// Copyright 2019 The Waku Library Authors. // // The Waku library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The Waku library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty off // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the Waku library. If not, see . // // This software uses the go-ethereum library, which is licensed // under the GNU Lesser General Public Library, version 3 or any later. package wakuv2 import ( "context" "crypto/ecdsa" "crypto/sha256" "errors" "fmt" "net" "runtime" "sync" "time" "github.com/ethereum/go-ethereum/common/hexutil" "go.uber.org/zap" mapset "github.com/deckarep/golang-set" "golang.org/x/crypto/pbkdf2" gethcommon "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/rpc" "github.com/libp2p/go-libp2p" "github.com/libp2p/go-libp2p-core/metrics" wakuprotocol "github.com/status-im/go-waku/waku/v2/protocol" "github.com/status-im/go-waku/waku/v2/protocol/relay" "github.com/status-im/status-go/eth-node/types" "github.com/status-im/status-go/wakuv2/common" node "github.com/status-im/go-waku/waku/v2/node" "github.com/status-im/go-waku/waku/v2/protocol/pb" "github.com/status-im/go-waku/waku/v2/protocol/store" wakurelay "github.com/status-im/go-wakurelay-pubsub" ) const messageQueueLimit = 1024 type settings struct { MaxMsgSize uint32 // Maximal message length allowed by the waku node EnableConfirmations bool // Enable sending message confirmations SoftBlacklistedPeerIDs map[string]bool // SoftBlacklistedPeerIDs is a list of peer ids that we want to keep connected but silently drop any envelope from } // Waku represents a dark communication interface through the Ethereum // network, using its very own P2P communication layer. type Waku struct { node *node.WakuNode // reference to a libp2p waku node filters *common.Filters // Message filters installed with Subscribe function privateKeys map[string]*ecdsa.PrivateKey // Private key storage symKeys map[string][]byte // Symmetric key storage keyMu sync.RWMutex // Mutex associated with key stores envelopes map[gethcommon.Hash]*common.ReceivedMessage // Pool of envelopes currently tracked by this node expirations map[uint32]mapset.Set // Message expiration pool poolMu sync.RWMutex // Mutex to sync the message and expiration pools bandwidthCounter *metrics.BandwidthCounter msgQueue chan *common.ReceivedMessage // Message queue for waku messages that havent been decoded quit chan struct{} // Channel used for graceful exit settings settings // Holds configuration settings that can be dynamically changed settingsMu sync.RWMutex // Mutex to sync the settings access envelopeFeed event.Feed timeSource func() time.Time // source of time for waku logger *zap.Logger } // New creates a WakuV2 client ready to communicate through the LibP2P network. func New(nodeKey string, cfg *Config, logger *zap.Logger) (*Waku, error) { if logger == nil { logger = zap.NewNop() } logger.Debug("starting wakuv2 with config", zap.Any("config", cfg)) if cfg == nil { c := DefaultConfig cfg = &c } waku := &Waku{ privateKeys: make(map[string]*ecdsa.PrivateKey), symKeys: make(map[string][]byte), envelopes: make(map[gethcommon.Hash]*common.ReceivedMessage), expirations: make(map[uint32]mapset.Set), msgQueue: make(chan *common.ReceivedMessage, messageQueueLimit), quit: make(chan struct{}), timeSource: time.Now, logger: logger, } waku.settings = settings{ MaxMsgSize: cfg.MaxMessageSize, SoftBlacklistedPeerIDs: make(map[string]bool), } waku.filters = common.NewFilters() waku.bandwidthCounter = metrics.NewBandwidthCounter() var privateKey *ecdsa.PrivateKey var err error if nodeKey != "" { privateKey, err = crypto.HexToECDSA(nodeKey) } else { // If no nodekey is provided, create an ephemeral key privateKey, err = crypto.GenerateKey() } if err != nil { return nil, fmt.Errorf("failed to setup the go-waku private key: %v", err) } hostAddr, err := net.ResolveTCPAddr("tcp", fmt.Sprint(cfg.Host, ":", cfg.Port)) if err != nil { return nil, fmt.Errorf("failed to setup the network interface: %v", err) } waku.node, err = node.New(context.Background(), node.WithLibP2POptions( libp2p.BandwidthReporter(waku.bandwidthCounter), ), node.WithPrivateKey(privateKey), node.WithHostAddress([]net.Addr{hostAddr}), node.WithWakuRelay(wakurelay.WithMaxMessageSize(int(waku.settings.MaxMsgSize))), node.WithWakuStore(false), // Mounts the store protocol (without storing the messages) ) if err != nil { fmt.Println(err) return nil, fmt.Errorf("failed to start the go-waku node: %v", err) } for _, bootnode := range cfg.BootNodes { err := waku.node.DialPeer(bootnode) if err != nil { log.Warn("Could not dial peer", err) } else { log.Info("Bootnode dialed successfully", bootnode) } } for _, storenode := range cfg.StoreNodes { peerID, err := waku.node.AddStorePeer(storenode) if err != nil { log.Warn("Could not add store peer", err) } else { log.Info("Storepeeer dialed successfully", "peerId", peerID.Pretty()) } } go waku.runMsgLoop() log.Info("setup the go-waku node successfully") return waku, nil } func (w *Waku) GetStats() types.StatsSummary { stats := w.bandwidthCounter.GetBandwidthTotals() return types.StatsSummary{ UploadRate: uint64(stats.RateOut), DownloadRate: uint64(stats.RateIn), } } func (w *Waku) runMsgLoop() { sub, err := w.node.Subscribe(nil) if err != nil { fmt.Println("Could not subscribe:", err) return } for env := range sub.C { envelopeErrors, err := w.OnNewEnvelopes(env) // TODO: should these be handled? _ = envelopeErrors _ = err } } // MaxMessageSize returns the maximum accepted message size. func (w *Waku) MaxMessageSize() uint32 { w.settingsMu.RLock() defer w.settingsMu.RUnlock() return w.settings.MaxMsgSize } // ConfirmationsEnabled returns true if message confirmations are enabled. func (w *Waku) ConfirmationsEnabled() bool { w.settingsMu.RLock() defer w.settingsMu.RUnlock() return w.settings.EnableConfirmations } // CurrentTime returns current time. func (w *Waku) CurrentTime() time.Time { return w.timeSource() } // SetTimeSource assigns a particular source of time to a waku object. func (w *Waku) SetTimeSource(timesource func() time.Time) { w.timeSource = timesource } // APIs returns the RPC descriptors the Waku implementation offers func (w *Waku) APIs() []rpc.API { return []rpc.API{ { Namespace: Name, Version: VersionStr, Service: NewPublicWakuAPI(w), Public: false, }, } } // Protocols returns the waku sub-protocols ran by this particular client. func (w *Waku) Protocols() []p2p.Protocol { return []p2p.Protocol{} } func (w *Waku) SendEnvelopeEvent(event common.EnvelopeEvent) int { return w.envelopeFeed.Send(event) } // SubscribeEnvelopeEvents subscribes to envelopes feed. // In order to prevent blocking waku producers events must be amply buffered. func (w *Waku) SubscribeEnvelopeEvents(events chan<- common.EnvelopeEvent) event.Subscription { return w.envelopeFeed.Subscribe(events) } // NewKeyPair generates a new cryptographic identity for the client, and injects // it into the known identities for message decryption. Returns ID of the new key pair. func (w *Waku) NewKeyPair() (string, error) { key, err := crypto.GenerateKey() if err != nil || !validatePrivateKey(key) { key, err = crypto.GenerateKey() // retry once } if err != nil { return "", err } if !validatePrivateKey(key) { return "", fmt.Errorf("failed to generate valid key") } id, err := toDeterministicID(hexutil.Encode(crypto.FromECDSAPub(&key.PublicKey)), common.KeyIDSize) if err != nil { return "", err } w.keyMu.Lock() defer w.keyMu.Unlock() if w.privateKeys[id] != nil { return "", fmt.Errorf("failed to generate unique ID") } w.privateKeys[id] = key return id, nil } // DeleteKeyPair deletes the specified key if it exists. func (w *Waku) DeleteKeyPair(key string) bool { deterministicID, err := toDeterministicID(key, common.KeyIDSize) if err != nil { return false } w.keyMu.Lock() defer w.keyMu.Unlock() if w.privateKeys[deterministicID] != nil { delete(w.privateKeys, deterministicID) return true } return false } // AddKeyPair imports a asymmetric private key and returns it identifier. func (w *Waku) AddKeyPair(key *ecdsa.PrivateKey) (string, error) { id, err := makeDeterministicID(hexutil.Encode(crypto.FromECDSAPub(&key.PublicKey)), common.KeyIDSize) if err != nil { return "", err } if w.HasKeyPair(id) { return id, nil // no need to re-inject } w.keyMu.Lock() w.privateKeys[id] = key w.keyMu.Unlock() return id, nil } // SelectKeyPair adds cryptographic identity, and makes sure // that it is the only private key known to the node. func (w *Waku) SelectKeyPair(key *ecdsa.PrivateKey) error { id, err := makeDeterministicID(hexutil.Encode(crypto.FromECDSAPub(&key.PublicKey)), common.KeyIDSize) if err != nil { return err } w.keyMu.Lock() defer w.keyMu.Unlock() w.privateKeys = make(map[string]*ecdsa.PrivateKey) // reset key store w.privateKeys[id] = key return nil } // DeleteKeyPairs removes all cryptographic identities known to the node func (w *Waku) DeleteKeyPairs() error { w.keyMu.Lock() defer w.keyMu.Unlock() w.privateKeys = make(map[string]*ecdsa.PrivateKey) return nil } // HasKeyPair checks if the waku node is configured with the private key // of the specified public pair. func (w *Waku) HasKeyPair(id string) bool { deterministicID, err := toDeterministicID(id, common.KeyIDSize) if err != nil { return false } w.keyMu.RLock() defer w.keyMu.RUnlock() return w.privateKeys[deterministicID] != nil } // GetPrivateKey retrieves the private key of the specified identity. func (w *Waku) GetPrivateKey(id string) (*ecdsa.PrivateKey, error) { deterministicID, err := toDeterministicID(id, common.KeyIDSize) if err != nil { return nil, err } w.keyMu.RLock() defer w.keyMu.RUnlock() key := w.privateKeys[deterministicID] if key == nil { return nil, fmt.Errorf("invalid id") } return key, nil } // GenerateSymKey generates a random symmetric key and stores it under id, // which is then returned. Will be used in the future for session key exchange. func (w *Waku) GenerateSymKey() (string, error) { key, err := common.GenerateSecureRandomData(common.AESKeyLength) if err != nil { return "", err } else if !common.ValidateDataIntegrity(key, common.AESKeyLength) { return "", fmt.Errorf("error in GenerateSymKey: crypto/rand failed to generate random data") } id, err := common.GenerateRandomID() if err != nil { return "", fmt.Errorf("failed to generate ID: %s", err) } w.keyMu.Lock() defer w.keyMu.Unlock() if w.symKeys[id] != nil { return "", fmt.Errorf("failed to generate unique ID") } w.symKeys[id] = key return id, nil } // AddSymKey stores the key with a given id. func (w *Waku) AddSymKey(id string, key []byte) (string, error) { deterministicID, err := toDeterministicID(id, common.KeyIDSize) if err != nil { return "", err } w.keyMu.Lock() defer w.keyMu.Unlock() if w.symKeys[deterministicID] != nil { return "", fmt.Errorf("key already exists: %v", id) } w.symKeys[deterministicID] = key return deterministicID, nil } // AddSymKeyDirect stores the key, and returns its id. func (w *Waku) AddSymKeyDirect(key []byte) (string, error) { if len(key) != common.AESKeyLength { return "", fmt.Errorf("wrong key size: %d", len(key)) } id, err := common.GenerateRandomID() if err != nil { return "", fmt.Errorf("failed to generate ID: %s", err) } w.keyMu.Lock() defer w.keyMu.Unlock() if w.symKeys[id] != nil { return "", fmt.Errorf("failed to generate unique ID") } w.symKeys[id] = key return id, nil } // AddSymKeyFromPassword generates the key from password, stores it, and returns its id. func (w *Waku) AddSymKeyFromPassword(password string) (string, error) { id, err := common.GenerateRandomID() if err != nil { return "", fmt.Errorf("failed to generate ID: %s", err) } if w.HasSymKey(id) { return "", fmt.Errorf("failed to generate unique ID") } // kdf should run no less than 0.1 seconds on an average computer, // because it's an once in a session experience derived := pbkdf2.Key([]byte(password), nil, 65356, common.AESKeyLength, sha256.New) w.keyMu.Lock() defer w.keyMu.Unlock() // double check is necessary, because deriveKeyMaterial() is very slow if w.symKeys[id] != nil { return "", fmt.Errorf("critical error: failed to generate unique ID") } w.symKeys[id] = derived return id, nil } // HasSymKey returns true if there is a key associated with the given id. // Otherwise returns false. func (w *Waku) HasSymKey(id string) bool { w.keyMu.RLock() defer w.keyMu.RUnlock() return w.symKeys[id] != nil } // DeleteSymKey deletes the key associated with the name string if it exists. func (w *Waku) DeleteSymKey(id string) bool { w.keyMu.Lock() defer w.keyMu.Unlock() if w.symKeys[id] != nil { delete(w.symKeys, id) return true } return false } // GetSymKey returns the symmetric key associated with the given id. func (w *Waku) GetSymKey(id string) ([]byte, error) { w.keyMu.RLock() defer w.keyMu.RUnlock() if w.symKeys[id] != nil { return w.symKeys[id], nil } return nil, fmt.Errorf("non-existent key ID") } // Subscribe installs a new message handler used for filtering, decrypting // and subsequent storing of incoming messages. func (w *Waku) Subscribe(f *common.Filter) (string, error) { s, err := w.filters.Install(f) if err != nil { return s, err } return s, nil } // GetFilter returns the filter by id. func (w *Waku) GetFilter(id string) *common.Filter { return w.filters.Get(id) } // Unsubscribe removes an installed message handler. // TODO: This does not seem to update the bloom filter, but does update // the topic interest map func (w *Waku) Unsubscribe(id string) error { ok := w.filters.Uninstall(id) if !ok { return fmt.Errorf("failed to unsubscribe: invalid ID '%s'", id) } return nil } // Unsubscribe removes an installed message handler. // TODO: This does not seem to update the bloom filter, but does update // the topic interest map func (w *Waku) UnsubscribeMany(ids []string) error { for _, id := range ids { w.logger.Debug("cleaning up filter", zap.String("id", id)) ok := w.filters.Uninstall(id) if !ok { w.logger.Warn("could not remove filter with id", zap.String("id", id)) } } return nil } // Send injects a message into the waku send queue, to be distributed in the // network in the coming cycles. func (w *Waku) Send(msg *pb.WakuMessage) ([]byte, error) { return w.node.Publish(context.Background(), msg, nil) } func (w *Waku) Query(topics []types.TopicType, from uint64, to uint64, opts []store.HistoryRequestOption) (cursor *pb.Index, err error) { strTopics := make([]string, len(topics)) for i, t := range topics { strTopics[i] = t.String() } result, err := w.node.Query(context.Background(), strTopics, float64(from), float64(to), opts...) for _, msg := range result.Messages { envelope := wakuprotocol.NewEnvelope(msg, string(relay.DefaultWakuTopic)) _, err = w.OnNewEnvelopes(envelope) if err != nil { return nil, err } } if len(result.Messages) != 0 { cursor = result.PagingInfo.Cursor } return } // Start implements node.Service, starting the background data propagation thread // of the Waku protocol. func (w *Waku) Start() error { numCPU := runtime.NumCPU() for i := 0; i < numCPU; i++ { go w.processQueue() } return nil } // Stop implements node.Service, stopping the background data propagation thread // of the Waku protocol. func (w *Waku) Stop() error { w.node.Stop() close(w.quit) return nil } func (w *Waku) OnNewEnvelopes(envelope *wakuprotocol.Envelope) ([]common.EnvelopeError, error) { recvMessage := common.NewReceivedMessage(envelope) envelopeErrors := make([]common.EnvelopeError, 0) w.logger.Debug("received new envelope") trouble := false _, err := w.add(recvMessage) if err != nil { w.logger.Info("invalid envelope received", zap.Error(err)) } common.EnvelopesValidatedCounter.Inc() if trouble { return envelopeErrors, errors.New("received invalid envelope") } return envelopeErrors, nil } // addEnvelope adds an envelope to the envelope map, used for sending func (w *Waku) addEnvelope(envelope *common.ReceivedMessage) { hash := envelope.Hash() w.poolMu.Lock() w.envelopes[hash] = envelope w.poolMu.Unlock() } func (w *Waku) add(recvMessage *common.ReceivedMessage) (bool, error) { common.EnvelopesReceivedCounter.Inc() hash := recvMessage.Hash() w.poolMu.Lock() _, alreadyCached := w.envelopes[hash] w.poolMu.Unlock() if !alreadyCached { w.addEnvelope(recvMessage) } if alreadyCached { log.Trace("w envelope already cached", "hash", recvMessage.Hash().Hex()) common.EnvelopesCachedCounter.WithLabelValues("hit").Inc() } else { log.Trace("cached w envelope", "hash", recvMessage.Hash().Hex()) common.EnvelopesCachedCounter.WithLabelValues("miss").Inc() common.EnvelopesSizeMeter.Observe(float64(recvMessage.Envelope.Size())) w.postEvent(recvMessage) // notify the local node about the new message } return true, nil } // postEvent queues the message for further processing. func (w *Waku) postEvent(envelope *common.ReceivedMessage) { w.msgQueue <- envelope } // processQueue delivers the messages to the watchers during the lifetime of the waku node. func (w *Waku) processQueue() { for { select { case <-w.quit: return case e := <-w.msgQueue: w.filters.NotifyWatchers(e) w.envelopeFeed.Send(common.EnvelopeEvent{ Topic: e.Topic, Hash: e.Hash(), Event: common.EventEnvelopeAvailable, }) } } } // Envelopes retrieves all the messages currently pooled by the node. func (w *Waku) Envelopes() []*common.ReceivedMessage { w.poolMu.RLock() defer w.poolMu.RUnlock() all := make([]*common.ReceivedMessage, 0, len(w.envelopes)) for _, envelope := range w.envelopes { all = append(all, envelope) } return all } // GetEnvelope retrieves an envelope from the message queue by its hash. // It returns nil if the envelope can not be found. func (w *Waku) GetEnvelope(hash gethcommon.Hash) *common.ReceivedMessage { w.poolMu.RLock() defer w.poolMu.RUnlock() return w.envelopes[hash] } // isEnvelopeCached checks if envelope with specific hash has already been received and cached. func (w *Waku) IsEnvelopeCached(hash gethcommon.Hash) bool { w.poolMu.Lock() defer w.poolMu.Unlock() _, exist := w.envelopes[hash] return exist } // validatePrivateKey checks the format of the given private key. func validatePrivateKey(k *ecdsa.PrivateKey) bool { if k == nil || k.D == nil || k.D.Sign() == 0 { return false } return common.ValidatePublicKey(&k.PublicKey) } // makeDeterministicID generates a deterministic ID, based on a given input func makeDeterministicID(input string, keyLen int) (id string, err error) { buf := pbkdf2.Key([]byte(input), nil, 4096, keyLen, sha256.New) if !common.ValidateDataIntegrity(buf, common.KeyIDSize) { return "", fmt.Errorf("error in GenerateDeterministicID: failed to generate key") } id = gethcommon.Bytes2Hex(buf) return id, err } // toDeterministicID reviews incoming id, and transforms it to format // expected internally be private key store. Originally, public keys // were used as keys, now random keys are being used. And in order to // make it easier to consume, we now allow both random IDs and public // keys to be passed. func toDeterministicID(id string, expectedLen int) (string, error) { if len(id) != (expectedLen * 2) { // we received hex key, so number of chars in id is doubled var err error id, err = makeDeterministicID(id, expectedLen) if err != nil { return "", err } } return id, nil }