package transactions import ( "bytes" "context" "fmt" "math/big" "sync" "time" ethereum "github.com/ethereum/go-ethereum" gethcommon "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/status-im/status-go/account" "github.com/status-im/status-go/rpc" ) const ( // sendTxTimeout defines how many seconds to wait before returning result in sentTransaction(). sendTxTimeout = 300 * time.Second defaultGas = 90000 ) type ErrBadNonce struct { nonce uint64 localNonce uint64 remoteNonce uint64 } func (e *ErrBadNonce) Error() string { return fmt.Sprintf("bad nonce %d. local nonce: %d, remote nonce: %d", e.nonce, e.localNonce, e.remoteNonce) } // Transactor validates, signs transactions. // It uses upstream to propagate transactions to the Ethereum network. type Transactor struct { sender ethereum.TransactionSender pendingNonceProvider PendingNonceProvider gasCalculator GasCalculator sendTxTimeout time.Duration rpcCallTimeout time.Duration networkID uint64 addrLock *AddrLocker localNonce sync.Map log log.Logger } // NewTransactor returns a new Manager. func NewTransactor() *Transactor { return &Transactor{ addrLock: &AddrLocker{}, sendTxTimeout: sendTxTimeout, localNonce: sync.Map{}, log: log.New("package", "status-go/transactions.Manager"), } } // SetNetworkID selects a correct network. func (t *Transactor) SetNetworkID(networkID uint64) { t.networkID = networkID } // SetRPC sets RPC params, a client and a timeout func (t *Transactor) SetRPC(rpcClient *rpc.Client, timeout time.Duration) { rpcWrapper := newRPCWrapper(rpcClient) t.sender = rpcWrapper t.pendingNonceProvider = rpcWrapper t.gasCalculator = rpcWrapper t.rpcCallTimeout = timeout } // SendTransaction is an implementation of eth_sendTransaction. It queues the tx to the sign queue. func (t *Transactor) SendTransaction(sendArgs SendTxArgs, verifiedAccount *account.SelectedExtKey) (hash gethcommon.Hash, err error) { hash, err = t.validateAndPropagate(verifiedAccount, sendArgs) return } // SendTransactionWithSignature receive a transaction and a signature, serialize them together and propage it to the network. // It's different from eth_sendRawTransaction because it receives a signature and not a serialized transaction with signature. // Since the transactions is already signed, we assume it was validated and used the right nonce. func (t *Transactor) SendTransactionWithSignature(args SendTxArgs, sig []byte) (hash gethcommon.Hash, err error) { if !args.Valid() { return hash, ErrInvalidSendTxArgs } chainID := big.NewInt(int64(t.networkID)) signer := types.NewEIP155Signer(chainID) txNonce := uint64(*args.Nonce) to := *args.To value := (*big.Int)(args.Value) gas := uint64(*args.Gas) gasPrice := (*big.Int)(args.GasPrice) data := args.GetInput() var tx *types.Transaction if args.To != nil { t.log.Info("New transaction", "From", args.From, "To", *args.To, "Gas", gas, "GasPrice", gasPrice, "Value", value, ) tx = types.NewTransaction(txNonce, to, value, gas, gasPrice, data) } else { // contract creation is rare enough to log an expected address t.log.Info("New contract", "From", args.From, "Gas", gas, "GasPrice", gasPrice, "Value", value, "Contract address", crypto.CreateAddress(args.From, txNonce), ) tx = types.NewContractCreation(txNonce, value, gas, gasPrice, data) } var ( localNonce uint64 remoteNonce uint64 ) t.addrLock.LockAddr(args.From) if val, ok := t.localNonce.Load(args.From); ok { localNonce = val.(uint64) } defer func() { // nonce should be incremented only if tx completed without error // and if no other transactions have been sent while signing the current one. if err == nil { t.localNonce.Store(args.From, txNonce+1) } t.addrLock.UnlockAddr(args.From) }() ctx, cancel := context.WithTimeout(context.Background(), t.rpcCallTimeout) defer cancel() remoteNonce, err = t.pendingNonceProvider.PendingNonceAt(ctx, args.From) if err != nil { return hash, err } if tx.Nonce() != localNonce || tx.Nonce() != remoteNonce { return hash, &ErrBadNonce{tx.Nonce(), localNonce, remoteNonce} } signedTx, err := tx.WithSignature(signer, sig) if err != nil { return hash, err } ctx, cancel = context.WithTimeout(context.Background(), t.rpcCallTimeout) defer cancel() if err := t.sender.SendTransaction(ctx, signedTx); err != nil { return hash, err } return signedTx.Hash(), nil } // make sure that only account which created the tx can complete it func (t *Transactor) validateAccount(args SendTxArgs, selectedAccount *account.SelectedExtKey) error { if selectedAccount == nil { return account.ErrNoAccountSelected } if !bytes.Equal(args.From.Bytes(), selectedAccount.Address.Bytes()) { return ErrInvalidTxSender } return nil } func (t *Transactor) validateAndPropagate(selectedAccount *account.SelectedExtKey, args SendTxArgs) (hash gethcommon.Hash, err error) { if err = t.validateAccount(args, selectedAccount); err != nil { return hash, err } if !args.Valid() { return hash, ErrInvalidSendTxArgs } t.addrLock.LockAddr(args.From) var localNonce uint64 if val, ok := t.localNonce.Load(args.From); ok { localNonce = val.(uint64) } var nonce uint64 defer func() { // nonce should be incremented only if tx completed without error // if upstream node returned nonce higher than ours we will stick to it if err == nil { t.localNonce.Store(args.From, nonce+1) } t.addrLock.UnlockAddr(args.From) }() ctx, cancel := context.WithTimeout(context.Background(), t.rpcCallTimeout) defer cancel() nonce, err = t.pendingNonceProvider.PendingNonceAt(ctx, args.From) if err != nil { return hash, err } // if upstream node returned nonce higher than ours we will use it, as it probably means // that another client was used for sending transactions if localNonce > nonce { nonce = localNonce } gasPrice := (*big.Int)(args.GasPrice) if args.GasPrice == nil { ctx, cancel = context.WithTimeout(context.Background(), t.rpcCallTimeout) defer cancel() gasPrice, err = t.gasCalculator.SuggestGasPrice(ctx) if err != nil { return hash, err } } chainID := big.NewInt(int64(t.networkID)) value := (*big.Int)(args.Value) var gas uint64 if args.Gas == nil { ctx, cancel = context.WithTimeout(context.Background(), t.rpcCallTimeout) defer cancel() gas, err = t.gasCalculator.EstimateGas(ctx, ethereum.CallMsg{ From: args.From, To: args.To, GasPrice: gasPrice, Value: value, Data: args.GetInput(), }) if err != nil { return hash, err } if gas < defaultGas { t.log.Info("default gas will be used because estimated is lower", "estimated", gas, "default", defaultGas) gas = defaultGas } } else { gas = uint64(*args.Gas) } var tx *types.Transaction if args.To != nil { t.log.Info("New transaction", "From", args.From, "To", *args.To, "Gas", gas, "GasPrice", gasPrice, "Value", value, ) tx = types.NewTransaction(nonce, *args.To, value, gas, gasPrice, args.GetInput()) } else { // contract creation is rare enough to log an expected address t.log.Info("New contract", "From", args.From, "Gas", gas, "GasPrice", gasPrice, "Value", value, "Contract address", crypto.CreateAddress(args.From, nonce), ) tx = types.NewContractCreation(nonce, value, gas, gasPrice, args.GetInput()) } signedTx, err := types.SignTx(tx, types.NewEIP155Signer(chainID), selectedAccount.AccountKey.PrivateKey) if err != nil { return hash, err } ctx, cancel = context.WithTimeout(context.Background(), t.rpcCallTimeout) defer cancel() if err := t.sender.SendTransaction(ctx, signedTx); err != nil { return hash, err } return signedTx.Hash(), nil }