/* The bloom library relied on the excellent murmur library by Sébastien Paolacci. Unfortunately, it involved some heap allocation. We want to avoid any heap allocation whatsoever in the hashing process. To preserve backward compatibility, we roll our own hashing functions. They are designed to be strictly equivalent to Paolacci's implementation. License on original code: Copyright 2013, Sébastien Paolacci. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the library nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package bloom import ( "encoding/binary" "math/bits" "unsafe" ) const ( c1_128 = 0x87c37b91114253d5 c2_128 = 0x4cf5ad432745937f block_size = 16 ) // digest128 represents a partial evaluation of a 128 bites hash. type digest128 struct { h1 uint64 // Unfinalized running hash part 1. h2 uint64 // Unfinalized running hash part 2. } // bmix will hash blocks (16 bytes) func (d *digest128) bmix(p []byte) { nblocks := len(p) / block_size for i := 0; i < nblocks; i++ { b := (*[16]byte)(unsafe.Pointer(&p[i*block_size])) k1, k2 := binary.LittleEndian.Uint64(b[:8]), binary.LittleEndian.Uint64(b[8:]) d.bmix_words(k1, k2) } } // bmix_words will hash two 64-bit words (16 bytes) func (d *digest128) bmix_words(k1, k2 uint64) { h1, h2 := d.h1, d.h2 k1 *= c1_128 k1 = bits.RotateLeft64(k1, 31) k1 *= c2_128 h1 ^= k1 h1 = bits.RotateLeft64(h1, 27) h1 += h2 h1 = h1*5 + 0x52dce729 k2 *= c2_128 k2 = bits.RotateLeft64(k2, 33) k2 *= c1_128 h2 ^= k2 h2 = bits.RotateLeft64(h2, 31) h2 += h1 h2 = h2*5 + 0x38495ab5 d.h1, d.h2 = h1, h2 } // sum128 computers two 64-bit hash value. It is assumed that // bmix was first called on the data to process complete blocks // of 16 bytes. The 'tail' is a slice representing the 'tail' (leftover // elements, fewer than 16). If pad_tail is true, we make it seem like // there is an extra element with value 1 appended to the tail. // The length parameter represents the full length of the data (including // the blocks of 16 bytes, and, if pad_tail is true, an extra byte). func (d *digest128) sum128(pad_tail bool, length uint, tail []byte) (h1, h2 uint64) { h1, h2 = d.h1, d.h2 var k1, k2 uint64 if pad_tail { switch (len(tail) + 1) & 15 { case 15: k2 ^= uint64(1) << 48 break case 14: k2 ^= uint64(1) << 40 break case 13: k2 ^= uint64(1) << 32 break case 12: k2 ^= uint64(1) << 24 break case 11: k2 ^= uint64(1) << 16 break case 10: k2 ^= uint64(1) << 8 break case 9: k2 ^= uint64(1) << 0 k2 *= c2_128 k2 = bits.RotateLeft64(k2, 33) k2 *= c1_128 h2 ^= k2 break case 8: k1 ^= uint64(1) << 56 break case 7: k1 ^= uint64(1) << 48 break case 6: k1 ^= uint64(1) << 40 break case 5: k1 ^= uint64(1) << 32 break case 4: k1 ^= uint64(1) << 24 break case 3: k1 ^= uint64(1) << 16 break case 2: k1 ^= uint64(1) << 8 break case 1: k1 ^= uint64(1) << 0 k1 *= c1_128 k1 = bits.RotateLeft64(k1, 31) k1 *= c2_128 h1 ^= k1 } } switch len(tail) & 15 { case 15: k2 ^= uint64(tail[14]) << 48 fallthrough case 14: k2 ^= uint64(tail[13]) << 40 fallthrough case 13: k2 ^= uint64(tail[12]) << 32 fallthrough case 12: k2 ^= uint64(tail[11]) << 24 fallthrough case 11: k2 ^= uint64(tail[10]) << 16 fallthrough case 10: k2 ^= uint64(tail[9]) << 8 fallthrough case 9: k2 ^= uint64(tail[8]) << 0 k2 *= c2_128 k2 = bits.RotateLeft64(k2, 33) k2 *= c1_128 h2 ^= k2 fallthrough case 8: k1 ^= uint64(tail[7]) << 56 fallthrough case 7: k1 ^= uint64(tail[6]) << 48 fallthrough case 6: k1 ^= uint64(tail[5]) << 40 fallthrough case 5: k1 ^= uint64(tail[4]) << 32 fallthrough case 4: k1 ^= uint64(tail[3]) << 24 fallthrough case 3: k1 ^= uint64(tail[2]) << 16 fallthrough case 2: k1 ^= uint64(tail[1]) << 8 fallthrough case 1: k1 ^= uint64(tail[0]) << 0 k1 *= c1_128 k1 = bits.RotateLeft64(k1, 31) k1 *= c2_128 h1 ^= k1 } h1 ^= uint64(length) h2 ^= uint64(length) h1 += h2 h2 += h1 h1 = fmix64(h1) h2 = fmix64(h2) h1 += h2 h2 += h1 return h1, h2 } func fmix64(k uint64) uint64 { k ^= k >> 33 k *= 0xff51afd7ed558ccd k ^= k >> 33 k *= 0xc4ceb9fe1a85ec53 k ^= k >> 33 return k } // sum256 will compute 4 64-bit hash values from the input. // It is designed to never allocate memory on the heap. So it // works without any byte buffer whatsoever. // It is designed to be strictly equivalent to // // a1 := []byte{1} // hasher := murmur3.New128() // hasher.Write(data) // #nosec // v1, v2 := hasher.Sum128() // hasher.Write(a1) // #nosec // v3, v4 := hasher.Sum128() // // See TestHashRandom. func (d *digest128) sum256(data []byte) (hash1, hash2, hash3, hash4 uint64) { // We always start from zero. d.h1, d.h2 = 0, 0 // Process as many bytes as possible. d.bmix(data) // We have enough to compute the first two 64-bit numbers length := uint(len(data)) tail_length := length % block_size tail := data[length-tail_length:] hash1, hash2 = d.sum128(false, length, tail) // Next we want to 'virtually' append 1 to the input, but, // we do not want to append to an actual array!!! if tail_length+1 == block_size { // We are left with no tail!!! word1 := binary.LittleEndian.Uint64(tail[:8]) word2 := uint64(binary.LittleEndian.Uint32(tail[8 : 8+4])) word2 = word2 | (uint64(tail[12]) << 32) | (uint64(tail[13]) << 40) | (uint64(tail[14]) << 48) // We append 1. word2 = word2 | (uint64(1) << 56) // We process the resulting 2 words. d.bmix_words(word1, word2) tail := data[length:] // empty slice, deliberate. hash3, hash4 = d.sum128(false, length+1, tail) } else { // We still have a tail (fewer than 15 bytes) but we // need to append '1' to it. hash3, hash4 = d.sum128(true, length+1, tail) } return hash1, hash2, hash3, hash4 }