package torrent import ( "bufio" "bytes" "errors" "fmt" "io" "math/rand" "net" "sort" "strconv" "strings" "sync/atomic" "time" "github.com/RoaringBitmap/roaring" "github.com/anacrolix/log" "github.com/anacrolix/missinggo/iter" "github.com/anacrolix/missinggo/v2/bitmap" "github.com/anacrolix/multiless" "github.com/anacrolix/chansync" "github.com/anacrolix/torrent/bencode" "github.com/anacrolix/torrent/metainfo" "github.com/anacrolix/torrent/mse" pp "github.com/anacrolix/torrent/peer_protocol" request_strategy "github.com/anacrolix/torrent/request-strategy" ) type PeerSource string const ( PeerSourceTracker = "Tr" PeerSourceIncoming = "I" PeerSourceDhtGetPeers = "Hg" // Peers we found by searching a DHT. PeerSourceDhtAnnouncePeer = "Ha" // Peers that were announced to us by a DHT. PeerSourcePex = "X" // The peer was given directly, such as through a magnet link. PeerSourceDirect = "M" ) type peerRequestState struct { data []byte } type PeerRemoteAddr interface { String() string } // Since we have to store all the requests in memory, we can't reasonably exceed what would be // indexable with the memory space available. type ( maxRequests = int requestState = request_strategy.PeerRequestState ) type Peer struct { // First to ensure 64-bit alignment for atomics. See #262. _stats ConnStats t *Torrent peerImpl callbacks *Callbacks outgoing bool Network string RemoteAddr PeerRemoteAddr // True if the connection is operating over MSE obfuscation. headerEncrypted bool cryptoMethod mse.CryptoMethod Discovery PeerSource trusted bool closed chansync.SetOnce // Set true after we've added our ConnStats generated during handshake to // other ConnStat instances as determined when the *Torrent became known. reconciledHandshakeStats bool lastMessageReceived time.Time completedHandshake time.Time lastUsefulChunkReceived time.Time lastChunkSent time.Time // Stuff controlled by the local peer. needRequestUpdate string requestState requestState updateRequestsTimer *time.Timer lastRequestUpdate time.Time peakRequests maxRequests lastBecameInterested time.Time priorInterest time.Duration lastStartedExpectingToReceiveChunks time.Time cumulativeExpectedToReceiveChunks time.Duration _chunksReceivedWhileExpecting int64 choking bool piecesReceivedSinceLastRequestUpdate maxRequests maxPiecesReceivedBetweenRequestUpdates maxRequests // Chunks that we might reasonably expect to receive from the peer. Due to latency, buffering, // and implementation differences, we may receive chunks that are no longer in the set of // requests actually want. This could use a roaring.BSI if the memory use becomes noticeable. validReceiveChunks map[RequestIndex]int // Indexed by metadata piece, set to true if posted and pending a // response. metadataRequests []bool sentHaves bitmap.Bitmap // Stuff controlled by the remote peer. peerInterested bool peerChoking bool peerRequests map[Request]*peerRequestState PeerPrefersEncryption bool // as indicated by 'e' field in extension handshake PeerListenPort int // The highest possible number of pieces the torrent could have based on // communication with the peer. Generally only useful until we have the // torrent info. peerMinPieces pieceIndex // Pieces we've accepted chunks for from the peer. peerTouchedPieces map[pieceIndex]struct{} peerAllowedFast roaring.Bitmap PeerMaxRequests maxRequests // Maximum pending requests the peer allows. PeerExtensionIDs map[pp.ExtensionName]pp.ExtensionNumber PeerClientName atomic.Value logger log.Logger } // Maintains the state of a BitTorrent-protocol based connection with a peer. type PeerConn struct { Peer // A string that should identify the PeerConn's net.Conn endpoints. The net.Conn could // be wrapping WebRTC, uTP, or TCP etc. Used in writing the conn status for peers. connString string // See BEP 3 etc. PeerID PeerID PeerExtensionBytes pp.PeerExtensionBits // The actual Conn, used for closing, and setting socket options. Do not use methods on this // while holding any mutexes. conn net.Conn // The Reader and Writer for this Conn, with hooks installed for stats, // limiting, deadlines etc. w io.Writer r io.Reader messageWriter peerConnMsgWriter uploadTimer *time.Timer pex pexConnState // The pieces the peer has claimed to have. _peerPieces roaring.Bitmap // The peer has everything. This can occur due to a special message, when // we may not even know the number of pieces in the torrent yet. peerSentHaveAll bool } func (cn *PeerConn) connStatusString() string { return fmt.Sprintf("%+-55q %s %s", cn.PeerID, cn.PeerExtensionBytes, cn.connString) } func (cn *Peer) updateExpectingChunks() { if cn.expectingChunks() { if cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.lastStartedExpectingToReceiveChunks = time.Now() } } else { if !cn.lastStartedExpectingToReceiveChunks.IsZero() { cn.cumulativeExpectedToReceiveChunks += time.Since(cn.lastStartedExpectingToReceiveChunks) cn.lastStartedExpectingToReceiveChunks = time.Time{} } } } func (cn *Peer) expectingChunks() bool { if cn.requestState.Requests.IsEmpty() { return false } if !cn.requestState.Interested { return false } if !cn.peerChoking { return true } haveAllowedFastRequests := false cn.peerAllowedFast.Iterate(func(i uint32) bool { haveAllowedFastRequests = roaringBitmapRangeCardinality( &cn.requestState.Requests, cn.t.pieceRequestIndexOffset(pieceIndex(i)), cn.t.pieceRequestIndexOffset(pieceIndex(i+1)), ) == 0 return !haveAllowedFastRequests }) return haveAllowedFastRequests } func (cn *Peer) remoteChokingPiece(piece pieceIndex) bool { return cn.peerChoking && !cn.peerAllowedFast.Contains(bitmap.BitIndex(piece)) } // Returns true if the connection is over IPv6. func (cn *PeerConn) ipv6() bool { ip := cn.remoteIp() if ip.To4() != nil { return false } return len(ip) == net.IPv6len } // Returns true the if the dialer/initiator has the lower client peer ID. TODO: Find the // specification for this. func (cn *PeerConn) isPreferredDirection() bool { return bytes.Compare(cn.t.cl.peerID[:], cn.PeerID[:]) < 0 == cn.outgoing } // Returns whether the left connection should be preferred over the right one, // considering only their networking properties. If ok is false, we can't // decide. func (l *PeerConn) hasPreferredNetworkOver(r *PeerConn) bool { var ml multiless.Computation ml = ml.Bool(r.isPreferredDirection(), l.isPreferredDirection()) ml = ml.Bool(l.utp(), r.utp()) ml = ml.Bool(r.ipv6(), l.ipv6()) return ml.Less() } func (cn *Peer) cumInterest() time.Duration { ret := cn.priorInterest if cn.requestState.Interested { ret += time.Since(cn.lastBecameInterested) } return ret } func (cn *PeerConn) peerHasAllPieces() (all, known bool) { if cn.peerSentHaveAll { return true, true } if !cn.t.haveInfo() { return false, false } return cn._peerPieces.GetCardinality() == uint64(cn.t.numPieces()), true } func (cn *Peer) locker() *lockWithDeferreds { return cn.t.cl.locker() } func (cn *Peer) supportsExtension(ext pp.ExtensionName) bool { _, ok := cn.PeerExtensionIDs[ext] return ok } // The best guess at number of pieces in the torrent for this peer. func (cn *Peer) bestPeerNumPieces() pieceIndex { if cn.t.haveInfo() { return cn.t.numPieces() } return cn.peerMinPieces } func (cn *Peer) completedString() string { have := pieceIndex(cn.peerPieces().GetCardinality()) if all, _ := cn.peerHasAllPieces(); all { have = cn.bestPeerNumPieces() } return fmt.Sprintf("%d/%d", have, cn.bestPeerNumPieces()) } func (cn *PeerConn) onGotInfo(info *metainfo.Info) { cn.setNumPieces(info.NumPieces()) } // Correct the PeerPieces slice length. Return false if the existing slice is invalid, such as by // receiving badly sized BITFIELD, or invalid HAVE messages. func (cn *PeerConn) setNumPieces(num pieceIndex) { cn._peerPieces.RemoveRange(bitmap.BitRange(num), bitmap.ToEnd) cn.peerPiecesChanged() } func (cn *PeerConn) peerPieces() *roaring.Bitmap { return &cn._peerPieces } func eventAgeString(t time.Time) string { if t.IsZero() { return "never" } return fmt.Sprintf("%.2fs ago", time.Since(t).Seconds()) } func (cn *PeerConn) connectionFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.cryptoMethod == mse.CryptoMethodRC4 { c('E') } else if cn.headerEncrypted { c('e') } ret += string(cn.Discovery) if cn.utp() { c('U') } return } func (cn *PeerConn) utp() bool { return parseNetworkString(cn.Network).Udp } // Inspired by https://github.com/transmission/transmission/wiki/Peer-Status-Text. func (cn *Peer) statusFlags() (ret string) { c := func(b byte) { ret += string([]byte{b}) } if cn.requestState.Interested { c('i') } if cn.choking { c('c') } c('-') ret += cn.connectionFlags() c('-') if cn.peerInterested { c('i') } if cn.peerChoking { c('c') } return } func (cn *Peer) downloadRate() float64 { num := cn._stats.BytesReadUsefulData.Int64() if num == 0 { return 0 } return float64(num) / cn.totalExpectingTime().Seconds() } func (cn *Peer) numRequestsByPiece() (ret map[pieceIndex]int) { ret = make(map[pieceIndex]int) cn.requestState.Requests.Iterate(func(x uint32) bool { ret[pieceIndex(x/cn.t.chunksPerRegularPiece())]++ return true }) return } func (cn *Peer) writeStatus(w io.Writer, t *Torrent) { // \t isn't preserved in
blocks? if cn.closed.IsSet() { fmt.Fprint(w, "CLOSED: ") } fmt.Fprintln(w, cn.connStatusString()) prio, err := cn.peerPriority() prioStr := fmt.Sprintf("%08x", prio) if err != nil { prioStr += ": " + err.Error() } fmt.Fprintf(w, " bep40-prio: %v\n", prioStr) fmt.Fprintf(w, " last msg: %s, connected: %s, last helpful: %s, itime: %s, etime: %s\n", eventAgeString(cn.lastMessageReceived), eventAgeString(cn.completedHandshake), eventAgeString(cn.lastHelpful()), cn.cumInterest(), cn.totalExpectingTime(), ) fmt.Fprintf(w, " %s completed, %d pieces touched, good chunks: %v/%v:%v reqq: %d+%v/(%d/%d):%d/%d, flags: %s, dr: %.1f KiB/s\n", cn.completedString(), len(cn.peerTouchedPieces), &cn._stats.ChunksReadUseful, &cn._stats.ChunksRead, &cn._stats.ChunksWritten, cn.requestState.Requests.GetCardinality(), cn.requestState.Cancelled.GetCardinality(), cn.nominalMaxRequests(), cn.PeerMaxRequests, len(cn.peerRequests), localClientReqq, cn.statusFlags(), cn.downloadRate()/(1<<10), ) fmt.Fprintf(w, " requested pieces:") type pieceNumRequestsType struct { piece pieceIndex numRequests int } var pieceNumRequests []pieceNumRequestsType for piece, count := range cn.numRequestsByPiece() { pieceNumRequests = append(pieceNumRequests, pieceNumRequestsType{piece, count}) } sort.Slice(pieceNumRequests, func(i, j int) bool { return pieceNumRequests[i].piece < pieceNumRequests[j].piece }) for _, elem := range pieceNumRequests { fmt.Fprintf(w, " %v(%v)", elem.piece, elem.numRequests) } fmt.Fprintf(w, "\n") } func (p *Peer) close() { if !p.closed.Set() { return } if p.updateRequestsTimer != nil { p.updateRequestsTimer.Stop() } p.peerImpl.onClose() if p.t != nil { p.t.decPeerPieceAvailability(p) } for _, f := range p.callbacks.PeerClosed { f(p) } } func (cn *PeerConn) onClose() { if cn.pex.IsEnabled() { cn.pex.Close() } cn.tickleWriter() if cn.conn != nil { go cn.conn.Close() } if cb := cn.callbacks.PeerConnClosed; cb != nil { cb(cn) } } // Peer definitely has a piece, for purposes of requesting. So it's not sufficient that we think // they do (known=true). func (cn *Peer) peerHasPiece(piece pieceIndex) bool { if all, known := cn.peerHasAllPieces(); all && known { return true } return cn.peerPieces().ContainsInt(piece) } // 64KiB, but temporarily less to work around an issue with WebRTC. TODO: Update when // https://github.com/pion/datachannel/issues/59 is fixed. const ( writeBufferHighWaterLen = 1 << 15 writeBufferLowWaterLen = writeBufferHighWaterLen / 2 ) // Writes a message into the write buffer. Returns whether it's okay to keep writing. Writing is // done asynchronously, so it may be that we're not able to honour backpressure from this method. func (cn *PeerConn) write(msg pp.Message) bool { torrent.Add(fmt.Sprintf("messages written of type %s", msg.Type.String()), 1) // We don't need to track bytes here because the connection's Writer has that behaviour injected // (although there's some delay between us buffering the message, and the connection writer // flushing it out.). notFull := cn.messageWriter.write(msg) // Last I checked only Piece messages affect stats, and we don't write those. cn.wroteMsg(&msg) cn.tickleWriter() return notFull } func (cn *PeerConn) requestMetadataPiece(index int) { eID := cn.PeerExtensionIDs[pp.ExtensionNameMetadata] if eID == pp.ExtensionDeleteNumber { return } if index < len(cn.metadataRequests) && cn.metadataRequests[index] { return } cn.logger.WithDefaultLevel(log.Debug).Printf("requesting metadata piece %d", index) cn.write(pp.MetadataExtensionRequestMsg(eID, index)) for index >= len(cn.metadataRequests) { cn.metadataRequests = append(cn.metadataRequests, false) } cn.metadataRequests[index] = true } func (cn *PeerConn) requestedMetadataPiece(index int) bool { return index < len(cn.metadataRequests) && cn.metadataRequests[index] } var ( interestedMsgLen = len(pp.Message{Type: pp.Interested}.MustMarshalBinary()) requestMsgLen = len(pp.Message{Type: pp.Request}.MustMarshalBinary()) // This is the maximum request count that could fit in the write buffer if it's at or below the // low water mark when we run maybeUpdateActualRequestState. maxLocalToRemoteRequests = (writeBufferHighWaterLen - writeBufferLowWaterLen - interestedMsgLen) / requestMsgLen ) // The actual value to use as the maximum outbound requests. func (cn *Peer) nominalMaxRequests() maxRequests { return maxRequests(maxInt(1, minInt(cn.PeerMaxRequests, cn.peakRequests*2, maxLocalToRemoteRequests))) } func (cn *Peer) totalExpectingTime() (ret time.Duration) { ret = cn.cumulativeExpectedToReceiveChunks if !cn.lastStartedExpectingToReceiveChunks.IsZero() { ret += time.Since(cn.lastStartedExpectingToReceiveChunks) } return } func (cn *PeerConn) onPeerSentCancel(r Request) { if _, ok := cn.peerRequests[r]; !ok { torrent.Add("unexpected cancels received", 1) return } if cn.fastEnabled() { cn.reject(r) } else { delete(cn.peerRequests, r) } } func (cn *PeerConn) choke(msg messageWriter) (more bool) { if cn.choking { return true } cn.choking = true more = msg(pp.Message{ Type: pp.Choke, }) if !cn.fastEnabled() { cn.peerRequests = nil } return } func (cn *PeerConn) unchoke(msg func(pp.Message) bool) bool { if !cn.choking { return true } cn.choking = false return msg(pp.Message{ Type: pp.Unchoke, }) } func (cn *Peer) setInterested(interested bool) bool { if cn.requestState.Interested == interested { return true } cn.requestState.Interested = interested if interested { cn.lastBecameInterested = time.Now() } else if !cn.lastBecameInterested.IsZero() { cn.priorInterest += time.Since(cn.lastBecameInterested) } cn.updateExpectingChunks() // log.Printf("%p: setting interest: %v", cn, interested) return cn.writeInterested(interested) } func (pc *PeerConn) writeInterested(interested bool) bool { return pc.write(pp.Message{ Type: func() pp.MessageType { if interested { return pp.Interested } else { return pp.NotInterested } }(), }) } // The function takes a message to be sent, and returns true if more messages // are okay. type messageWriter func(pp.Message) bool // This function seems to only used by Peer.request. It's all logic checks, so maybe we can no-op it // when we want to go fast. func (cn *Peer) shouldRequest(r RequestIndex) error { pi := pieceIndex(r / cn.t.chunksPerRegularPiece()) if cn.requestState.Cancelled.Contains(r) { return errors.New("request is cancelled and waiting acknowledgement") } if !cn.peerHasPiece(pi) { return errors.New("requesting piece peer doesn't have") } if !cn.t.peerIsActive(cn) { panic("requesting but not in active conns") } if cn.closed.IsSet() { panic("requesting when connection is closed") } if cn.t.hashingPiece(pi) { panic("piece is being hashed") } if cn.t.pieceQueuedForHash(pi) { panic("piece is queued for hash") } if cn.peerChoking && !cn.peerAllowedFast.Contains(bitmap.BitIndex(pi)) { // This could occur if we made a request with the fast extension, and then got choked and // haven't had the request rejected yet. if !cn.requestState.Requests.Contains(r) { panic("peer choking and piece not allowed fast") } } return nil } func (cn *Peer) mustRequest(r RequestIndex) bool { more, err := cn.request(r) if err != nil { panic(err) } return more } func (cn *Peer) request(r RequestIndex) (more bool, err error) { if err := cn.shouldRequest(r); err != nil { panic(err) } if cn.requestState.Requests.Contains(r) { return true, nil } if maxRequests(cn.requestState.Requests.GetCardinality()) >= cn.nominalMaxRequests() { return true, errors.New("too many outstanding requests") } cn.requestState.Requests.Add(r) if cn.validReceiveChunks == nil { cn.validReceiveChunks = make(map[RequestIndex]int) } cn.validReceiveChunks[r]++ cn.t.pendingRequests[r] = cn cn.t.lastRequested[r] = time.Now() cn.updateExpectingChunks() ppReq := cn.t.requestIndexToRequest(r) for _, f := range cn.callbacks.SentRequest { f(PeerRequestEvent{cn, ppReq}) } return cn.peerImpl._request(ppReq), nil } func (me *PeerConn) _request(r Request) bool { return me.write(pp.Message{ Type: pp.Request, Index: r.Index, Begin: r.Begin, Length: r.Length, }) } func (me *Peer) cancel(r RequestIndex) { if !me.deleteRequest(r) { panic("request not existing should have been guarded") } if me._cancel(r) { if !me.requestState.Cancelled.CheckedAdd(r) { panic("request already cancelled") } } me.decPeakRequests() if me.isLowOnRequests() { me.updateRequests("Peer.cancel") } } func (me *PeerConn) _cancel(r RequestIndex) bool { me.write(makeCancelMessage(me.t.requestIndexToRequest(r))) // Transmission does not send rejects for received cancels. See // https://github.com/transmission/transmission/pull/2275. return me.fastEnabled() && !me.remoteIsTransmission() } func (cn *PeerConn) fillWriteBuffer() { if cn.messageWriter.writeBuffer.Len() > writeBufferLowWaterLen { // Fully committing to our max requests requires sufficient space (see // maxLocalToRemoteRequests). Flush what we have instead. We also prefer always to make // requests than to do PEX or upload, so we short-circuit before handling those. Any update // request reason will not be cleared, so we'll come right back here when there's space. We // can't do this in maybeUpdateActualRequestState because it's a method on Peer and has no // knowledge of write buffers. } cn.maybeUpdateActualRequestState() if cn.pex.IsEnabled() { if flow := cn.pex.Share(cn.write); !flow { return } } cn.upload(cn.write) } func (cn *PeerConn) have(piece pieceIndex) { if cn.sentHaves.Get(bitmap.BitIndex(piece)) { return } cn.write(pp.Message{ Type: pp.Have, Index: pp.Integer(piece), }) cn.sentHaves.Add(bitmap.BitIndex(piece)) } func (cn *PeerConn) postBitfield() { if cn.sentHaves.Len() != 0 { panic("bitfield must be first have-related message sent") } if !cn.t.haveAnyPieces() { return } cn.write(pp.Message{ Type: pp.Bitfield, Bitfield: cn.t.bitfield(), }) cn.sentHaves = bitmap.Bitmap{cn.t._completedPieces.Clone()} } // Sets a reason to update requests, and if there wasn't already one, handle it. func (cn *Peer) updateRequests(reason string) { if cn.needRequestUpdate != "" { return } if reason != peerUpdateRequestsTimerReason && !cn.isLowOnRequests() { return } cn.needRequestUpdate = reason cn.handleUpdateRequests() } func (cn *PeerConn) handleUpdateRequests() { // The writer determines the request state as needed when it can write. cn.tickleWriter() } // Emits the indices in the Bitmaps bms in order, never repeating any index. // skip is mutated during execution, and its initial values will never be // emitted. func iterBitmapsDistinct(skip *bitmap.Bitmap, bms ...bitmap.Bitmap) iter.Func { return func(cb iter.Callback) { for _, bm := range bms { if !iter.All( func(_i interface{}) bool { i := _i.(int) if skip.Contains(bitmap.BitIndex(i)) { return true } skip.Add(bitmap.BitIndex(i)) return cb(i) }, bm.Iter, ) { return } } } } func (cn *Peer) peerPiecesChanged() { cn.t.maybeDropMutuallyCompletePeer(cn) } func (cn *PeerConn) raisePeerMinPieces(newMin pieceIndex) { if newMin > cn.peerMinPieces { cn.peerMinPieces = newMin } } func (cn *PeerConn) peerSentHave(piece pieceIndex) error { if cn.t.haveInfo() && piece >= cn.t.numPieces() || piece < 0 { return errors.New("invalid piece") } if cn.peerHasPiece(piece) { return nil } cn.raisePeerMinPieces(piece + 1) if !cn.peerHasPiece(piece) { cn.t.incPieceAvailability(piece) } cn._peerPieces.Add(uint32(piece)) if cn.t.wantPieceIndex(piece) { cn.updateRequests("have") } cn.peerPiecesChanged() return nil } func (cn *PeerConn) peerSentBitfield(bf []bool) error { if len(bf)%8 != 0 { panic("expected bitfield length divisible by 8") } // We know that the last byte means that at most the last 7 bits are wasted. cn.raisePeerMinPieces(pieceIndex(len(bf) - 7)) if cn.t.haveInfo() && len(bf) > int(cn.t.numPieces()) { // Ignore known excess pieces. bf = bf[:cn.t.numPieces()] } bm := boolSliceToBitmap(bf) if cn.t.haveInfo() && pieceIndex(bm.GetCardinality()) == cn.t.numPieces() { cn.onPeerHasAllPieces() return nil } if !bm.IsEmpty() { cn.raisePeerMinPieces(pieceIndex(bm.Maximum()) + 1) } shouldUpdateRequests := false if cn.peerSentHaveAll { if !cn.t.deleteConnWithAllPieces(&cn.Peer) { panic(cn) } cn.peerSentHaveAll = false if !cn._peerPieces.IsEmpty() { panic("if peer has all, we expect no individual peer pieces to be set") } } else { bm.Xor(&cn._peerPieces) } cn.peerSentHaveAll = false // bm is now 'on' for pieces that are changing bm.Iterate(func(x uint32) bool { pi := pieceIndex(x) if cn._peerPieces.Contains(x) { // Then we must be losing this piece cn.t.decPieceAvailability(pi) } else { if !shouldUpdateRequests && cn.t.wantPieceIndex(pieceIndex(x)) { shouldUpdateRequests = true } // We must be gaining this piece cn.t.incPieceAvailability(pieceIndex(x)) } return true }) // Apply the changes. If we had everything previously, this should be empty, so xor is the same // as or. cn._peerPieces.Xor(&bm) if shouldUpdateRequests { cn.updateRequests("bitfield") } // We didn't guard this before, I see no reason to do it now. cn.peerPiecesChanged() return nil } func (cn *PeerConn) onPeerHasAllPieces() { t := cn.t if t.haveInfo() { cn._peerPieces.Iterate(func(x uint32) bool { t.decPieceAvailability(pieceIndex(x)) return true }) } t.addConnWithAllPieces(&cn.Peer) cn.peerSentHaveAll = true cn._peerPieces.Clear() if !cn.t._pendingPieces.IsEmpty() { cn.updateRequests("Peer.onPeerHasAllPieces") } cn.peerPiecesChanged() } func (cn *PeerConn) onPeerSentHaveAll() error { cn.onPeerHasAllPieces() return nil } func (cn *PeerConn) peerSentHaveNone() error { if cn.peerSentHaveAll { cn.t.decPeerPieceAvailability(&cn.Peer) } cn._peerPieces.Clear() cn.peerSentHaveAll = false cn.peerPiecesChanged() return nil } func (c *PeerConn) requestPendingMetadata() { if c.t.haveInfo() { return } if c.PeerExtensionIDs[pp.ExtensionNameMetadata] == 0 { // Peer doesn't support this. return } // Request metadata pieces that we don't have in a random order. var pending []int for index := 0; index < c.t.metadataPieceCount(); index++ { if !c.t.haveMetadataPiece(index) && !c.requestedMetadataPiece(index) { pending = append(pending, index) } } rand.Shuffle(len(pending), func(i, j int) { pending[i], pending[j] = pending[j], pending[i] }) for _, i := range pending { c.requestMetadataPiece(i) } } func (cn *PeerConn) wroteMsg(msg *pp.Message) { torrent.Add(fmt.Sprintf("messages written of type %s", msg.Type.String()), 1) if msg.Type == pp.Extended { for name, id := range cn.PeerExtensionIDs { if id != msg.ExtendedID { continue } torrent.Add(fmt.Sprintf("Extended messages written for protocol %q", name), 1) } } cn.allStats(func(cs *ConnStats) { cs.wroteMsg(msg) }) } // After handshake, we know what Torrent and Client stats to include for a // connection. func (cn *Peer) postHandshakeStats(f func(*ConnStats)) { t := cn.t f(&t.stats) f(&t.cl.stats) } // All ConnStats that include this connection. Some objects are not known // until the handshake is complete, after which it's expected to reconcile the // differences. func (cn *Peer) allStats(f func(*ConnStats)) { f(&cn._stats) if cn.reconciledHandshakeStats { cn.postHandshakeStats(f) } } func (cn *PeerConn) wroteBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesWritten })) } func (cn *Peer) readBytes(n int64) { cn.allStats(add(n, func(cs *ConnStats) *Count { return &cs.BytesRead })) } // Returns whether the connection could be useful to us. We're seeding and // they want data, we don't have metainfo and they can provide it, etc. func (c *Peer) useful() bool { t := c.t if c.closed.IsSet() { return false } if !t.haveInfo() { return c.supportsExtension("ut_metadata") } if t.seeding() && c.peerInterested { return true } if c.peerHasWantedPieces() { return true } return false } func (c *Peer) lastHelpful() (ret time.Time) { ret = c.lastUsefulChunkReceived if c.t.seeding() && c.lastChunkSent.After(ret) { ret = c.lastChunkSent } return } func (c *PeerConn) fastEnabled() bool { return c.PeerExtensionBytes.SupportsFast() && c.t.cl.config.Extensions.SupportsFast() } func (c *PeerConn) reject(r Request) { if !c.fastEnabled() { panic("fast not enabled") } c.write(r.ToMsg(pp.Reject)) delete(c.peerRequests, r) } func (c *PeerConn) onReadRequest(r Request) error { requestedChunkLengths.Add(strconv.FormatUint(r.Length.Uint64(), 10), 1) if _, ok := c.peerRequests[r]; ok { torrent.Add("duplicate requests received", 1) return nil } if c.choking { torrent.Add("requests received while choking", 1) if c.fastEnabled() { torrent.Add("requests rejected while choking", 1) c.reject(r) } return nil } // TODO: What if they've already requested this? if len(c.peerRequests) >= localClientReqq { torrent.Add("requests received while queue full", 1) if c.fastEnabled() { c.reject(r) } // BEP 6 says we may close here if we choose. return nil } if !c.t.havePiece(pieceIndex(r.Index)) { // This isn't necessarily them screwing up. We can drop pieces // from our storage, and can't communicate this to peers // except by reconnecting. requestsReceivedForMissingPieces.Add(1) return fmt.Errorf("peer requested piece we don't have: %v", r.Index.Int()) } // Check this after we know we have the piece, so that the piece length will be known. if r.Begin+r.Length > c.t.pieceLength(pieceIndex(r.Index)) { torrent.Add("bad requests received", 1) return errors.New("bad Request") } if c.peerRequests == nil { c.peerRequests = make(map[Request]*peerRequestState, localClientReqq) } value := &peerRequestState{} c.peerRequests[r] = value go c.peerRequestDataReader(r, value) return nil } func (c *PeerConn) peerRequestDataReader(r Request, prs *peerRequestState) { b, err := readPeerRequestData(r, c) c.locker().Lock() defer c.locker().Unlock() if err != nil { c.peerRequestDataReadFailed(err, r) } else { if b == nil { panic("data must be non-nil to trigger send") } torrent.Add("peer request data read successes", 1) prs.data = b c.tickleWriter() } } // If this is maintained correctly, we might be able to support optional synchronous reading for // chunk sending, the way it used to work. func (c *PeerConn) peerRequestDataReadFailed(err error, r Request) { torrent.Add("peer request data read failures", 1) logLevel := log.Warning if c.t.hasStorageCap() { // It's expected that pieces might drop. See // https://github.com/anacrolix/torrent/issues/702#issuecomment-1000953313. logLevel = log.Debug } c.logger.WithDefaultLevel(logLevel).Printf("error reading chunk for peer Request %v: %v", r, err) if c.t.closed.IsSet() { return } i := pieceIndex(r.Index) if c.t.pieceComplete(i) { // There used to be more code here that just duplicated the following break. Piece // completions are currently cached, so I'm not sure how helpful this update is, except to // pull any completion changes pushed to the storage backend in failed reads that got us // here. c.t.updatePieceCompletion(i) } // We've probably dropped a piece from storage, but there's no way to communicate this to the // peer. If they ask for it again, we kick them allowing us to send them updated piece states if // we reconnect. TODO: Instead, we could just try to update them with Bitfield or HaveNone and // if they kick us for breaking protocol, on reconnect we will be compliant again (at least // initially). if c.fastEnabled() { c.reject(r) } else { if c.choking { // If fast isn't enabled, I think we would have wiped all peer requests when we last // choked, and requests while we're choking would be ignored. It could be possible that // a peer request data read completed concurrently to it being deleted elsewhere. c.logger.WithDefaultLevel(log.Warning).Printf("already choking peer, requests might not be rejected correctly") } // Choking a non-fast peer should cause them to flush all their requests. c.choke(c.write) } } func readPeerRequestData(r Request, c *PeerConn) ([]byte, error) { b := make([]byte, r.Length) p := c.t.info.Piece(int(r.Index)) n, err := c.t.readAt(b, p.Offset()+int64(r.Begin)) if n == len(b) { if err == io.EOF { err = nil } } else { if err == nil { panic("expected error") } } return b, err } func runSafeExtraneous(f func()) { if true { go f() } else { f() } } func (c *PeerConn) logProtocolBehaviour(level log.Level, format string, arg ...interface{}) { c.logger.WithContextText(fmt.Sprintf( "peer id %q, ext v %q", c.PeerID, c.PeerClientName.Load(), )).SkipCallers(1).Levelf(level, format, arg...) } // Processes incoming BitTorrent wire-protocol messages. The client lock is held upon entry and // exit. Returning will end the connection. func (c *PeerConn) mainReadLoop() (err error) { defer func() { if err != nil { torrent.Add("connection.mainReadLoop returned with error", 1) } else { torrent.Add("connection.mainReadLoop returned with no error", 1) } }() t := c.t cl := t.cl decoder := pp.Decoder{ R: bufio.NewReaderSize(c.r, 1<<17), MaxLength: 256 * 1024, Pool: &t.chunkPool, } for { var msg pp.Message func() { cl.unlock() defer cl.lock() err = decoder.Decode(&msg) }() if cb := c.callbacks.ReadMessage; cb != nil && err == nil { cb(c, &msg) } if t.closed.IsSet() || c.closed.IsSet() { return nil } if err != nil { return err } c.lastMessageReceived = time.Now() if msg.Keepalive { receivedKeepalives.Add(1) continue } messageTypesReceived.Add(msg.Type.String(), 1) if msg.Type.FastExtension() && !c.fastEnabled() { runSafeExtraneous(func() { torrent.Add("fast messages received when extension is disabled", 1) }) return fmt.Errorf("received fast extension message (type=%v) but extension is disabled", msg.Type) } switch msg.Type { case pp.Choke: if c.peerChoking { break } if !c.fastEnabled() { if !c.deleteAllRequests().IsEmpty() { c.t.iterPeers(func(p *Peer) { if p.isLowOnRequests() { p.updateRequests("choked by non-fast PeerConn") } }) } } else { // We don't decrement pending requests here, let's wait for the peer to either // reject or satisfy the outstanding requests. Additionally, some peers may unchoke // us and resume where they left off, we don't want to have piled on to those chunks // in the meanwhile. I think a peer's ability to abuse this should be limited: they // could let us request a lot of stuff, then choke us and never reject, but they're // only a single peer, our chunk balancing should smooth over this abuse. } c.peerChoking = true c.updateExpectingChunks() case pp.Unchoke: if !c.peerChoking { // Some clients do this for some reason. Transmission doesn't error on this, so we // won't for consistency. c.logProtocolBehaviour(log.Debug, "received unchoke when already unchoked") break } c.peerChoking = false preservedCount := 0 c.requestState.Requests.Iterate(func(x uint32) bool { if !c.peerAllowedFast.Contains(x / c.t.chunksPerRegularPiece()) { preservedCount++ } return true }) if preservedCount != 0 { // TODO: Yes this is a debug log but I'm not happy with the state of the logging lib // right now. c.logger.Levelf(log.Debug, "%v requests were preserved while being choked (fast=%v)", preservedCount, c.fastEnabled()) torrent.Add("requestsPreservedThroughChoking", int64(preservedCount)) } if !c.t._pendingPieces.IsEmpty() { c.updateRequests("unchoked") } c.updateExpectingChunks() case pp.Interested: c.peerInterested = true c.tickleWriter() case pp.NotInterested: c.peerInterested = false // We don't clear their requests since it isn't clear in the spec. // We'll probably choke them for this, which will clear them if // appropriate, and is clearly specified. case pp.Have: err = c.peerSentHave(pieceIndex(msg.Index)) case pp.Bitfield: err = c.peerSentBitfield(msg.Bitfield) case pp.Request: r := newRequestFromMessage(&msg) err = c.onReadRequest(r) case pp.Piece: c.doChunkReadStats(int64(len(msg.Piece))) err = c.receiveChunk(&msg) if len(msg.Piece) == int(t.chunkSize) { t.chunkPool.Put(&msg.Piece) } if err != nil { err = fmt.Errorf("receiving chunk: %w", err) } case pp.Cancel: req := newRequestFromMessage(&msg) c.onPeerSentCancel(req) case pp.Port: ipa, ok := tryIpPortFromNetAddr(c.RemoteAddr) if !ok { break } pingAddr := net.UDPAddr{ IP: ipa.IP, Port: ipa.Port, } if msg.Port != 0 { pingAddr.Port = int(msg.Port) } cl.eachDhtServer(func(s DhtServer) { go s.Ping(&pingAddr) }) case pp.Suggest: torrent.Add("suggests received", 1) log.Fmsg("peer suggested piece %d", msg.Index).AddValues(c, msg.Index).LogLevel(log.Debug, c.t.logger) c.updateRequests("suggested") case pp.HaveAll: err = c.onPeerSentHaveAll() case pp.HaveNone: err = c.peerSentHaveNone() case pp.Reject: req := newRequestFromMessage(&msg) if !c.remoteRejectedRequest(c.t.requestIndexFromRequest(req)) { log.Printf("received invalid reject [request=%v, peer=%v]", req, c) err = fmt.Errorf("received invalid reject [request=%v]", req) } case pp.AllowedFast: torrent.Add("allowed fasts received", 1) log.Fmsg("peer allowed fast: %d", msg.Index).AddValues(c).LogLevel(log.Debug, c.t.logger) c.updateRequests("PeerConn.mainReadLoop allowed fast") case pp.Extended: err = c.onReadExtendedMsg(msg.ExtendedID, msg.ExtendedPayload) default: err = fmt.Errorf("received unknown message type: %#v", msg.Type) } if err != nil { return err } } } // Returns true if it was valid to reject the request. func (c *Peer) remoteRejectedRequest(r RequestIndex) bool { if c.deleteRequest(r) { c.decPeakRequests() } else if !c.requestState.Cancelled.CheckedRemove(r) { return false } if c.isLowOnRequests() { c.updateRequests("Peer.remoteRejectedRequest") } c.decExpectedChunkReceive(r) return true } func (c *Peer) decExpectedChunkReceive(r RequestIndex) { count := c.validReceiveChunks[r] if count == 1 { delete(c.validReceiveChunks, r) } else if count > 1 { c.validReceiveChunks[r] = count - 1 } else { panic(r) } } func (c *PeerConn) onReadExtendedMsg(id pp.ExtensionNumber, payload []byte) (err error) { defer func() { // TODO: Should we still do this? if err != nil { // These clients use their own extension IDs for outgoing message // types, which is incorrect. if bytes.HasPrefix(c.PeerID[:], []byte("-SD0100-")) || strings.HasPrefix(string(c.PeerID[:]), "-XL0012-") { err = nil } } }() t := c.t cl := t.cl switch id { case pp.HandshakeExtendedID: var d pp.ExtendedHandshakeMessage if err := bencode.Unmarshal(payload, &d); err != nil { c.logger.Printf("error parsing extended handshake message %q: %s", payload, err) return fmt.Errorf("unmarshalling extended handshake payload: %w", err) } if cb := c.callbacks.ReadExtendedHandshake; cb != nil { cb(c, &d) } // c.logger.WithDefaultLevel(log.Debug).Printf("received extended handshake message:\n%s", spew.Sdump(d)) if d.Reqq != 0 { c.PeerMaxRequests = d.Reqq } c.PeerClientName.Store(d.V) if c.PeerExtensionIDs == nil { c.PeerExtensionIDs = make(map[pp.ExtensionName]pp.ExtensionNumber, len(d.M)) } c.PeerListenPort = d.Port c.PeerPrefersEncryption = d.Encryption for name, id := range d.M { if _, ok := c.PeerExtensionIDs[name]; !ok { peersSupportingExtension.Add( // expvar.Var.String must produce valid JSON. "ut_payme\xeet_address" was being // entered here which caused problems later when unmarshalling. strconv.Quote(string(name)), 1) } c.PeerExtensionIDs[name] = id } if d.MetadataSize != 0 { if err = t.setMetadataSize(d.MetadataSize); err != nil { return fmt.Errorf("setting metadata size to %d: %w", d.MetadataSize, err) } } c.requestPendingMetadata() if !t.cl.config.DisablePEX { t.pex.Add(c) // we learnt enough now c.pex.Init(c) } return nil case metadataExtendedId: err := cl.gotMetadataExtensionMsg(payload, t, c) if err != nil { return fmt.Errorf("handling metadata extension message: %w", err) } return nil case pexExtendedId: if !c.pex.IsEnabled() { return nil // or hang-up maybe? } return c.pex.Recv(payload) default: return fmt.Errorf("unexpected extended message ID: %v", id) } } // Set both the Reader and Writer for the connection from a single ReadWriter. func (cn *PeerConn) setRW(rw io.ReadWriter) { cn.r = rw cn.w = rw } // Returns the Reader and Writer as a combined ReadWriter. func (cn *PeerConn) rw() io.ReadWriter { return struct { io.Reader io.Writer }{cn.r, cn.w} } func (c *Peer) doChunkReadStats(size int64) { c.allStats(func(cs *ConnStats) { cs.receivedChunk(size) }) } // Handle a received chunk from a peer. func (c *Peer) receiveChunk(msg *pp.Message) error { chunksReceived.Add("total", 1) ppReq := newRequestFromMessage(msg) req := c.t.requestIndexFromRequest(ppReq) if c.peerChoking { chunksReceived.Add("while choked", 1) } if c.validReceiveChunks[req] <= 0 { chunksReceived.Add("unexpected", 1) return errors.New("received unexpected chunk") } c.decExpectedChunkReceive(req) if c.peerChoking && c.peerAllowedFast.Contains(bitmap.BitIndex(ppReq.Index)) { chunksReceived.Add("due to allowed fast", 1) } // The request needs to be deleted immediately to prevent cancels occurring asynchronously when // have actually already received the piece, while we have the Client unlocked to write the data // out. intended := false { if c.requestState.Requests.Contains(req) { for _, f := range c.callbacks.ReceivedRequested { f(PeerMessageEvent{c, msg}) } } // Request has been satisfied. if c.deleteRequest(req) || c.requestState.Cancelled.CheckedRemove(req) { intended = true if !c.peerChoking { c._chunksReceivedWhileExpecting++ } if c.isLowOnRequests() { c.updateRequests("Peer.receiveChunk deleted request") } } else { chunksReceived.Add("unintended", 1) } } t := c.t cl := t.cl // Do we actually want this chunk? if t.haveChunk(ppReq) { // panic(fmt.Sprintf("%+v", ppReq)) chunksReceived.Add("redundant", 1) c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadWasted })) return nil } piece := &t.pieces[ppReq.Index] c.allStats(add(1, func(cs *ConnStats) *Count { return &cs.ChunksReadUseful })) c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulData })) if intended { c.piecesReceivedSinceLastRequestUpdate++ c.allStats(add(int64(len(msg.Piece)), func(cs *ConnStats) *Count { return &cs.BytesReadUsefulIntendedData })) } for _, f := range c.t.cl.config.Callbacks.ReceivedUsefulData { f(ReceivedUsefulDataEvent{c, msg}) } c.lastUsefulChunkReceived = time.Now() // Need to record that it hasn't been written yet, before we attempt to do // anything with it. piece.incrementPendingWrites() // Record that we have the chunk, so we aren't trying to download it while // waiting for it to be written to storage. piece.unpendChunkIndex(chunkIndexFromChunkSpec(ppReq.ChunkSpec, t.chunkSize)) // Cancel pending requests for this chunk from *other* peers. if p := t.pendingRequests[req]; p != nil { if p == c { panic("should not be pending request from conn that just received it") } p.cancel(req) } err := func() error { cl.unlock() defer cl.lock() concurrentChunkWrites.Add(1) defer concurrentChunkWrites.Add(-1) // Write the chunk out. Note that the upper bound on chunk writing concurrency will be the // number of connections. We write inline with receiving the chunk (with this lock dance), // because we want to handle errors synchronously and I haven't thought of a nice way to // defer any concurrency to the storage and have that notify the client of errors. TODO: Do // that instead. return t.writeChunk(int(msg.Index), int64(msg.Begin), msg.Piece) }() piece.decrementPendingWrites() if err != nil { c.logger.WithDefaultLevel(log.Error).Printf("writing received chunk %v: %v", req, err) t.pendRequest(req) // Necessary to pass TestReceiveChunkStorageFailureSeederFastExtensionDisabled. I think a // request update runs while we're writing the chunk that just failed. Then we never do a // fresh update after pending the failed request. c.updateRequests("Peer.receiveChunk error writing chunk") t.onWriteChunkErr(err) return nil } c.onDirtiedPiece(pieceIndex(ppReq.Index)) // We need to ensure the piece is only queued once, so only the last chunk writer gets this job. if t.pieceAllDirty(pieceIndex(ppReq.Index)) && piece.pendingWrites == 0 { t.queuePieceCheck(pieceIndex(ppReq.Index)) // We don't pend all chunks here anymore because we don't want code dependent on the dirty // chunk status (such as the haveChunk call above) to have to check all the various other // piece states like queued for hash, hashing etc. This does mean that we need to be sure // that chunk pieces are pended at an appropriate time later however. } cl.event.Broadcast() // We do this because we've written a chunk, and may change PieceState.Partial. t.publishPieceChange(pieceIndex(ppReq.Index)) return nil } func (c *Peer) onDirtiedPiece(piece pieceIndex) { if c.peerTouchedPieces == nil { c.peerTouchedPieces = make(map[pieceIndex]struct{}) } c.peerTouchedPieces[piece] = struct{}{} ds := &c.t.pieces[piece].dirtiers if *ds == nil { *ds = make(map[*Peer]struct{}) } (*ds)[c] = struct{}{} } func (c *PeerConn) uploadAllowed() bool { if c.t.cl.config.NoUpload { return false } if c.t.dataUploadDisallowed { return false } if c.t.seeding() { return true } if !c.peerHasWantedPieces() { return false } // Don't upload more than 100 KiB more than we download. if c._stats.BytesWrittenData.Int64() >= c._stats.BytesReadData.Int64()+100<<10 { return false } return true } func (c *PeerConn) setRetryUploadTimer(delay time.Duration) { if c.uploadTimer == nil { c.uploadTimer = time.AfterFunc(delay, c.tickleWriter) } else { c.uploadTimer.Reset(delay) } } // Also handles choking and unchoking of the remote peer. func (c *PeerConn) upload(msg func(pp.Message) bool) bool { // Breaking or completing this loop means we don't want to upload to the // peer anymore, and we choke them. another: for c.uploadAllowed() { // We want to upload to the peer. if !c.unchoke(msg) { return false } for r, state := range c.peerRequests { if state.data == nil { continue } res := c.t.cl.config.UploadRateLimiter.ReserveN(time.Now(), int(r.Length)) if !res.OK() { panic(fmt.Sprintf("upload rate limiter burst size < %d", r.Length)) } delay := res.Delay() if delay > 0 { res.Cancel() c.setRetryUploadTimer(delay) // Hard to say what to return here. return true } more := c.sendChunk(r, msg, state) delete(c.peerRequests, r) if !more { return false } goto another } return true } return c.choke(msg) } func (cn *PeerConn) drop() { cn.t.dropConnection(cn) } func (cn *Peer) netGoodPiecesDirtied() int64 { return cn._stats.PiecesDirtiedGood.Int64() - cn._stats.PiecesDirtiedBad.Int64() } func (c *Peer) peerHasWantedPieces() bool { if all, _ := c.peerHasAllPieces(); all { return !c.t.haveAllPieces() && !c.t._pendingPieces.IsEmpty() } if !c.t.haveInfo() { return !c.peerPieces().IsEmpty() } return c.peerPieces().Intersects(&c.t._pendingPieces) } // Returns true if an outstanding request is removed. Cancelled requests should be handled // separately. func (c *Peer) deleteRequest(r RequestIndex) bool { if !c.requestState.Requests.CheckedRemove(r) { return false } for _, f := range c.callbacks.DeletedRequest { f(PeerRequestEvent{c, c.t.requestIndexToRequest(r)}) } c.updateExpectingChunks() if c.t.requestingPeer(r) != c { panic("only one peer should have a given request at a time") } delete(c.t.pendingRequests, r) delete(c.t.lastRequested, r) // c.t.iterPeers(func(p *Peer) { // if p.isLowOnRequests() { // p.updateRequests("Peer.deleteRequest") // } // }) return true } func (c *Peer) deleteAllRequests() (deleted *roaring.Bitmap) { deleted = c.requestState.Requests.Clone() deleted.Iterate(func(x uint32) bool { if !c.deleteRequest(x) { panic("request should exist") } return true }) c.assertNoRequests() return } func (c *Peer) assertNoRequests() { if !c.requestState.Requests.IsEmpty() { panic(c.requestState.Requests.GetCardinality()) } } func (c *Peer) cancelAllRequests() (cancelled *roaring.Bitmap) { cancelled = c.requestState.Requests.Clone() cancelled.Iterate(func(x uint32) bool { c.cancel(x) return true }) c.assertNoRequests() return } // This is called when something has changed that should wake the writer, such as putting stuff into // the writeBuffer, or changing some state that the writer can act on. func (c *PeerConn) tickleWriter() { c.messageWriter.writeCond.Broadcast() } func (c *PeerConn) sendChunk(r Request, msg func(pp.Message) bool, state *peerRequestState) (more bool) { c.lastChunkSent = time.Now() return msg(pp.Message{ Type: pp.Piece, Index: r.Index, Begin: r.Begin, Piece: state.data, }) } func (c *PeerConn) setTorrent(t *Torrent) { if c.t != nil { panic("connection already associated with a torrent") } c.t = t c.logger.WithDefaultLevel(log.Debug).Printf("set torrent=%v", t) t.reconcileHandshakeStats(c) } func (c *Peer) peerPriority() (peerPriority, error) { return bep40Priority(c.remoteIpPort(), c.t.cl.publicAddr(c.remoteIp())) } func (c *Peer) remoteIp() net.IP { host, _, _ := net.SplitHostPort(c.RemoteAddr.String()) return net.ParseIP(host) } func (c *Peer) remoteIpPort() IpPort { ipa, _ := tryIpPortFromNetAddr(c.RemoteAddr) return IpPort{ipa.IP, uint16(ipa.Port)} } func (c *PeerConn) pexPeerFlags() pp.PexPeerFlags { f := pp.PexPeerFlags(0) if c.PeerPrefersEncryption { f |= pp.PexPrefersEncryption } if c.outgoing { f |= pp.PexOutgoingConn } if c.utp() { f |= pp.PexSupportsUtp } return f } // This returns the address to use if we want to dial the peer again. It incorporates the peer's // advertised listen port. func (c *PeerConn) dialAddr() PeerRemoteAddr { if !c.outgoing && c.PeerListenPort != 0 { switch addr := c.RemoteAddr.(type) { case *net.TCPAddr: dialAddr := *addr dialAddr.Port = c.PeerListenPort return &dialAddr case *net.UDPAddr: dialAddr := *addr dialAddr.Port = c.PeerListenPort return &dialAddr } } return c.RemoteAddr } func (c *PeerConn) pexEvent(t pexEventType) pexEvent { f := c.pexPeerFlags() addr := c.dialAddr() return pexEvent{t, addr, f, nil} } func (c *PeerConn) String() string { return fmt.Sprintf("%T %p [id=%q, exts=%v, v=%q]", c, c, c.PeerID, c.PeerExtensionBytes, c.PeerClientName.Load()) } func (c *Peer) trust() connectionTrust { return connectionTrust{c.trusted, c.netGoodPiecesDirtied()} } type connectionTrust struct { Implicit bool NetGoodPiecesDirted int64 } func (l connectionTrust) Less(r connectionTrust) bool { return multiless.New().Bool(l.Implicit, r.Implicit).Int64(l.NetGoodPiecesDirted, r.NetGoodPiecesDirted).Less() } // Returns the pieces the peer could have based on their claims. If we don't know how many pieces // are in the torrent, it could be a very large range the peer has sent HaveAll. func (cn *PeerConn) PeerPieces() *roaring.Bitmap { cn.locker().RLock() defer cn.locker().RUnlock() return cn.newPeerPieces() } // Returns a new Bitmap that includes bits for all pieces the peer could have based on their claims. func (cn *Peer) newPeerPieces() *roaring.Bitmap { // TODO: Can we use copy on write? ret := cn.peerPieces().Clone() if all, _ := cn.peerHasAllPieces(); all { if cn.t.haveInfo() { ret.AddRange(0, bitmap.BitRange(cn.t.numPieces())) } else { ret.AddRange(0, bitmap.ToEnd) } } return ret } func (cn *Peer) stats() *ConnStats { return &cn._stats } func (p *Peer) TryAsPeerConn() (*PeerConn, bool) { pc, ok := p.peerImpl.(*PeerConn) return pc, ok } func (p *Peer) uncancelledRequests() uint64 { return p.requestState.Requests.GetCardinality() } func (pc *PeerConn) remoteIsTransmission() bool { return bytes.HasPrefix(pc.PeerID[:], []byte("-TR")) && pc.PeerID[7] == '-' }