer) SetPeerTrusted(trusted bool) { p.trusted = trusted } func (p *Peer) RequestHistoricMessages(envelope *common.Envelope) error { return p2p.Send(p.rw, p2pRequestCode, envelope) } func (p *Peer) SendMessagesRequest(request common.MessagesRequest) error { return p2p.Send(p.rw, p2pRequestCode, request) } func (p *Peer) SendHistoricMessageResponse(payload []byte) error { size, r, err := rlp.EncodeToReader(payload) if err != nil { return err } return p.rw.WriteMsg(p2p.Msg{Code: p2pRequestCompleteCode, Size: uint32(size), Payload: r}) } func (p *Peer) SendP2PMessages(envelopes []*common.Envelope) error { return p2p.Send(p.rw, p2pMessageCode, envelopes) } func (p *Peer) SendRawP2PDirect(envelopes []rlp.RawValue) error { return p2p.Send(p.rw, p2pMessageCode, envelopes) } func (p *Peer) SetRWWriter(rw p2p.MsgReadWriter) { p.rw = rw } // Mark marks an envelope known to the peer so that it won't be sent back. func (p *Peer) Mark(envelope *common.Envelope) { p.known.Add(envelope.Hash()) } // Marked checks if an envelope is already known to the remote peer. func (p *Peer) Marked(envelope *common.Envelope) bool { return p.known.Contains(envelope.Hash()) } func (p *Peer) BloomFilter() []byte { p.bloomMu.Lock() defer p.bloomMu.Unlock() bloomFilterCopy := make([]byte, len(p.bloomFilter)) copy(bloomFilterCopy, p.bloomFilter) return bloomFilterCopy } func (p *Peer) PoWRequirement() float64 { return p.powRequirement } func (p *Peer) ConfirmationsEnabled() bool { return p.confirmationsEnabled } // ID returns a peer's id func (p *Peer) ID() []byte { id := p.p2pPeer.ID() return id[:] } func (p *Peer) EnodeID() enode.ID { return p.p2pPeer.ID() } func (p *Peer) IP() net.IP { return p.p2pPeer.Node().IP() } func (p *Peer) Run() error { logger := p.logger.Named("Run") for { // fetch the next packet packet, err := p.rw.ReadMsg() if err != nil { logger.Info("failed to read a message", zap.Binary("peer", p.ID()), zap.Error(err)) return err } if packet.Size > p.host.MaxMessageSize() { logger.Warn("oversize message received", zap.Binary("peer", p.ID()), zap.Uint32("size", packet.Size)) return errors.New("oversize message received") } if err := p.handlePacket(packet); err != nil { logger.Warn("failed to handle packet message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) } _ = packet.Discard() } } func (p *Peer) handlePacket(packet p2p.Msg) error { switch packet.Code { case messagesCode: if err := p.handleMessagesCode(packet); err != nil { p.logger.Warn("failed to handle messagesCode message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } case messageResponseCode: if err := p.handleMessageResponseCode(packet); err != nil { p.logger.Warn("failed to handle messageResponseCode message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } case batchAcknowledgedCode: if err := p.handleBatchAcknowledgeCode(packet); err != nil { p.logger.Warn("failed to handle batchAcknowledgedCode message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } case statusUpdateCode: if err := p.handleStatusUpdateCode(packet); err != nil { p.logger.Warn("failed to decode status update message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } case p2pMessageCode: if err := p.handleP2PMessageCode(packet); err != nil { p.logger.Warn("failed to decode direct message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } case p2pRequestCode: if err := p.handleP2PRequestCode(packet); err != nil { p.logger.Warn("failed to decode p2p request message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } case p2pRequestCompleteCode: if err := p.handleP2PRequestCompleteCode(packet); err != nil { p.logger.Warn("failed to decode p2p request complete message, peer will be disconnected", zap.Binary("peer", p.ID()), zap.Error(err)) return err } default: // New message common might be implemented in the future versions of Waku. // For forward compatibility, just ignore. p.logger.Debug("ignored packet with message code", zap.Uint64("code", packet.Code)) } return nil } func (p *Peer) handleMessagesCode(packet p2p.Msg) error { // decode the contained envelopes data, err := ioutil.ReadAll(packet.Payload) if err != nil { common.EnvelopesRejectedCounter.WithLabelValues("failed_read").Inc() return fmt.Errorf("failed to read packet payload: %v", err) } var envelopes []*common.Envelope if err := rlp.DecodeBytes(data, &envelopes); err != nil { common.EnvelopesRejectedCounter.WithLabelValues("invalid_data").Inc() return fmt.Errorf("invalid payload: %v", err) } envelopeErrors, err := p.host.OnNewEnvelopes(envelopes, p) if p.host.ConfirmationsEnabled() { go p.sendConfirmation(data, envelopeErrors) // nolint: errcheck } return err } func (p *Peer) handleMessageResponseCode(packet p2p.Msg) error { var resp MultiVersionResponse if err := packet.Decode(&resp); err != nil { common.EnvelopesRejectedCounter.WithLabelValues("failed_read").Inc() return fmt.Errorf("invalid response message: %v", err) } if resp.Version != 1 { p.logger.Info("received unsupported version of MultiVersionResponse for messageResponseCode packet", zap.Uint("version", resp.Version)) return nil } response, err := resp.DecodeResponse1() if err != nil { common.EnvelopesRejectedCounter.WithLabelValues("invalid_data").Inc() return fmt.Errorf("failed to decode response message: %v", err) } return p.host.OnMessagesResponse(response, p) } func (p *Peer) handleP2PRequestCode(packet p2p.Msg) error { // Must be processed if mail server is implemented. Otherwise ignore. if !p.host.Mailserver() { return nil } // Read all data as we will try to decode it possibly twice. data, err := ioutil.ReadAll(packet.Payload) if err != nil { return fmt.Errorf("invalid p2p request messages: %v", err) } r := bytes.NewReader(data) packet.Payload = r var requestDeprecated common.Envelope errDepReq := packet.Decode(&requestDeprecated) if errDepReq == nil { return p.host.OnDeprecatedMessagesRequest(&requestDeprecated, p) } p.logger.Info("failed to decode p2p request message (deprecated)", zap.Binary("peer", p.ID()), zap.Error(errDepReq)) // As we failed to decode the request, let's set the offset // to the beginning and try decode it again. if _, err := r.Seek(0, io.SeekStart); err != nil { return fmt.Errorf("invalid p2p request message: %v", err) } var request common.MessagesRequest errReq := packet.Decode(&request) if errReq == nil { return p.host.OnMessagesRequest(request, p) } p.logger.Info("failed to decode p2p request message", zap.Binary("peer", p.ID()), zap.Error(errReq)) return errors.New("invalid p2p request message") } func (p *Peer) handleBatchAcknowledgeCode(packet p2p.Msg) error { var batchHash gethcommon.Hash if err := packet.Decode(&batchHash); err != nil { return fmt.Errorf("invalid batch ack message: %v", err) } return p.host.OnBatchAcknowledged(batchHash, p) } func (p *Peer) handleStatusUpdateCode(packet p2p.Msg) error { var StatusOptions StatusOptions err := packet.Decode(&StatusOptions) if err != nil { p.logger.Error("failed to decode status-options", zap.Error(err)) common.EnvelopesRejectedCounter.WithLabelValues("invalid_settings_changed").Inc() return err } return p.setOptions(StatusOptions) } func (p *Peer) handleP2PMessageCode(packet p2p.Msg) error { // peer-to-peer message, sent directly to peer bypassing PoW checks, etc. // this message is not supposed to be forwarded to other peers, and // therefore might not satisfy the PoW, expiry and other requirements. // these messages are only accepted from the trusted peer. if !p.trusted { return nil } var ( envelopes []*common.Envelope err error ) if err = packet.Decode(&envelopes); err != nil { return fmt.Errorf("invalid direct message payload: %v", err) } return p.host.OnNewP2PEnvelopes(envelopes) } func (p *Peer) handleP2PRequestCompleteCode(packet p2p.Msg) error { if !p.trusted { return nil } var payload []byte if err := packet.Decode(&payload); err != nil { return fmt.Errorf("invalid p2p request complete message: %v", err) } return p.host.OnP2PRequestCompleted(payload, p) } // sendConfirmation sends messageResponseCode and batchAcknowledgedCode messages. func (p *Peer) sendConfirmation(data []byte, envelopeErrors []common.EnvelopeError) (err error) { batchHash := crypto.Keccak256Hash(data) err = p2p.Send(p.rw, messageResponseCode, NewMessagesResponse(batchHash, envelopeErrors)) if err != nil { return } err = p2p.Send(p.rw, batchAcknowledgedCode, batchHash) // DEPRECATED return } // handshake sends the protocol initiation status message to the remote peer and // verifies the remote status too. func (p *Peer) handshake() error { // Send the handshake status message asynchronously errc := make(chan error, 1) opts := StatusOptionsFromHost(p.host) go func() { errc <- p2p.Send(p.rw, statusCode, opts) }() // Fetch the remote status packet and verify protocol match packet, err := p.rw.ReadMsg() if err != nil { return err } if packet.Code != statusCode { return fmt.Errorf("p [%x] sent packet %x before status packet", p.ID(), packet.Code) } var peerOptions StatusOptions s := rlp.NewStream(packet.Payload, uint64(packet.Size)) // Decode and validate other status packet options. if err := s.Decode(&peerOptions); err != nil { return fmt.Errorf("p [%x]: failed to decode status options: %v", p.ID(), err) } if err := p.setOptions(peerOptions.WithDefaults()); err != nil { return fmt.Errorf("p [%x]: failed to set options: %v", p.ID(), err) } if err := <-errc; err != nil { return fmt.Errorf("p [%x] failed to send status packet: %v", p.ID(), err) } _ = packet.Discard() return nil } // update executes periodic operations on the peer, including message transmission // and expiration. func (p *Peer) update() { // Start the tickers for the updates expire := time.NewTicker(common.ExpirationCycle) transmit := time.NewTicker(common.TransmissionCycle) // Loop and transmit until termination is requested for { select { case <-expire.C: p.expire() case <-transmit.C: if err := p.broadcast(); err != nil { p.logger.Debug("broadcasting failed", zap.Binary("peer", p.ID()), zap.Error(err)) return } case <-p.quit: return } } } func (p *Peer) setOptions(peerOptions StatusOptions) error { p.logger.Debug("settings options", zap.Binary("peerID", p.ID()), zap.Any("Options", peerOptions)) if err := peerOptions.Validate(); err != nil { return fmt.Errorf("p [%x]: sent invalid options: %v", p.ID(), err) } // Validate and save peer's PoW. pow := peerOptions.PoWRequirementF() if pow != nil { if math.IsInf(*pow, 0) || math.IsNaN(*pow) || *pow < 0.0 { return fmt.Errorf("p [%x]: sent bad status message: invalid pow", p.ID()) } p.powRequirement = *pow } if peerOptions.TopicInterest != nil { p.setTopicInterest(peerOptions.TopicInterest) } else if peerOptions.BloomFilter != nil { // Validate and save peer's bloom filters. bloom := peerOptions.BloomFilter bloomSize := len(bloom) if bloomSize != 0 && bloomSize != common.BloomFilterSize { return fmt.Errorf("p [%x] sent bad status message: wrong bloom filter size %d", p.ID(), bloomSize) } p.setBloomFilter(bloom) } if peerOptions.LightNodeEnabled != nil { // Validate and save other peer's options. if *peerOptions.LightNodeEnabled && p.host.LightClientMode() && p.host.LightClientModeConnectionRestricted() { return fmt.Errorf("p [%x] is useless: two light client communication restricted", p.ID()) } } if peerOptions.ConfirmationsEnabled != nil { p.confirmationsEnabled = *peerOptions.ConfirmationsEnabled } if peerOptions.PacketRateLimits != nil { p.setPacketRateLimits(*peerOptions.PacketRateLimits) } if peerOptions.BytesRateLimits != nil { p.setBytesRateLimits(*peerOptions.BytesRateLimits) } return nil } // expire iterates over all the known envelopes in the host and removes all // expired (unknown) ones from the known list. func (p *Peer) expire() { unmark := make(map[gethcommon.Hash]struct{}) p.known.Each(func(v interface{}) bool { if !p.host.IsEnvelopeCached(v.(gethcommon.Hash)) { unmark[v.(gethcommon.Hash)] = struct{}{} } return true }) // Dump all known but no longer cached for hash := range unmark { p.known.Remove(hash) } } // broadcast iterates over the collection of envelopes and transmits yet unknown // ones over the network. func (p *Peer) broadcast() error { envelopes := p.host.Envelopes() bundle := make([]*common.Envelope, 0, len(envelopes)) for _, envelope := range envelopes { if !p.Marked(envelope) && envelope.PoW() >= p.powRequirement && p.topicOrBloomMatch(envelope) { bundle = append(bundle, envelope) } } if len(bundle) == 0 { return nil } batchHash, err := sendBundle(p.rw, bundle) if err != nil { p.logger.Debug("failed to deliver envelopes", zap.Binary("peer", p.ID()), zap.Error(err)) return err } // mark envelopes only if they were successfully sent for _, e := range bundle { p.Mark(e) event := common.EnvelopeEvent{ Event: common.EventEnvelopeSent, Hash: e.Hash(), Peer: p.EnodeID(), } if p.confirmationsEnabled { event.Batch = batchHash } p.host.SendEnvelopeEvent(event) } p.logger.Debug("broadcasted bundles successfully", zap.Binary("peer", p.ID()), zap.Int("count", len(bundle))) return nil } func sendBundle(rw p2p.MsgWriter, bundle []*common.Envelope) (rst gethcommon.Hash, err error) { data, err := rlp.EncodeToBytes(bundle) if err != nil { return } err = rw.WriteMsg(p2p.Msg{ Code: messagesCode, Size: uint32(len(data)), Payload: bytes.NewBuffer(data), }) if err != nil { return } return crypto.Keccak256Hash(data), nil } func (p *Peer) setBloomFilter(bloom []byte) { p.bloomMu.Lock() defer p.bloomMu.Unlock() p.bloomFilter = bloom p.fullNode = common.IsFullNode(bloom) if p.fullNode && p.bloomFilter == nil { p.bloomFilter = common.MakeFullNodeBloom() } p.topicInterest = nil } func (p *Peer) setTopicInterest(topicInterest []common.TopicType) { p.topicInterestMu.Lock() defer p.topicInterestMu.Unlock() if topicInterest == nil { p.topicInterest = nil return } p.topicInterest = make(map[common.TopicType]bool) for _, topic := range topicInterest { p.topicInterest[topic] = true } p.fullNode = false p.bloomFilter = nil } func (p *Peer) setPacketRateLimits(r common.RateLimits) { p.packetRateLimitsMu.Lock() p.packetRateLimits = r p.packetRateLimitsMu.Unlock() } func (p *Peer) setBytesRateLimits(r common.RateLimits) { p.bytesRateLimitsMu.Lock() p.bytesRateLimits = r p.bytesRateLimitsMu.Unlock() } // topicOrBloomMatch matches against topic-interest if topic interest // is not nil. Otherwise it will match against the bloom-filter. // If the bloom-filter is nil, or full, the node is considered a full-node // and any envelope will be accepted. An empty topic-interest (but not nil) // signals that we are not interested in any envelope. func (p *Peer) topicOrBloomMatch(env *common.Envelope) bool { p.topicInterestMu.Lock() topicInterestMode := p.topicInterest != nil p.topicInterestMu.Unlock() if topicInterestMode { return p.topicInterestMatch(env) } return p.bloomMatch(env) } func (p *Peer) topicInterestMatch(env *common.Envelope) bool { p.topicInterestMu.Lock() defer p.topicInterestMu.Unlock() if p.topicInterest == nil { return false } return p.topicInterest[env.Topic] } func (p *Peer) bloomMatch(env *common.Envelope) bool { p.bloomMu.Lock() defer p.bloomMu.Unlock() return p.fullNode || common.BloomFilterMatch(p.bloomFilter, env.Bloom()) }