// Copyright (c) 2022 Uber Technologies, Inc. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package fx import ( "context" "fmt" "os" "os/signal" "sync" ) // ShutdownSignal represents a signal to be written to Wait or Done. // Should a user call the Shutdown method via the Shutdowner interface with // a provided ExitCode, that exit code will be populated in the ExitCode field. // // Should the application receive an operating system signal, // the Signal field will be populated with the received os.Signal. type ShutdownSignal struct { Signal os.Signal ExitCode int } // String will render a ShutdownSignal type as a string suitable for printing. func (sig ShutdownSignal) String() string { return fmt.Sprintf("%v", sig.Signal) } func newSignalReceivers() signalReceivers { return signalReceivers{ notify: signal.Notify, stopNotify: signal.Stop, signals: make(chan os.Signal, 1), } } type signalReceivers struct { // this mutex protects writes and reads of this struct to prevent // race conditions in a parallel execution pattern m sync.Mutex // our os.Signal channel we relay from signals chan os.Signal // when written to, will instruct the signal relayer to shutdown shutdown chan struct{} // is written to when signal relay has finished shutting down finished chan struct{} // this stub allows us to unit test signal relay functionality notify func(c chan<- os.Signal, sig ...os.Signal) stopNotify func(c chan<- os.Signal) // last will contain a pointer to the last ShutdownSignal received, or // nil if none, if a new channel is created by Wait or Done, this last // signal will be immediately written to, this allows Wait or Done state // to be read after application stop last *ShutdownSignal // contains channels created by Done done []chan os.Signal // contains channels created by Wait wait []chan ShutdownSignal } func (recv *signalReceivers) relayer() { defer func() { recv.finished <- struct{}{} }() select { case <-recv.shutdown: return case signal := <-recv.signals: recv.Broadcast(ShutdownSignal{ Signal: signal, }) } } // running returns true if the the signal relay go-routine is running. // this method must be invoked under locked mutex to avoid race condition. func (recv *signalReceivers) running() bool { return recv.shutdown != nil && recv.finished != nil } func (recv *signalReceivers) Start() { recv.m.Lock() defer recv.m.Unlock() // if the receiver has already been started; don't start it again if recv.running() { return } recv.finished = make(chan struct{}, 1) recv.shutdown = make(chan struct{}, 1) recv.notify(recv.signals, os.Interrupt, _sigINT, _sigTERM) go recv.relayer() } func (recv *signalReceivers) Stop(ctx context.Context) error { recv.m.Lock() defer recv.m.Unlock() recv.stopNotify(recv.signals) // if the relayer is not running; return nil error if !recv.running() { return nil } recv.shutdown <- struct{}{} select { case <-ctx.Done(): return ctx.Err() case <-recv.finished: close(recv.shutdown) close(recv.finished) recv.shutdown = nil recv.finished = nil recv.last = nil return nil } } func (recv *signalReceivers) Done() <-chan os.Signal { recv.m.Lock() defer recv.m.Unlock() ch := make(chan os.Signal, 1) // If we had received a signal prior to the call of done, send it's // os.Signal to the new channel. // However we still want to have the operating system notify signals to this // channel should the application receive another. if recv.last != nil { ch <- recv.last.Signal } recv.done = append(recv.done, ch) return ch } func (recv *signalReceivers) Wait() <-chan ShutdownSignal { recv.m.Lock() defer recv.m.Unlock() ch := make(chan ShutdownSignal, 1) if recv.last != nil { ch <- *recv.last } recv.wait = append(recv.wait, ch) return ch } func (recv *signalReceivers) Broadcast(signal ShutdownSignal) error { recv.m.Lock() defer recv.m.Unlock() recv.last = &signal channels, unsent := recv.broadcast( signal, recv.broadcastDone, recv.broadcastWait, ) if unsent != 0 { return &unsentSignalError{ Signal: signal, Total: channels, Unsent: unsent, } } return nil } func (recv *signalReceivers) broadcast( signal ShutdownSignal, anchors ...func(ShutdownSignal) (int, int), ) (int, int) { var channels, unsent int for _, anchor := range anchors { c, u := anchor(signal) channels += c unsent += u } return channels, unsent } func (recv *signalReceivers) broadcastDone(signal ShutdownSignal) (int, int) { var unsent int for _, reader := range recv.done { select { case reader <- signal.Signal: default: unsent++ } } return len(recv.done), unsent } func (recv *signalReceivers) broadcastWait(signal ShutdownSignal) (int, int) { var unsent int for _, reader := range recv.wait { select { case reader <- signal: default: unsent++ } } return len(recv.wait), unsent } type unsentSignalError struct { Signal ShutdownSignal Unsent int Total int } func (err *unsentSignalError) Error() string { return fmt.Sprintf( "send %v signal: %v/%v channels are blocked", err.Signal, err.Unsent, err.Total, ) }