package pubsub import ( "context" "fmt" "math/rand" "sort" "time" pb "github.com/libp2p/go-libp2p-pubsub/pb" "github.com/libp2p/go-libp2p-core/host" "github.com/libp2p/go-libp2p-core/network" "github.com/libp2p/go-libp2p-core/peer" "github.com/libp2p/go-libp2p-core/peerstore" "github.com/libp2p/go-libp2p-core/protocol" "github.com/libp2p/go-libp2p-core/record" ) const ( // GossipSubID_v10 is the protocol ID for version 1.0.0 of the GossipSub protocol. // It is advertised along with GossipSubID_v11 for backwards compatibility. GossipSubID_v10 = protocol.ID("/meshsub/1.0.0") // GossipSubID_v11 is the protocol ID for version 1.1.0 of the GossipSub protocol. // See the spec for details about how v1.1.0 compares to v1.0.0: // https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.md GossipSubID_v11 = protocol.ID("/meshsub/1.1.0") ) // Defines the default gossipsub parameters. var ( GossipSubD = 6 GossipSubDlo = 5 GossipSubDhi = 12 GossipSubDscore = 4 GossipSubDout = 2 GossipSubHistoryLength = 5 GossipSubHistoryGossip = 3 GossipSubDlazy = 6 GossipSubGossipFactor = 0.25 GossipSubGossipRetransmission = 3 GossipSubHeartbeatInitialDelay = 100 * time.Millisecond GossipSubHeartbeatInterval = 1 * time.Second GossipSubFanoutTTL = 60 * time.Second GossipSubPrunePeers = 16 GossipSubPruneBackoff = time.Minute GossipSubConnectors = 8 GossipSubMaxPendingConnections = 128 GossipSubConnectionTimeout = 30 * time.Second GossipSubDirectConnectTicks uint64 = 300 GossipSubDirectConnectInitialDelay = time.Second GossipSubOpportunisticGraftTicks uint64 = 60 GossipSubOpportunisticGraftPeers = 2 GossipSubGraftFloodThreshold = 10 * time.Second GossipSubMaxIHaveLength = 5000 GossipSubMaxIHaveMessages = 10 GossipSubIWantFollowupTime = 3 * time.Second ) // GossipSubParams defines all the gossipsub specific parameters. type GossipSubParams struct { // overlay parameters. // D sets the optimal degree for a GossipSub topic mesh. For example, if D == 6, // each peer will want to have about six peers in their mesh for each topic they're subscribed to. // D should be set somewhere between Dlo and Dhi. D int // Dlo sets the lower bound on the number of peers we keep in a GossipSub topic mesh. // If we have fewer than Dlo peers, we will attempt to graft some more into the mesh at // the next heartbeat. Dlo int // Dhi sets the upper bound on the number of peers we keep in a GossipSub topic mesh. // If we have more than Dhi peers, we will select some to prune from the mesh at the next heartbeat. Dhi int // Dscore affects how peers are selected when pruning a mesh due to over subscription. // At least Dscore of the retained peers will be high-scoring, while the remainder are // chosen randomly. Dscore int // Dout sets the quota for the number of outbound connections to maintain in a topic mesh. // When the mesh is pruned due to over subscription, we make sure that we have outbound connections // to at least Dout of the survivor peers. This prevents sybil attackers from overwhelming // our mesh with incoming connections. // // Dout must be set below Dlo, and must not exceed D / 2. Dout int // gossip parameters // HistoryLength controls the size of the message cache used for gossip. // The message cache will remember messages for HistoryLength heartbeats. HistoryLength int // HistoryGossip controls how many cached message ids we will advertise in // IHAVE gossip messages. When asked for our seen message IDs, we will return // only those from the most recent HistoryGossip heartbeats. The slack between // HistoryGossip and HistoryLength allows us to avoid advertising messages // that will be expired by the time they're requested. // // HistoryGossip must be less than or equal to HistoryLength to // avoid a runtime panic. HistoryGossip int // Dlazy affects how many peers we will emit gossip to at each heartbeat. // We will send gossip to at least Dlazy peers outside our mesh. The actual // number may be more, depending on GossipFactor and how many peers we're // connected to. Dlazy int // GossipFactor affects how many peers we will emit gossip to at each heartbeat. // We will send gossip to GossipFactor * (total number of non-mesh peers), or // Dlazy, whichever is greater. GossipFactor float64 // GossipRetransmission controls how many times we will allow a peer to request // the same message id through IWANT gossip before we start ignoring them. This is designed // to prevent peers from spamming us with requests and wasting our resources. GossipRetransmission int // heartbeat interval // HeartbeatInitialDelay is the short delay before the heartbeat timer begins // after the router is initialized. HeartbeatInitialDelay time.Duration // HeartbeatInterval controls the time between heartbeats. HeartbeatInterval time.Duration // SlowHeartbeatWarning is the duration threshold for heartbeat processing before emitting // a warning; this would be indicative of an overloaded peer. SlowHeartbeatWarning float64 // FanoutTTL controls how long we keep track of the fanout state. If it's been // FanoutTTL since we've published to a topic that we're not subscribed to, // we'll delete the fanout map for that topic. FanoutTTL time.Duration // PrunePeers controls the number of peers to include in prune Peer eXchange. // When we prune a peer that's eligible for PX (has a good score, etc), we will try to // send them signed peer records for up to PrunePeers other peers that we // know of. PrunePeers int // PruneBackoff controls the backoff time for pruned peers. This is how long // a peer must wait before attempting to graft into our mesh again after being pruned. // When pruning a peer, we send them our value of PruneBackoff so they know // the minimum time to wait. Peers running older versions may not send a backoff time, // so if we receive a prune message without one, we will wait at least PruneBackoff // before attempting to re-graft. PruneBackoff time.Duration // Connectors controls the number of active connection attempts for peers obtained through PX. Connectors int // MaxPendingConnections sets the maximum number of pending connections for peers attempted through px. MaxPendingConnections int // ConnectionTimeout controls the timeout for connection attempts. ConnectionTimeout time.Duration // DirectConnectTicks is the number of heartbeat ticks for attempting to reconnect direct peers // that are not currently connected. DirectConnectTicks uint64 // DirectConnectInitialDelay is the initial delay before opening connections to direct peers DirectConnectInitialDelay time.Duration // OpportunisticGraftTicks is the number of heartbeat ticks for attempting to improve the mesh // with opportunistic grafting. Every OpportunisticGraftTicks we will attempt to select some // high-scoring mesh peers to replace lower-scoring ones, if the median score of our mesh peers falls // below a threshold (see https://godoc.org/github.com/libp2p/go-libp2p-pubsub#PeerScoreThresholds). OpportunisticGraftTicks uint64 // OpportunisticGraftPeers is the number of peers to opportunistically graft. OpportunisticGraftPeers int // If a GRAFT comes before GraftFloodThreshold has elapsed since the last PRUNE, // then there is an extra score penalty applied to the peer through P7. GraftFloodThreshold time.Duration // MaxIHaveLength is the maximum number of messages to include in an IHAVE message. // Also controls the maximum number of IHAVE ids we will accept and request with IWANT from a // peer within a heartbeat, to protect from IHAVE floods. You should adjust this value from the // default if your system is pushing more than 5000 messages in HistoryGossip heartbeats; // with the defaults this is 1666 messages/s. MaxIHaveLength int // MaxIHaveMessages is the maximum number of IHAVE messages to accept from a peer within a heartbeat. MaxIHaveMessages int // Time to wait for a message requested through IWANT following an IHAVE advertisement. // If the message is not received within this window, a broken promise is declared and // the router may apply bahavioural penalties. IWantFollowupTime time.Duration } // NewGossipSub returns a new PubSub object using GossipSubRouter as the router. func NewGossipSub(ctx context.Context, h host.Host, opts ...Option) (*PubSub, error) { params := DefaultGossipSubParams() rt := &GossipSubRouter{ peers: make(map[peer.ID]protocol.ID), mesh: make(map[string]map[peer.ID]struct{}), fanout: make(map[string]map[peer.ID]struct{}), lastpub: make(map[string]int64), gossip: make(map[peer.ID][]*pb.ControlIHave), control: make(map[peer.ID]*pb.ControlMessage), backoff: make(map[string]map[peer.ID]time.Time), peerhave: make(map[peer.ID]int), iasked: make(map[peer.ID]int), outbound: make(map[peer.ID]bool), connect: make(chan connectInfo, params.MaxPendingConnections), mcache: NewMessageCache(params.HistoryGossip, params.HistoryLength), protos: GossipSubDefaultProtocols, feature: GossipSubDefaultFeatures, tagTracer: newTagTracer(h.ConnManager()), params: params, } // hook the tag tracer opts = append(opts, WithRawTracer(rt.tagTracer)) return NewPubSub(ctx, h, rt, opts...) } // DefaultGossipSubParams returns the default gossip sub parameters // as a config. func DefaultGossipSubParams() GossipSubParams { return GossipSubParams{ D: GossipSubD, Dlo: GossipSubDlo, Dhi: GossipSubDhi, Dscore: GossipSubDscore, Dout: GossipSubDout, HistoryLength: GossipSubHistoryLength, HistoryGossip: GossipSubHistoryLength, Dlazy: GossipSubDlazy, GossipFactor: GossipSubGossipFactor, GossipRetransmission: GossipSubGossipRetransmission, HeartbeatInitialDelay: GossipSubHeartbeatInitialDelay, HeartbeatInterval: GossipSubHeartbeatInterval, FanoutTTL: GossipSubFanoutTTL, PrunePeers: GossipSubPrunePeers, PruneBackoff: GossipSubPruneBackoff, Connectors: GossipSubConnectors, MaxPendingConnections: GossipSubMaxPendingConnections, ConnectionTimeout: GossipSubConnectionTimeout, DirectConnectTicks: GossipSubDirectConnectTicks, DirectConnectInitialDelay: GossipSubDirectConnectInitialDelay, OpportunisticGraftTicks: GossipSubOpportunisticGraftTicks, OpportunisticGraftPeers: GossipSubOpportunisticGraftPeers, GraftFloodThreshold: GossipSubGraftFloodThreshold, MaxIHaveLength: GossipSubMaxIHaveLength, MaxIHaveMessages: GossipSubMaxIHaveMessages, IWantFollowupTime: GossipSubIWantFollowupTime, SlowHeartbeatWarning: 0.1, } } // WithPeerScore is a gossipsub router option that enables peer scoring. func WithPeerScore(params *PeerScoreParams, thresholds *PeerScoreThresholds) Option { return func(ps *PubSub) error { gs, ok := ps.rt.(*GossipSubRouter) if !ok { return fmt.Errorf("pubsub router is not gossipsub") } // sanity check: validate the score parameters err := params.validate() if err != nil { return err } // sanity check: validate the threshold values err = thresholds.validate() if err != nil { return err } gs.score = newPeerScore(params) gs.gossipThreshold = thresholds.GossipThreshold gs.publishThreshold = thresholds.PublishThreshold gs.graylistThreshold = thresholds.GraylistThreshold gs.acceptPXThreshold = thresholds.AcceptPXThreshold gs.opportunisticGraftThreshold = thresholds.OpportunisticGraftThreshold gs.gossipTracer = newGossipTracer() // hook the tracer if ps.tracer != nil { ps.tracer.raw = append(ps.tracer.raw, gs.score, gs.gossipTracer) } else { ps.tracer = &pubsubTracer{ raw: []RawTracer{gs.score, gs.gossipTracer}, pid: ps.host.ID(), msgID: ps.msgID, } } return nil } } // WithFloodPublish is a gossipsub router option that enables flood publishing. // When this is enabled, published messages are forwarded to all peers with score >= // to publishThreshold func WithFloodPublish(floodPublish bool) Option { return func(ps *PubSub) error { gs, ok := ps.rt.(*GossipSubRouter) if !ok { return fmt.Errorf("pubsub router is not gossipsub") } gs.floodPublish = floodPublish return nil } } // WithPeerExchange is a gossipsub router option that enables Peer eXchange on PRUNE. // This should generally be enabled in bootstrappers and well connected/trusted nodes // used for bootstrapping. func WithPeerExchange(doPX bool) Option { return func(ps *PubSub) error { gs, ok := ps.rt.(*GossipSubRouter) if !ok { return fmt.Errorf("pubsub router is not gossipsub") } gs.doPX = doPX return nil } } // WithDirectPeers is a gossipsub router option that specifies peers with direct // peering agreements. These peers are connected outside of the mesh, with all (valid) // message unconditionally forwarded to them. The router will maintain open connections // to these peers. Note that the peering agreement should be reciprocal with direct peers // symmetrically configured at both ends. func WithDirectPeers(pis []peer.AddrInfo) Option { return func(ps *PubSub) error { gs, ok := ps.rt.(*GossipSubRouter) if !ok { return fmt.Errorf("pubsub router is not gossipsub") } direct := make(map[peer.ID]struct{}) for _, pi := range pis { direct[pi.ID] = struct{}{} ps.host.Peerstore().AddAddrs(pi.ID, pi.Addrs, peerstore.PermanentAddrTTL) } gs.direct = direct if gs.tagTracer != nil { gs.tagTracer.direct = direct } return nil } } // WithDirectConnectTicks is a gossipsub router option that sets the number of // heartbeat ticks between attempting to reconnect direct peers that are not // currently connected. A "tick" is based on the heartbeat interval, which is // 1s by default. The default value for direct connect ticks is 300. func WithDirectConnectTicks(t uint64) Option { return func(ps *PubSub) error { gs, ok := ps.rt.(*GossipSubRouter) if !ok { return fmt.Errorf("pubsub router is not gossipsub") } gs.params.DirectConnectTicks = t return nil } } // WithGossipSubParams is a gossip sub router option that allows a custom // config to be set when instantiating the gossipsub router. func WithGossipSubParams(cfg GossipSubParams) Option { return func(ps *PubSub) error { gs, ok := ps.rt.(*GossipSubRouter) if !ok { return fmt.Errorf("pubsub router is not gossipsub") } // Overwrite current config and associated variables in the router. gs.params = cfg gs.connect = make(chan connectInfo, cfg.MaxPendingConnections) gs.mcache = NewMessageCache(cfg.HistoryGossip, cfg.HistoryLength) return nil } } // GossipSubRouter is a router that implements the gossipsub protocol. // For each topic we have joined, we maintain an overlay through which // messages flow; this is the mesh map. // For each topic we publish to without joining, we maintain a list of peers // to use for injecting our messages in the overlay with stable routes; this // is the fanout map. Fanout peer lists are expired if we don't publish any // messages to their topic for GossipSubFanoutTTL. type GossipSubRouter struct { p *PubSub peers map[peer.ID]protocol.ID // peer protocols direct map[peer.ID]struct{} // direct peers mesh map[string]map[peer.ID]struct{} // topic meshes fanout map[string]map[peer.ID]struct{} // topic fanout lastpub map[string]int64 // last publish time for fanout topics gossip map[peer.ID][]*pb.ControlIHave // pending gossip control map[peer.ID]*pb.ControlMessage // pending control messages peerhave map[peer.ID]int // number of IHAVEs received from peer in the last heartbeat iasked map[peer.ID]int // number of messages we have asked from peer in the last heartbeat outbound map[peer.ID]bool // connection direction cache, marks peers with outbound connections backoff map[string]map[peer.ID]time.Time // prune backoff connect chan connectInfo // px connection requests protos []protocol.ID feature GossipSubFeatureTest mcache *MessageCache tracer *pubsubTracer score *peerScore gossipTracer *gossipTracer tagTracer *tagTracer gate *peerGater // config for gossipsub parameters params GossipSubParams // whether PX is enabled; this should be enabled in bootstrappers and other well connected/trusted // nodes. doPX bool // threshold for accepting PX from a peer; this should be positive and limited to scores // attainable by bootstrappers and trusted nodes acceptPXThreshold float64 // threshold for peer score to emit/accept gossip // If the peer score is below this threshold, we won't emit or accept gossip from the peer. // When there is no score, this value is 0. gossipThreshold float64 // flood publish score threshold; we only publish to peers with score >= to the threshold // when using flood publishing or the peer is a fanout or floodsub peer. publishThreshold float64 // threshold for peer score before we graylist the peer and silently ignore its RPCs graylistThreshold float64 // threshold for median peer score before triggering opportunistic grafting opportunisticGraftThreshold float64 // whether to use flood publishing floodPublish bool // number of heartbeats since the beginning of time; this allows us to amortize some resource // clean up -- eg backoff clean up. heartbeatTicks uint64 } type connectInfo struct { p peer.ID spr *record.Envelope } func (gs *GossipSubRouter) Protocols() []protocol.ID { return gs.protos } func (gs *GossipSubRouter) Attach(p *PubSub) { gs.p = p gs.tracer = p.tracer // start the scoring gs.score.Start(gs) // and the gossip tracing gs.gossipTracer.Start(gs) // and the tracer for connmgr tags gs.tagTracer.Start(gs) // start using the same msg ID function as PubSub for caching messages. gs.mcache.SetMsgIdFn(p.msgID) // start the heartbeat go gs.heartbeatTimer() // start the PX connectors for i := 0; i < gs.params.Connectors; i++ { go gs.connector() } // connect to direct peers if len(gs.direct) > 0 { go func() { if gs.params.DirectConnectInitialDelay > 0 { time.Sleep(gs.params.DirectConnectInitialDelay) } for p := range gs.direct { gs.connect <- connectInfo{p: p} } }() } } func (gs *GossipSubRouter) AddPeer(p peer.ID, proto protocol.ID) { log.Debugf("PEERUP: Add new peer %s using %s", p, proto) gs.tracer.AddPeer(p, proto) gs.peers[p] = proto // track the connection direction outbound := false conns := gs.p.host.Network().ConnsToPeer(p) loop: for _, c := range conns { stat := c.Stat() if stat.Transient { continue } if stat.Direction == network.DirOutbound { // only count the connection if it has a pubsub stream for _, s := range c.GetStreams() { if s.Protocol() == proto { outbound = true break loop } } } } gs.outbound[p] = outbound } func (gs *GossipSubRouter) RemovePeer(p peer.ID) { log.Debugf("PEERDOWN: Remove disconnected peer %s", p) gs.tracer.RemovePeer(p) delete(gs.peers, p) for _, peers := range gs.mesh { delete(peers, p) } for _, peers := range gs.fanout { delete(peers, p) } delete(gs.gossip, p) delete(gs.control, p) delete(gs.outbound, p) } func (gs *GossipSubRouter) EnoughPeers(topic string, suggested int) bool { // check all peers in the topic tmap, ok := gs.p.topics[topic] if !ok { return false } fsPeers, gsPeers := 0, 0 // floodsub peers for p := range tmap { if !gs.feature(GossipSubFeatureMesh, gs.peers[p]) { fsPeers++ } } // gossipsub peers gsPeers = len(gs.mesh[topic]) if suggested == 0 { suggested = gs.params.Dlo } if fsPeers+gsPeers >= suggested || gsPeers >= gs.params.Dhi { return true } return false } func (gs *GossipSubRouter) AcceptFrom(p peer.ID) AcceptStatus { _, direct := gs.direct[p] if direct { return AcceptAll } if gs.score.Score(p) < gs.graylistThreshold { return AcceptNone } return gs.gate.AcceptFrom(p) } func (gs *GossipSubRouter) HandleRPC(rpc *RPC) { ctl := rpc.GetControl() if ctl == nil { return } iwant := gs.handleIHave(rpc.from, ctl) ihave := gs.handleIWant(rpc.from, ctl) prune := gs.handleGraft(rpc.from, ctl) gs.handlePrune(rpc.from, ctl) if len(iwant) == 0 && len(ihave) == 0 && len(prune) == 0 { return } out := rpcWithControl(ihave, nil, iwant, nil, prune) gs.sendRPC(rpc.from, out) } func (gs *GossipSubRouter) handleIHave(p peer.ID, ctl *pb.ControlMessage) []*pb.ControlIWant { // we ignore IHAVE gossip from any peer whose score is below the gossip threshold score := gs.score.Score(p) if score < gs.gossipThreshold { log.Debugf("IHAVE: ignoring peer %s with score below threshold [score = %f]", p, score) return nil } // IHAVE flood protection gs.peerhave[p]++ if gs.peerhave[p] > gs.params.MaxIHaveMessages { log.Debugf("IHAVE: peer %s has advertised too many times (%d) within this heartbeat interval; ignoring", p, gs.peerhave[p]) return nil } if gs.iasked[p] >= gs.params.MaxIHaveLength { log.Debugf("IHAVE: peer %s has already advertised too many messages (%d); ignoring", p, gs.iasked[p]) return nil } iwant := make(map[string]struct{}) for _, ihave := range ctl.GetIhave() { topic := ihave.GetTopicID() _, ok := gs.mesh[topic] if !ok { continue } if !gs.p.peerFilter(p, topic) { continue } for _, mid := range ihave.GetMessageIDs() { if gs.p.seenMessage(mid) { continue } iwant[mid] = struct{}{} } } if len(iwant) == 0 { return nil } iask := len(iwant) if iask+gs.iasked[p] > gs.params.MaxIHaveLength { iask = gs.params.MaxIHaveLength - gs.iasked[p] } log.Debugf("IHAVE: Asking for %d out of %d messages from %s", iask, len(iwant), p) iwantlst := make([]string, 0, len(iwant)) for mid := range iwant { iwantlst = append(iwantlst, mid) } // ask in random order shuffleStrings(iwantlst) // truncate to the messages we are actually asking for and update the iasked counter iwantlst = iwantlst[:iask] gs.iasked[p] += iask gs.gossipTracer.AddPromise(p, iwantlst) return []*pb.ControlIWant{{MessageIDs: iwantlst}} } func (gs *GossipSubRouter) handleIWant(p peer.ID, ctl *pb.ControlMessage) []*pb.Message { // we don't respond to IWANT requests from any peer whose score is below the gossip threshold score := gs.score.Score(p) if score < gs.gossipThreshold { log.Debugf("IWANT: ignoring peer %s with score below threshold [score = %f]", p, score) return nil } ihave := make(map[string]*pb.Message) for _, iwant := range ctl.GetIwant() { for _, mid := range iwant.GetMessageIDs() { msg, count, ok := gs.mcache.GetForPeer(mid, p) if !ok { continue } if !gs.p.peerFilter(p, msg.GetTopic()) { continue } if count > gs.params.GossipRetransmission { log.Debugf("IWANT: Peer %s has asked for message %s too many times; ignoring request", p, mid) continue } ihave[mid] = msg } } if len(ihave) == 0 { return nil } log.Debugf("IWANT: Sending %d messages to %s", len(ihave), p) msgs := make([]*pb.Message, 0, len(ihave)) for _, msg := range ihave { msgs = append(msgs, msg) } return msgs } func (gs *GossipSubRouter) handleGraft(p peer.ID, ctl *pb.ControlMessage) []*pb.ControlPrune { var prune []string doPX := gs.doPX score := gs.score.Score(p) now := time.Now() for _, graft := range ctl.GetGraft() { topic := graft.GetTopicID() if !gs.p.peerFilter(p, topic) { continue } peers, ok := gs.mesh[topic] if !ok { // don't do PX when there is an unknown topic to avoid leaking our peers doPX = false // spam hardening: ignore GRAFTs for unknown topics continue } // check if it is already in the mesh; if so do nothing (we might have concurrent grafting) _, inMesh := peers[p] if inMesh { continue } // we don't GRAFT to/from direct peers; complain loudly if this happens _, direct := gs.direct[p] if direct { log.Warnf("GRAFT: ignoring request from direct peer %s", p) // this is possibly a bug from non-reciprocal configuration; send a PRUNE prune = append(prune, topic) // but don't PX doPX = false continue } // make sure we are not backing off that peer expire, backoff := gs.backoff[topic][p] if backoff && now.Before(expire) { log.Debugf("GRAFT: ignoring backed off peer %s", p) // add behavioural penalty gs.score.AddPenalty(p, 1) // no PX doPX = false // check the flood cutoff -- is the GRAFT coming too fast? floodCutoff := expire.Add(gs.params.GraftFloodThreshold - gs.params.PruneBackoff) if now.Before(floodCutoff) { // extra penalty gs.score.AddPenalty(p, 1) } // refresh the backoff gs.addBackoff(p, topic) prune = append(prune, topic) continue } // check the score if score < 0 { // we don't GRAFT peers with negative score log.Debugf("GRAFT: ignoring peer %s with negative score [score = %f, topic = %s]", p, score, topic) // we do send them PRUNE however, because it's a matter of protocol correctness prune = append(prune, topic) // but we won't PX to them doPX = false // add/refresh backoff so that we don't reGRAFT too early even if the score decays back up gs.addBackoff(p, topic) continue } // check the number of mesh peers; if it is at (or over) Dhi, we only accept grafts // from peers with outbound connections; this is a defensive check to restrict potential // mesh takeover attacks combined with love bombing if len(peers) >= gs.params.Dhi && !gs.outbound[p] { prune = append(prune, topic) gs.addBackoff(p, topic) continue } log.Debugf("GRAFT: add mesh link from %s in %s", p, topic) gs.tracer.Graft(p, topic) peers[p] = struct{}{} } if len(prune) == 0 { return nil } cprune := make([]*pb.ControlPrune, 0, len(prune)) for _, topic := range prune { cprune = append(cprune, gs.makePrune(p, topic, doPX)) } return cprune } func (gs *GossipSubRouter) handlePrune(p peer.ID, ctl *pb.ControlMessage) { score := gs.score.Score(p) for _, prune := range ctl.GetPrune() { topic := prune.GetTopicID() peers, ok := gs.mesh[topic] if !ok { continue } log.Debugf("PRUNE: Remove mesh link to %s in %s", p, topic) gs.tracer.Prune(p, topic) delete(peers, p) // is there a backoff specified by the peer? if so obey it. backoff := prune.GetBackoff() if backoff > 0 { gs.doAddBackoff(p, topic, time.Duration(backoff)*time.Second) } else { gs.addBackoff(p, topic) } px := prune.GetPeers() if len(px) > 0 { // we ignore PX from peers with insufficient score if score < gs.acceptPXThreshold { log.Debugf("PRUNE: ignoring PX from peer %s with insufficient score [score = %f, topic = %s]", p, score, topic) continue } gs.pxConnect(px) } } } func (gs *GossipSubRouter) addBackoff(p peer.ID, topic string) { gs.doAddBackoff(p, topic, gs.params.PruneBackoff) } func (gs *GossipSubRouter) doAddBackoff(p peer.ID, topic string, interval time.Duration) { backoff, ok := gs.backoff[topic] if !ok { backoff = make(map[peer.ID]time.Time) gs.backoff[topic] = backoff } expire := time.Now().Add(interval) if backoff[p].Before(expire) { backoff[p] = expire } } func (gs *GossipSubRouter) pxConnect(peers []*pb.PeerInfo) { if len(peers) > gs.params.PrunePeers { shufflePeerInfo(peers) peers = peers[:gs.params.PrunePeers] } toconnect := make([]connectInfo, 0, len(peers)) for _, pi := range peers { p := peer.ID(pi.PeerID) _, connected := gs.peers[p] if connected { continue } var spr *record.Envelope if pi.SignedPeerRecord != nil { // the peer sent us a signed record; ensure that it is valid envelope, r, err := record.ConsumeEnvelope(pi.SignedPeerRecord, peer.PeerRecordEnvelopeDomain) if err != nil { log.Warnf("error unmarshalling peer record obtained through px: %s", err) continue } rec, ok := r.(*peer.PeerRecord) if !ok { log.Warnf("bogus peer record obtained through px: envelope payload is not PeerRecord") continue } if rec.PeerID != p { log.Warnf("bogus peer record obtained through px: peer ID %s doesn't match expected peer %s", rec.PeerID, p) continue } spr = envelope } toconnect = append(toconnect, connectInfo{p, spr}) } if len(toconnect) == 0 { return } for _, ci := range toconnect { select { case gs.connect <- ci: default: log.Debugf("ignoring peer connection attempt; too many pending connections") } } } func (gs *GossipSubRouter) connector() { for { select { case ci := <-gs.connect: if gs.p.host.Network().Connectedness(ci.p) == network.Connected { continue } log.Debugf("connecting to %s", ci.p) cab, ok := peerstore.GetCertifiedAddrBook(gs.p.host.Peerstore()) if ok && ci.spr != nil { _, err := cab.ConsumePeerRecord(ci.spr, peerstore.TempAddrTTL) if err != nil { log.Debugf("error processing peer record: %s", err) } } ctx, cancel := context.WithTimeout(gs.p.ctx, gs.params.ConnectionTimeout) err := gs.p.host.Connect(ctx, peer.AddrInfo{ID: ci.p}) cancel() if err != nil { log.Debugf("error connecting to %s: %s", ci.p, err) } case <-gs.p.ctx.Done(): return } } } func (gs *GossipSubRouter) Publish(msg *Message) { gs.mcache.Put(msg.Message) from := msg.ReceivedFrom topic := msg.GetTopic() tosend := make(map[peer.ID]struct{}) // any peers in the topic? tmap, ok := gs.p.topics[topic] if !ok { return } if gs.floodPublish && from == gs.p.host.ID() { for p := range tmap { _, direct := gs.direct[p] if direct || gs.score.Score(p) >= gs.publishThreshold { tosend[p] = struct{}{} } } } else { // direct peers for p := range gs.direct { _, inTopic := tmap[p] if inTopic { tosend[p] = struct{}{} } } // floodsub peers for p := range tmap { if !gs.feature(GossipSubFeatureMesh, gs.peers[p]) && gs.score.Score(p) >= gs.publishThreshold { tosend[p] = struct{}{} } } // gossipsub peers gmap, ok := gs.mesh[topic] if !ok { // we are not in the mesh for topic, use fanout peers gmap, ok = gs.fanout[topic] if !ok || len(gmap) == 0 { // we don't have any, pick some with score above the publish threshold peers := gs.getPeers(topic, gs.params.D, func(p peer.ID) bool { _, direct := gs.direct[p] return !direct && gs.score.Score(p) >= gs.publishThreshold }) if len(peers) > 0 { gmap = peerListToMap(peers) gs.fanout[topic] = gmap } } gs.lastpub[topic] = time.Now().UnixNano() } for p := range gmap { tosend[p] = struct{}{} } } out := rpcWithMessages(msg.Message) for pid := range tosend { if pid == from || pid == peer.ID(msg.GetFrom()) { continue } gs.sendRPC(pid, out) } } func (gs *GossipSubRouter) Join(topic string) { gmap, ok := gs.mesh[topic] if ok { return } log.Debugf("JOIN %s", topic) gs.tracer.Join(topic) gmap, ok = gs.fanout[topic] if ok { // these peers have a score above the publish threshold, which may be negative // so drop the ones with a negative score for p := range gmap { if gs.score.Score(p) < 0 { delete(gmap, p) } } if len(gmap) < gs.params.D { // we need more peers; eager, as this would get fixed in the next heartbeat more := gs.getPeers(topic, gs.params.D-len(gmap), func(p peer.ID) bool { // filter our current peers, direct peers, and peers with negative scores _, inMesh := gmap[p] _, direct := gs.direct[p] return !inMesh && !direct && gs.score.Score(p) >= 0 }) for _, p := range more { gmap[p] = struct{}{} } } gs.mesh[topic] = gmap delete(gs.fanout, topic) delete(gs.lastpub, topic) } else { peers := gs.getPeers(topic, gs.params.D, func(p peer.ID) bool { // filter direct peers and peers with negative score _, direct := gs.direct[p] return !direct && gs.score.Score(p) >= 0 }) gmap = peerListToMap(peers) gs.mesh[topic] = gmap } for p := range gmap { log.Debugf("JOIN: Add mesh link to %s in %s", p, topic) gs.tracer.Graft(p, topic) gs.sendGraft(p, topic) } } func (gs *GossipSubRouter) Leave(topic string) { gmap, ok := gs.mesh[topic] if !ok { return } log.Debugf("LEAVE %s", topic) gs.tracer.Leave(topic) delete(gs.mesh, topic) for p := range gmap { log.Debugf("LEAVE: Remove mesh link to %s in %s", p, topic) gs.tracer.Prune(p, topic) gs.sendPrune(p, topic) } } func (gs *GossipSubRouter) sendGraft(p peer.ID, topic string) { graft := []*pb.ControlGraft{{TopicID: &topic}} out := rpcWithControl(nil, nil, nil, graft, nil) gs.sendRPC(p, out) } func (gs *GossipSubRouter) sendPrune(p peer.ID, topic string) { prune := []*pb.ControlPrune{gs.makePrune(p, topic, gs.doPX)} out := rpcWithControl(nil, nil, nil, nil, prune) gs.sendRPC(p, out) } func (gs *GossipSubRouter) sendRPC(p peer.ID, out *RPC) { // do we own the RPC? own := false // piggyback control message retries ctl, ok := gs.control[p] if ok { out = copyRPC(out) own = true gs.piggybackControl(p, out, ctl) delete(gs.control, p) } // piggyback gossip ihave, ok := gs.gossip[p] if ok { if !own { out = copyRPC(out) own = true } gs.piggybackGossip(p, out, ihave) delete(gs.gossip, p) } mch, ok := gs.p.peers[p] if !ok { return } // If we're below the max message size, go ahead and send if out.Size() < gs.p.maxMessageSize { gs.doSendRPC(out, p, mch) return } // If we're too big, fragment into multiple RPCs and send each sequentially outRPCs, err := fragmentRPC(out, gs.p.maxMessageSize) if err != nil { gs.doDropRPC(out, p, fmt.Sprintf("unable to fragment RPC: %s", err)) return } for _, rpc := range outRPCs { gs.doSendRPC(rpc, p, mch) } } func (gs *GossipSubRouter) doDropRPC(rpc *RPC, p peer.ID, reason string) { log.Debugf("dropping message to peer %s: %s", p.Pretty(), reason) gs.tracer.DropRPC(rpc, p) // push control messages that need to be retried ctl := rpc.GetControl() if ctl != nil { gs.pushControl(p, ctl) } } func (gs *GossipSubRouter) doSendRPC(rpc *RPC, p peer.ID, mch chan *RPC) { select { case mch <- rpc: gs.tracer.SendRPC(rpc, p) default: gs.doDropRPC(rpc, p, "queue full") } } func fragmentRPC(rpc *RPC, limit int) ([]*RPC, error) { if rpc.Size() < limit { return []*RPC{rpc}, nil } c := (rpc.Size() / limit) + 1 rpcs := make([]*RPC, 1, c) rpcs[0] = &RPC{RPC: pb.RPC{}, from: rpc.from} // outRPC returns the current RPC message if it will fit sizeToAdd more bytes // otherwise, it will create a new RPC message and add it to the list. // if withCtl is true, the returned message will have a non-nil empty Control message. outRPC := func(sizeToAdd int, withCtl bool) *RPC { current := rpcs[len(rpcs)-1] // check if we can fit the new data, plus an extra byte for the protobuf field tag if current.Size()+sizeToAdd+1 < limit { if withCtl && current.Control == nil { current.Control = &pb.ControlMessage{} } return current } var ctl *pb.ControlMessage if withCtl { ctl = &pb.ControlMessage{} } next := &RPC{RPC: pb.RPC{Control: ctl}, from: rpc.from} rpcs = append(rpcs, next) return next } for _, msg := range rpc.GetPublish() { s := msg.Size() // if an individual message is too large, we can't fragment it and have to fail entirely if s > limit { return nil, fmt.Errorf("message with len=%d exceeds limit %d", s, limit) } out := outRPC(s, false) out.Publish = append(out.Publish, msg) } for _, sub := range rpc.GetSubscriptions() { out := outRPC(sub.Size(), false) out.Subscriptions = append(out.Subscriptions, sub) } ctl := rpc.GetControl() if ctl == nil { // if there were no control messages, we're done return rpcs, nil } // if all the control messages fit into one RPC, we just add it to the end and return ctlOut := &RPC{RPC: pb.RPC{Control: ctl}, from: rpc.from} if ctlOut.Size() < limit { rpcs = append(rpcs, ctlOut) return rpcs, nil } // we need to split up the control messages into multiple RPCs for _, graft := range ctl.Graft { out := outRPC(graft.Size(), true) out.Control.Graft = append(out.Control.Graft, graft) } for _, prune := range ctl.Prune { out := outRPC(prune.Size(), true) out.Control.Prune = append(out.Control.Prune, prune) } // An individual IWANT or IHAVE message could be larger than the limit if we have // a lot of message IDs. fragmentMessageIds will split them into buckets that // fit within the limit, with some overhead for the control messages themselves for _, iwant := range ctl.Iwant { const protobufOverhead = 6 idBuckets := fragmentMessageIds(iwant.MessageIDs, limit-protobufOverhead) for _, ids := range idBuckets { iwant := &pb.ControlIWant{MessageIDs: ids} out := outRPC(iwant.Size(), true) out.Control.Iwant = append(out.Control.Iwant, iwant) } } for _, ihave := range ctl.Ihave { const protobufOverhead = 6 idBuckets := fragmentMessageIds(ihave.MessageIDs, limit-protobufOverhead) for _, ids := range idBuckets { ihave := &pb.ControlIHave{MessageIDs: ids} out := outRPC(ihave.Size(), true) out.Control.Ihave = append(out.Control.Ihave, ihave) } } return rpcs, nil } func fragmentMessageIds(msgIds []string, limit int) [][]string { // account for two bytes of protobuf overhead per array element const protobufOverhead = 2 out := [][]string{{}} var currentBucket int var bucketLen int for i := 0; i < len(msgIds); i++ { size := len(msgIds[i]) + protobufOverhead if size > limit { // pathological case where a single message ID exceeds the limit. log.Warnf("message ID length %d exceeds limit %d, removing from outgoing gossip", size, limit) continue } bucketLen += size if bucketLen > limit { out = append(out, []string{}) currentBucket++ bucketLen = size } out[currentBucket] = append(out[currentBucket], msgIds[i]) } return out } func (gs *GossipSubRouter) heartbeatTimer() { time.Sleep(gs.params.HeartbeatInitialDelay) select { case gs.p.eval <- gs.heartbeat: case <-gs.p.ctx.Done(): return } ticker := time.NewTicker(gs.params.HeartbeatInterval) defer ticker.Stop() for { select { case <-ticker.C: select { case gs.p.eval <- gs.heartbeat: case <-gs.p.ctx.Done(): return } case <-gs.p.ctx.Done(): return } } } func (gs *GossipSubRouter) heartbeat() { start := time.Now() defer func() { if gs.params.SlowHeartbeatWarning > 0 { slowWarning := time.Duration(gs.params.SlowHeartbeatWarning * float64(gs.params.HeartbeatInterval)) if dt := time.Since(start); dt > slowWarning { log.Warnw("slow heartbeat", "took", dt) } } }() gs.heartbeatTicks++ tograft := make(map[peer.ID][]string) toprune := make(map[peer.ID][]string) noPX := make(map[peer.ID]bool) // clean up expired backoffs gs.clearBackoff() // clean up iasked counters gs.clearIHaveCounters() // apply IWANT request penalties gs.applyIwantPenalties() // ensure direct peers are connected gs.directConnect() // cache scores throughout the heartbeat scores := make(map[peer.ID]float64) score := func(p peer.ID) float64 { s, ok := scores[p] if !ok { s = gs.score.Score(p) scores[p] = s } return s } // maintain the mesh for topics we have joined for topic, peers := range gs.mesh { prunePeer := func(p peer.ID) { gs.tracer.Prune(p, topic) delete(peers, p) gs.addBackoff(p, topic) topics := toprune[p] toprune[p] = append(topics, topic) } graftPeer := func(p peer.ID) { log.Debugf("HEARTBEAT: Add mesh link to %s in %s", p, topic) gs.tracer.Graft(p, topic) peers[p] = struct{}{} topics := tograft[p] tograft[p] = append(topics, topic) } // drop all peers with negative score, without PX for p := range peers { if score(p) < 0 { log.Debugf("HEARTBEAT: Prune peer %s with negative score [score = %f, topic = %s]", p, score(p), topic) prunePeer(p) noPX[p] = true } } // do we have enough peers? if l := len(peers); l < gs.params.Dlo { backoff := gs.backoff[topic] ineed := gs.params.D - l plst := gs.getPeers(topic, ineed, func(p peer.ID) bool { // filter our current and direct peers, peers we are backing off, and peers with negative score _, inMesh := peers[p] _, doBackoff := backoff[p] _, direct := gs.direct[p] return !inMesh && !doBackoff && !direct && score(p) >= 0 }) for _, p := range plst { graftPeer(p) } } // do we have too many peers? if len(peers) > gs.params.Dhi { plst := peerMapToList(peers) // sort by score (but shuffle first for the case we don't use the score) shufflePeers(plst) sort.Slice(plst, func(i, j int) bool { return score(plst[i]) > score(plst[j]) }) // We keep the first D_score peers by score and the remaining up to D randomly // under the constraint that we keep D_out peers in the mesh (if we have that many) shufflePeers(plst[gs.params.Dscore:]) // count the outbound peers we are keeping outbound := 0 for _, p := range plst[:gs.params.D] { if gs.outbound[p] { outbound++ } } // if it's less than D_out, bubble up some outbound peers from the random selection if outbound < gs.params.Dout { rotate := func(i int) { // rotate the plst to the right and put the ith peer in the front p := plst[i] for j := i; j > 0; j-- { plst[j] = plst[j-1] } plst[0] = p } // first bubble up all outbound peers already in the selection to the front if outbound > 0 { ihave := outbound for i := 1; i < gs.params.D && ihave > 0; i++ { p := plst[i] if gs.outbound[p] { rotate(i) ihave-- } } } // now bubble up enough outbound peers outside the selection to the front ineed := gs.params.Dout - outbound for i := gs.params.D; i < len(plst) && ineed > 0; i++ { p := plst[i] if gs.outbound[p] { rotate(i) ineed-- } } } // prune the excess peers for _, p := range plst[gs.params.D:] { log.Debugf("HEARTBEAT: Remove mesh link to %s in %s", p, topic) prunePeer(p) } } // do we have enough outboud peers? if len(peers) >= gs.params.Dlo { // count the outbound peers we have outbound := 0 for p := range peers { if gs.outbound[p] { outbound++ } } // if it's less than D_out, select some peers with outbound connections and graft them if outbound < gs.params.Dout { ineed := gs.params.Dout - outbound backoff := gs.backoff[topic] plst := gs.getPeers(topic, ineed, func(p peer.ID) bool { // filter our current and direct peers, peers we are backing off, and peers with negative score _, inMesh := peers[p] _, doBackoff := backoff[p] _, direct := gs.direct[p] return !inMesh && !doBackoff && !direct && gs.outbound[p] && score(p) >= 0 }) for _, p := range plst { graftPeer(p) } } } // should we try to improve the mesh with opportunistic grafting? if gs.heartbeatTicks%gs.params.OpportunisticGraftTicks == 0 && len(peers) > 1 { // Opportunistic grafting works as follows: we check the median score of peers in the // mesh; if this score is below the opportunisticGraftThreshold, we select a few peers at // random with score over the median. // The intention is to (slowly) improve an underperforming mesh by introducing good // scoring peers that may have been gossiping at us. This allows us to get out of sticky // situations where we are stuck with poor peers and also recover from churn of good peers. // now compute the median peer score in the mesh plst := peerMapToList(peers) sort.Slice(plst, func(i, j int) bool { return score(plst[i]) < score(plst[j]) }) medianIndex := len(peers) / 2 medianScore := scores[plst[medianIndex]] // if the median score is below the threshold, select a better peer (if any) and GRAFT if medianScore < gs.opportunisticGraftThreshold { backoff := gs.backoff[topic] plst = gs.getPeers(topic, gs.params.OpportunisticGraftPeers, func(p peer.ID) bool { _, inMesh := peers[p] _, doBackoff := backoff[p] _, direct := gs.direct[p] return !inMesh && !doBackoff && !direct && score(p) > medianScore }) for _, p := range plst { log.Debugf("HEARTBEAT: Opportunistically graft peer %s on topic %s", p, topic) graftPeer(p) } } } // 2nd arg are mesh peers excluded from gossip. We already push // messages to them, so its redundant to gossip IHAVEs. gs.emitGossip(topic, peers) } // expire fanout for topics we haven't published to in a while now := time.Now().UnixNano() for topic, lastpub := range gs.lastpub { if lastpub+int64(gs.params.FanoutTTL) < now { delete(gs.fanout, topic) delete(gs.lastpub, topic) } } // maintain our fanout for topics we are publishing but we have not joined for topic, peers := range gs.fanout { // check whether our peers are still in the topic and have a score above the publish threshold for p := range peers { _, ok := gs.p.topics[topic][p] if !ok || score(p) < gs.publishThreshold { delete(peers, p) } } // do we need more peers? if len(peers) < gs.params.D { ineed := gs.params.D - len(peers) plst := gs.getPeers(topic, ineed, func(p peer.ID) bool { // filter our current and direct peers and peers with score above the publish threshold _, inFanout := peers[p] _, direct := gs.direct[p] return !inFanout && !direct && score(p) >= gs.publishThreshold }) for _, p := range plst { peers[p] = struct{}{} } } // 2nd arg are fanout peers excluded from gossip. We already push // messages to them, so its redundant to gossip IHAVEs. gs.emitGossip(topic, peers) } // send coalesced GRAFT/PRUNE messages (will piggyback gossip) gs.sendGraftPrune(tograft, toprune, noPX) // flush all pending gossip that wasn't piggybacked above gs.flush() // advance the message history window gs.mcache.Shift() } func (gs *GossipSubRouter) clearIHaveCounters() { if len(gs.peerhave) > 0 { // throw away the old map and make a new one gs.peerhave = make(map[peer.ID]int) } if len(gs.iasked) > 0 { // throw away the old map and make a new one gs.iasked = make(map[peer.ID]int) } } func (gs *GossipSubRouter) applyIwantPenalties() { for p, count := range gs.gossipTracer.GetBrokenPromises() { log.Infof("peer %s didn't follow up in %d IWANT requests; adding penalty", p, count) gs.score.AddPenalty(p, count) } } func (gs *GossipSubRouter) clearBackoff() { // we only clear once every 15 ticks to avoid iterating over the map(s) too much if gs.heartbeatTicks%15 != 0 { return } now := time.Now() for topic, backoff := range gs.backoff { for p, expire := range backoff { // add some slack time to the expiration // https://github.com/libp2p/specs/pull/289 if expire.Add(2 * GossipSubHeartbeatInterval).Before(now) { delete(backoff, p) } } if len(backoff) == 0 { delete(gs.backoff, topic) } } } func (gs *GossipSubRouter) directConnect() { // we donly do this every some ticks to allow pending connections to complete and account // for restarts/downtime if gs.heartbeatTicks%gs.params.DirectConnectTicks != 0 { return } var toconnect []peer.ID for p := range gs.direct { _, connected := gs.peers[p] if !connected { toconnect = append(toconnect, p) } } if len(toconnect) > 0 { go func() { for _, p := range toconnect { gs.connect <- connectInfo{p: p} } }() } } func (gs *GossipSubRouter) sendGraftPrune(tograft, toprune map[peer.ID][]string, noPX map[peer.ID]bool) { for p, topics := range tograft { graft := make([]*pb.ControlGraft, 0, len(topics)) for _, topic := range topics { // copy topic string here since // the reference to the string // topic here changes with every // iteration of the slice. copiedID := topic graft = append(graft, &pb.ControlGraft{TopicID: &copiedID}) } var prune []*pb.ControlPrune pruning, ok := toprune[p] if ok { delete(toprune, p) prune = make([]*pb.ControlPrune, 0, len(pruning)) for _, topic := range pruning { prune = append(prune, gs.makePrune(p, topic, gs.doPX && !noPX[p])) } } out := rpcWithControl(nil, nil, nil, graft, prune) gs.sendRPC(p, out) } for p, topics := range toprune { prune := make([]*pb.ControlPrune, 0, len(topics)) for _, topic := range topics { prune = append(prune, gs.makePrune(p, topic, gs.doPX && !noPX[p])) } out := rpcWithControl(nil, nil, nil, nil, prune) gs.sendRPC(p, out) } } // emitGossip emits IHAVE gossip advertising items in the message cache window // of this topic. func (gs *GossipSubRouter) emitGossip(topic string, exclude map[peer.ID]struct{}) { mids := gs.mcache.GetGossipIDs(topic) if len(mids) == 0 { return } // shuffle to emit in random order shuffleStrings(mids) // if we are emitting more than GossipSubMaxIHaveLength mids, truncate the list if len(mids) > gs.params.MaxIHaveLength { // we do the truncation (with shuffling) per peer below log.Debugf("too many messages for gossip; will truncate IHAVE list (%d messages)", len(mids)) } // Send gossip to GossipFactor peers above threshold, with a minimum of D_lazy. // First we collect the peers above gossipThreshold that are not in the exclude set // and then randomly select from that set. // We also exclude direct peers, as there is no reason to emit gossip to them. peers := make([]peer.ID, 0, len(gs.p.topics[topic])) for p := range gs.p.topics[topic] { _, inExclude := exclude[p] _, direct := gs.direct[p] if !inExclude && !direct && gs.feature(GossipSubFeatureMesh, gs.peers[p]) && gs.score.Score(p) >= gs.gossipThreshold { peers = append(peers, p) } } target := gs.params.Dlazy factor := int(gs.params.GossipFactor * float64(len(peers))) if factor > target { target = factor } if target > len(peers) { target = len(peers) } else { shufflePeers(peers) } peers = peers[:target] // Emit the IHAVE gossip to the selected peers. for _, p := range peers { peerMids := mids if len(mids) > gs.params.MaxIHaveLength { // we do this per peer so that we emit a different set for each peer. // we have enough redundancy in the system that this will significantly increase the message // coverage when we do truncate. peerMids = make([]string, gs.params.MaxIHaveLength) shuffleStrings(mids) copy(peerMids, mids) } gs.enqueueGossip(p, &pb.ControlIHave{TopicID: &topic, MessageIDs: peerMids}) } } func (gs *GossipSubRouter) flush() { // send gossip first, which will also piggyback pending control for p, ihave := range gs.gossip { delete(gs.gossip, p) out := rpcWithControl(nil, ihave, nil, nil, nil) gs.sendRPC(p, out) } // send the remaining control messages that wasn't merged with gossip for p, ctl := range gs.control { delete(gs.control, p) out := rpcWithControl(nil, nil, nil, ctl.Graft, ctl.Prune) gs.sendRPC(p, out) } } func (gs *GossipSubRouter) enqueueGossip(p peer.ID, ihave *pb.ControlIHave) { gossip := gs.gossip[p] gossip = append(gossip, ihave) gs.gossip[p] = gossip } func (gs *GossipSubRouter) piggybackGossip(p peer.ID, out *RPC, ihave []*pb.ControlIHave) { ctl := out.GetControl() if ctl == nil { ctl = &pb.ControlMessage{} out.Control = ctl } ctl.Ihave = ihave } func (gs *GossipSubRouter) pushControl(p peer.ID, ctl *pb.ControlMessage) { // remove IHAVE/IWANT from control message, gossip is not retried ctl.Ihave = nil ctl.Iwant = nil if ctl.Graft != nil || ctl.Prune != nil { gs.control[p] = ctl } } func (gs *GossipSubRouter) piggybackControl(p peer.ID, out *RPC, ctl *pb.ControlMessage) { // check control message for staleness first var tograft []*pb.ControlGraft var toprune []*pb.ControlPrune for _, graft := range ctl.GetGraft() { topic := graft.GetTopicID() peers, ok := gs.mesh[topic] if !ok { continue } _, ok = peers[p] if ok { tograft = append(tograft, graft) } } for _, prune := range ctl.GetPrune() { topic := prune.GetTopicID() peers, ok := gs.mesh[topic] if !ok { toprune = append(toprune, prune) continue } _, ok = peers[p] if !ok { toprune = append(toprune, prune) } } if len(tograft) == 0 && len(toprune) == 0 { return } xctl := out.Control if xctl == nil { xctl = &pb.ControlMessage{} out.Control = xctl } if len(tograft) > 0 { xctl.Graft = append(xctl.Graft, tograft...) } if len(toprune) > 0 { xctl.Prune = append(xctl.Prune, toprune...) } } func (gs *GossipSubRouter) makePrune(p peer.ID, topic string, doPX bool) *pb.ControlPrune { if !gs.feature(GossipSubFeaturePX, gs.peers[p]) { // GossipSub v1.0 -- no peer exchange, the peer won't be able to parse it anyway return &pb.ControlPrune{TopicID: &topic} } backoff := uint64(gs.params.PruneBackoff / time.Second) var px []*pb.PeerInfo if doPX { // select peers for Peer eXchange peers := gs.getPeers(topic, gs.params.PrunePeers, func(xp peer.ID) bool { return p != xp && gs.score.Score(xp) >= 0 }) cab, ok := peerstore.GetCertifiedAddrBook(gs.p.host.Peerstore()) px = make([]*pb.PeerInfo, 0, len(peers)) for _, p := range peers { // see if we have a signed peer record to send back; if we don't, just send // the peer ID and let the pruned peer find them in the DHT -- we can't trust // unsigned address records through px anyway. var recordBytes []byte if ok { spr := cab.GetPeerRecord(p) var err error if spr != nil { recordBytes, err = spr.Marshal() if err != nil { log.Warnf("error marshaling signed peer record for %s: %s", p, err) } } } px = append(px, &pb.PeerInfo{PeerID: []byte(p), SignedPeerRecord: recordBytes}) } } return &pb.ControlPrune{TopicID: &topic, Peers: px, Backoff: &backoff} } func (gs *GossipSubRouter) getPeers(topic string, count int, filter func(peer.ID) bool) []peer.ID { tmap, ok := gs.p.topics[topic] if !ok { return nil } peers := make([]peer.ID, 0, len(tmap)) for p := range tmap { if gs.feature(GossipSubFeatureMesh, gs.peers[p]) && filter(p) && gs.p.peerFilter(p, topic) { peers = append(peers, p) } } shufflePeers(peers) if count > 0 && len(peers) > count { peers = peers[:count] } return peers } func peerListToMap(peers []peer.ID) map[peer.ID]struct{} { pmap := make(map[peer.ID]struct{}) for _, p := range peers { pmap[p] = struct{}{} } return pmap } func peerMapToList(peers map[peer.ID]struct{}) []peer.ID { plst := make([]peer.ID, 0, len(peers)) for p := range peers { plst = append(plst, p) } return plst } func shufflePeers(peers []peer.ID) { for i := range peers { j := rand.Intn(i + 1) peers[i], peers[j] = peers[j], peers[i] } } func shufflePeerInfo(peers []*pb.PeerInfo) { for i := range peers { j := rand.Intn(i + 1) peers[i], peers[j] = peers[j], peers[i] } } func shuffleStrings(lst []string) { for i := range lst { j := rand.Intn(i + 1) lst[i], lst[j] = lst[j], lst[i] } }